DOI: https://doi.org/10.20535/kpi-sn.2020.1.197953

CONCEPTUAL MODEL OF TECHNOLOGICAL ENVIRONMENT OF PROGRAMMING

Ihor V. Redko, Petro O. Yahanov

Abstract


Background. The content of the considered conceptual model is explained through the concepts of “concept”, “monad”, and concept-monadic complementation that is fundamental for the technological programming environment. The concept-monadic environment is a platform that really implements the understanding of programming as a subject-object productive activity – the complementarity of the programming process and its consequence in their cause-effect relation with the dominance of the actual process. It sets the stage for the technologization of programming industry and the creation of adaptive and flexible subject-oriented programming systems. The capabilities of the concept-monadic platform are exemplified by one of its possible implementations – reduction programming technology.

Objective. The purpose of the paper is further development of the concept-monadic foundations of the subject-object technological environment, aimed at creating adaptive and flexible programming systems.

Methods. Methods of introduction, exclusion of abstraction and pragmatic-driven typing, concept-monadic relativization method, reduction method, program algebra method.

Results. Based on the developed conceptual system of concept-monadic and technological environment productive model of reduction environment of programming is created. The concept-monadic model of open-closed programming environment is proposed. For the first time, reduction models of programs and reduction methods of programming are considered as pragmatically conditioned concretization of this environment. It is shown that within the framework of the received concept-monadic system, the tasks and problems that are fundamental for modern programming are correctly set and solved.

Conclusions. Any modern information-technology system should be oriented not so much to the notation of the decisions received, but to support (provide) the productive activity of the subject to obtain them. Effective development of such systems is possible within the framework of a concept-monadic environment that has advanced adaptation tools oriented to take into account the active role of the subject of programming.


Keywords


Concept; Monad; Composite; Reduction; Oracle

References


D.E. Knut, The Art of Computer Programming. Fundamental Algorithms. Moscow, Russia: Vyliams, 2006, 650 p.

E. Husserl, Logical Studies. Cartesian Meditations. Sciences and Transcendental Phenomenology. Philosophy and the Crisis of European Man Philosophy. St. Petersburg, Russia: Nauka, 2006, 320 p.

I.V. Redko et al., Conceptual-Logical Foundations of Design. Kyiv, Ukraine: Comprint, 2016, 154 p.

V. Redko, “The theory of descriptive environments and its application”, Ph.D. dissertation, Dept. Elect., National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine, 2008.

V.N. Redko and I.V. Redko, “Descriptive systems: Perspectives and retrospectives”, Vіsnik Kiїvs'kogo Natsіonal'nogo Unіversitetu іm. T. Shevchenka, sp. issue phys.-math. sci., pp. 68–75, 2004.

V.N. Redko et al., “Conceptological foundations of essential platform”, in Proc. TAAPSD'2012, Kyiv, Ukraine, Dec. 3–7, 2013.

B.A. Trakhtenbrot, Algorithms and Computational Mashines. Moscow, SU: Sovetskoe Radio, 1974, 200 p.

V.A. Ganov and V.R. Karymov. (2009). Computer Simulation of Computations with Oracles. Presented at the EAGU 2009 [Online]. Available: http://izvestia.asu.ru/2009/1/info-comp/07.en.html

A.I. Maltsev, Algorithms and Recursive Functions. Moscow, SU: Nauka, 1965, 391 p.

J.W. Backus, “Algebra of functional programs: functional level thinking, linear equations and generalized definitions”, in Mathematical Logic in Programming. Moscow, Russia: Mir, 1991, pp. 8–53.

J. McCarthy. (1960). Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I. Presented at the Communication of the ACM 1960 [Online]. Available: https://aiplaybook.a16z.com/reference-material/mccarthy-1960.pdf

G. Buch, The Object-Oriented Analysis and Design, 2nd ed. Moscow, Russia: Binom, 1998, 560 p.

D.L. Parnas. (1972). On the Criteria to be Used in Decomposing Systems into Modules. Presented at the Communication of the ACM [Online]. Available: https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf

N. Wirth, “A Personal computer for the software engineer”, in Proc. ICSE 81, San Diego, March 9–12, 1981.

V.N. Redko, “Foundations of programmology”, Kibernetika i Sistemnyj Analiz, no. 1, pp. 35–57, 2000.

H.P. Barendregt, The Lambda Calculus. Its Syntax and Semantics. Moscow, SU: Mir, 1985, 606 p.

V.N. Redko, “Compositions of programs and composite programming”, Programmirovanie, no. 5, pp. 3–24, 1978.

D.I. Redko et al., “Compositional basis in programmer activity”, Systemni Doslidzhennia ta Informatsiini Tekhnolohii, no. 4, pp. 83–96, 2015.


GOST Style Citations




Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.