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LINEAR-ACCURACY ONE-BULLET SILENT DUEL
WITH PROGRESSING-BY-ONE-THIRD SHOOTING MOMENTS

Background. A finite zero-sum game is considered, which models competitive interaction between two
subjects. The subject, referred to as the duelist, must take an action (or, metaphorically, shoot the single
bullet) during a standardized time span, where the bullet can be shot at only specified time moments. The
duelist benefits from shooting as late as possible, but only when the duelist shoots first.

Objective. The objective is to determine optimal behavior of the duelists for a pattern of the duel dis-
crete progression, by which the tension builds up as the duel end approaches and there are more possibilities
to shoot.

Methods. Both the duelists act within the same conditions, and so the one-bullet silent duel is sym-
metric. Therefore, its optimal value is 0 and the duelists have the same optimal strategies. The shooting
accuracy is linear being determined by an accuracy proportionality factor.

Results. Depending on the factor, all pure strategy solutions are found for such duels, whose possi-
ble-shooting moments comprise a progression pattern. According to this pattern, every next possible-shoot-
ing moment is obtained by adding the third of the remaining span to the current moment. The solutions for
this pattern are compared to the known solutions for the geometrical-progression pattern and the pattern
whose possible-shooting moments progress in a smoother manner.

Conclusions. The proved assertions contribute another specificity of the progressing-by-one-third
shooting moments in linear-accuracy one-bullet silent duels to the games of timing. Compared to duels for
other duel discrete progression patterns, the specificity consists in that the duel with progressing-by-one-
third shooting moments has a constant interval of lower (weaker) shooting accuracies, at which the duelist

possesses an optimal pure strategy. This interval is {%,g} that symmetrically breaks the low-accuracy

interval (0; 2).
Keywords: one-bullet silent duel; linear accuracy; matrix game; pure strategy solution; progressing-by-
one-third shooting moments.

1. Introduction

A one-bullet silent duel is a timing zero-sum
game, in which it is unknown to the player (also re-
ferred to as the duelist) whether and when the other
duelist has fired its bullet until the end of the duel
time span [1, 2]. The span is usually interval [0; 2].
The bullet is a metaphor for an option to make a de-
cision or take an action [3, 4]. In fact, shooting (or
firing) a bullet means making a decision or taking an

action during interaction between the two duelists
(decision-makers, consumers, entrepreneurs, Uusers,
etc.) [5, 6]. The duelist may not fire the bullet until
the very last (final) moment to shoot, but then it is
nonetheless fired at the final moment, because the
action must be taken anyway [2, 7, 8]. The duelist
is also featured with an accuracy function which is a
nondecreasing function of time [1, 9, 10].

To more realistically simulate interaction be-
tween the two duelists, discrete silent duels are

kpisn.2025.4.343114
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considered, in which the duelist can shoot only at
specified time moments [1, 3, 4, 11, 12]. The num-
ber of such possible shooting moments is finite. The
moments of the duel beginning and duel end are
included in this number [7, 13, 14]. So, in a discrete
duel with possible shooting moments the players’
pure strategy sets are

N N N
Xy={xlo =Yy :{y./}j:] =1y ={tq}q:1
by
t,<t,, Vg=1,N-lands=0,17,=1
for Ne N\{l}.

c[0;1] (1)

It is presumed that both the duelists act within
the same conditions, and so the one-bullet silent
duel is symmetric. Therefore, its optimal value is
0 and the duelists have the same optimal strate-
gies, although they still can be non-symmetric [3,
11, 13, 15]. The duelist benefits from shooting as
late as possible, but only when the duelist shoots
first [2, 16, 17]. This is modeled, in particular, by a
skew-symmetric payoff matrix [1, 7, 18]

Ky= [kfj ]NXN - [_kﬁ :|N><N - _KITV )
whose entries
k; =ax,—ay, +a’x,y;sign(y,-x,) (3

for
i=1,N and j=1,N bya>0.

The accuracy proportionality factor a defines
the duelists’ linear accuracy functions [7, 16, 19]

px(x)=ax, p,(y)=ay,
through which entry kij can be generally given as

“

ky=py (x,)—py (yj)+
+px (%) py (¥, )sign(y, —x,). (5)

Hence, the global objective is to find pure
strategy solutions of linear-accuracy one-bullet si-
lent duel (LAIBSD)

N

<XN, YN,KN>:<{xi}i]il ) {yj}jzl K

by (1)-(3).

LA1BSD (6) is called progressive if the density
of the duelist’s pure strategies between 7, = 0 and
ty = 1 progressively grows (in accordance with a
definite pattern) as the duelist approaches to the duel
end 7, = 1[1, 7,9, 10, 12, 13]. The duel’s shoo-

) ©

ting-moment progression is quite natural because
the tension builds up as the duel end approaches,
and thus the duelist must have more possibilities to
shoot [6, 11, 20, 21]. A particular interest of ap-
plying LA1BSDs exists in advertising, where com-
petitiveness and waiting to attract and harvest more
audience data are modeled [22, 23].

2. Known results

The first particular case of the progressive
LA1BSD was considered in [15], where

g-1 -1
297 —1
_ -1 _
=) 2" = o
I=1

for ¢ =2, N—1 and pure strategy solutions had been
obtained for any a > 1, and specific conditions had
been found for a € (0;1) such, at which the duel has
a pure strategy solution. Thus, situation

11
X ==, = 8

{27%} {2’2} @®)
is single optimal in duel (6) by (1)—(3), (7), and a > 1
for N e N\{l,2}. Situation (8) is non-optimal by
a €(0;1) However, situation (8) remains single op-
timalby a=1for N e N\{l, 2,3}. The duelby a=1
for N = 3 has four optimal situations (8),

(7

(x5, »s ) =1{L 1}, 9)
1
{2} ={1. 51 )
1
{xz,y3}:{5,l}. (11)
Situation
(. » =1L 1 (12)

is single optimal by any a > 0 in the most trivial
case, when N = 2 (and thus the duelist can shoot
only either at the duel beginning or duel end, which
annuls the progressiveness). Situation (9) is the single
solution to 3x3 duels by a€(0;1). For the gene-
ral case of N = 2 article [15] proves that only one

ne {3, N —1} exists such that situation

2n71 _1 2n71 _1
{xn’yn}:{ }

2)1—1 2 2}1—1
is optimal by

(13)

ae L. Zil c(0;1) (14)
Zn—l_l’ (2,’71—1)'(2”72—1) >
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and situation

s vyt =111 (15)
is optimal by
1
for NeN\{1,2,3}. If
1
4=y (17)
then situations (15),
2N—2 _1 2N—2 _1
{leale}:{ N2 TN [ (18)
2N 1
{xN—layN}:{zN—z,l}’ (19)
2V 1
{Xy> Yy} = {L W} (20)

are optimal; apart from situations (15), (18)-(20),
there are no other pure strategy solutions in the duel

by (17). If
1
then optimal situation (15) is the single one. If
1
a+ W (22)

and (14) holds, optimal situation (13) is the single
one. Finally, if neither (14) nor (16) holds, then the
duel does not have a pure strategy solution.

The second particular case of the progressive
LAIBSD was considered in [13], where

&S g-1
{ = =
1 Zn(n+l) q

n=1

(23)

for g=2,N-1.

This case was motivated by that the density of
the duelist’s pure strategies between 7, = 0 and 7, = 1
grows too quickly if the geometrical progression by
(7) is used. Progression (23) is smoother providing
a sort of compactification of shooting moments.
Meanwhile, article [13] proves that the solutions in
the progressive LA1BSD (6) by (1)-(3), (23) for N =3
are the same as the solutions in the progressive
LAIBSD (6) by (1)-(3), (7) for N = 3. Besides,
the progressive LAIBSD (6) by (1)-(3), (23) for
N eN\{l1,2,3} and a > I has the single optimal si-

tuation (8), which coincides with the solution in the
case of (7). Another coincidence is that in the case
of (23) situation (8) is non-optimal by a (0;1)
for NeN\{L,2}. The remaining results for (23)
were proved [13] for a €(0;1) and N e N\{l, 2, 3}.

Situation
2 2
(w2} = (53]

E’ E (24)

is optimal only if a =—. Except for the third and

1
25
last shooting momenss ¢, =3 and 7, = 1, there are
no other optimal pure strategies. The 4x4 duel with
has four optimal pure strategy situations: situ-

ation (24) and situations

v ={L1}, (25)
2
{x3,y4}:{§,1}, (26)
2
(X4 v3} :{1’ E} . 27)

Finally, situation (15) is single optimal for
N eN\{l,2,3,4} and

1

as——. (28)
N-2
In the 4x4 duel with
a< ; = l (29)
N-2 2

situation (15) is single optimal as well.

Despite progression (23) is smoother than pro-
gression (7), it still lacks a reasonable last-to-penul-
timate ratio

LV (30)
thl thl
which is
1 N1 (31)
ty, N-=2
for (23), whereas ratio (30) is
-2
2 (32)
ty, 2V7-1

for (7). Indeed,

N-1 2"  N-2+41 22141 _
N-2 2"?-1 N-=2 2M 2
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L ST S S S
N-2 = 2"?-1 N-2 2"
2" o1-N+2 2V N+
C(N=2)(2"7 1) (N-2)(2V7 )

=1

>0 (33)

for N e N\{l,2,3}, where difference (33) between
last-to-penultimate ratios (31) and (32) is 0 only
at N = 3. So, in a duel with (23) the duelist gets
a huge gap between the penultimate and last mo-
ment of possible shooting. Hence, another pattern
of possible-shooting-moment progression is to be
considered. According to this pattern, every next
possible-shooting moment is obtained by adding the
third of the remaining span to the current moment:

1-1¢ -1
q q— 3
for g=2,N—-1.
Herein, the local objective is to find pure strate-

gy solutions of progressive LAIBSD (6) by (1)-(3),
(34) for NeN\{L,2}.

(34)

3. Trivia and convention

Clearly, the most trivial duel size is 3x3. Its
possible-shooting-moment progression is trivially a
triple

T3={t1,t2,t3}={0,%,1}. (39)

It is worth noting that the middle of the 3x3
duel time span is as twice as closer to the duel be-
ginning than to the duel end.

Inasmuch as a pure strategy solution of duel
(6) corresponds to a saddle point of skew-symmet-
ric matrix (2) with entries (3), only a zero entry of
this matrix can be a saddle point [7]. Therefore, a
row containing a negative entry does not contain
saddle points; neither does the respective column
containing the positive entry. Hence, it is conven-
tionally possible to conclude only on saddle points
in definite rows of matrix (2), which imply the same
conclusions on saddle points in respective columns.

It is rather trivial, but inasmuch as

k,=-ay;<0 Vvj=2 N

then the first row of matrix (2) with entries (3) is
not an optimal strategy of the first duelist, and thus

situation
{x, »1=1{0,0}

is never optimal in the duel. Another trivial remark is
that a nonnegative row of matrix (2) with entries (3)

contains a saddle point on the main diagonal of the
matrix [7]. If a row contains only positive entries,
except for the main diagonal entry, all the other
N — 1 rows of the respective column contain nega-
tive entries, and thus this row contains a single sad-
dle point which is the single one in the duel.

To study the duel in an easier way, pattern (34)
of possible-shooting-moment progression ought to
be represented similarly to (7) and (23), having the
right-hand side term that depends only on g.

Theorem 1. Sequence (34) for (1) can be rep-
resented as

1-¢
— g1 _
t, =1, ;-
g1 471 -1 -1
2 3 =21
= 7 = o (36)
i=1
for g=2,N-1.
Proof. First, re-write (34) as
1+2¢
— q-1
t, = T (37
for g=2,N-1.

Equality (36), considered without its last term,

can be proved by induction. In the base case, ¢ = 2
and

1

(38)

=1

which is true by (35). By the inductive hypothesis it
is assumed that equality (36), considered without its
last term, holds for any g = k:

kol 571
2

Kl

=1

t, = (39)

By the inductive step, it is about to show that
equality (36), considered without its last term, holds
for g=k+1:

. B 2[—1
k+1 — ]
1=1 3

(40)

Moment £, can be given by using (37):

142, 1 2 <=2
t :—k=—+—- _ =
o3 303 ; 3
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k-1

:%4-23,“: Z3l+l 22] 1

The last term in (41) coincides with the right-
hand side term in (40). This proves equality

(41)

(42)

for ¢ =2, N-1 by induction with (38) and (39), for
the middle term in (36).
Equality

| g-1 _~g-1
2 _ 3 2 43)
3 37!

I=1

for g=2, N-1 is proved in the same way. In the
base case, ¢ = 2 and

ERE R

which is true by (38). By the inductive hypothesis

it is assumed that equality (43) holds for any g = &:
1 21—1 3k—1 _ 2k—l

3 = = . (45)

I=1

By the inductive step, it is about to show that
equality (43) holds for g = k + 1:

I-1 k Ak
AN i )
3 3
The sum in the left-hand side of (46) can be
represented as the sum of the right-hand side term
in (45) and the k-th summand in the left-hand side
of (46):

ol-1 k-1 oIl . k-1
3 =t 3 3
= 3k—l + 3k = 3k +
2k71 3k _ 2 . 2k*1 3k _ 2k
+ 3k = 3k = 3k . (47)

The last term in (47) coincides with the right-
hand side term in (46). This proves equality (43) by
induction with (44) and (45). O

4. Three moments to shoot

Is the duel solution the same as for those two
patterns of possible-shooting-moment progression,
when the duelist has the fewest number of moments
to shoot? The answer follows.

Theorem 2. Progressive LAIBSD (6) by (1)-(3),
(36) for three moments to shoot (N = 3)

ol

has a single optimal situation (9) by a<€(0;2), a
single optimal situation

il

by a > 2. At a = 2 this 4x4 duel has four optimal
situations (49),

(X3, 75, K,

(49)

1
{x23y3}={§91}a (50)
1
{x37y2}:{1>§}7 (51)

and (9).
Proof. Upon plugging elements of (35) into (3)
for N = 3, the respective payoff matrix is

0 . —a
3
a a
Ki=[k ], = 3 0 5(0—2) . (52)
a
a —(a-2 0
L 3( ) _

If ae(0;2), matrix (52) has a single saddle
point (9) due to the last row is positive except for
main diagonal entry k;; = 0. If @ = 2, the second and
third rows are nonnegative, where

ky = ky3 = ks, = ky3 = 0,
and matrix (52) has four saddle points: (49)-(51)
and (9). If a > 2, matrix (52) has a single saddle
point (49) due to the second row is positive except
for main diagonal entry k,, = 0. O

Theorem 2 reads the difference between pattern
(36) and patterns (7), (23), which lies in different

. . .. I, .
second possible-shooting moments: it is ¢, :E being

the middle of the duel time span for patterns (7), (23),
whereasitis ¢, = % being the first third of the duel time
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span for pattern (36). Subsequently, duel solutions
for pattern (36) differ from those for patterns (7),
(23) in the boundary value of accuracy proportiona-
lity factor a, at which the solution changes. It is
a = 2 for pattern (36), whereas it is @ = 1 for patterns
(7), (23). Structurally, however, all the three patterns
have similar solutions for progressive 3x3 LA1BSDs:
the last possible-shooting moment is the single opti-
mal strategy for the accuracy proportionality factor
below the boundary value; the second and last pos-
sible-shooting moments are only optimal strategies
at the boundary value; the second possible-shooting
moment is the single optimal strategy for the accura-
cy proportionality factor above the boundary value.

5. Second possible-shooting moment optimality

It is natural to conjecture that the boundary
value of accuracy proportionality factor ¢ = 2 must
separate two cases of the duel solution just like value
a = 1 separates those for patterns (7), (23). So, right
below, 4x4 and bigger duels are considered by a > 1.

Theorem 3. Progressive LAIBSD (6) by (1)-(3),
(36) for NeN\{1,2,3} and a > 2 has the single
optimal situation (49)

Proof. Consider the second row of matrix (2),
where

a
k21 = E >0 5 3)

and
2

a a a
ky; :g— y +?yj :E-(1—3yj +ayj). (54)

If a = 2 then
1-3y,+ay;=1-y, 20
and (54) is nonnegative:

2
ks, :%'(1_33’1+ayj):§'(l_yf)>0
(35)

Vj=3N,
where k,, = 0 is the second zero entry after k,, in
the second row. Due to (53) and (55), situation (49)
is a saddle point. However,

N-2 N-2
kN,N—l =2-1-2- > 31\/—3
N-2 _AN-2 N-2 _AN-2
I e S
3 3
2N—2 21\/—2
=2—6+6~3N72 =—4+6~3N72 =

(56)

due to

N-3 N-2

2
<1 and 3.3N_’2<2 for N e N\{l1,2,3}.

3N73

Inequality (56) implies that the last row and
last column of matrix (2) do not contain saddle
points. So, situation (49) is single optimal by a = 2.

If a > 2 then it is sufficient to prove that

1-3y,+ay, >0 Vj=3,N. (57)

Inequality (57), implying that the second row
is positive except for main diagonal entry k,, = 0, is
equivalent to inequality

3y.—1
> 3L vis3N )
Y Vi
by
1 .
§<yj<1 Vv j=3,N. (59)
As (59) is true, then
3>L>1,
Vi
—3<—L<—1,
Vi
1
0<3-—<2<a, (60)

Vi

whence inequality (60) directly implies that ine-
quality (58) holds and situation (49) is single opti-
mal by a > 2.

6. Second possible-shooting moment non-opti-
mality

It was proved in [13, 15] that the second pos-
sible-shooting moment is not an optimal strategy by
0 < a <1 in progressive LAIBSDs (6) by (1)—(3)
and N e N\{l,2} for patterns (7) and (23). In those
duels, noticeably, the second possible-shooting mo-
ment is the middle of the duel time span, unlike
for pattern (36). See whether the similar property
keeps for the LAIBSD with progressing-by-one-
third shooting moments by (36), only by 0 < a < 2
and the second possible-shooting moment being the
first third of the duel time span.
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Theorem 4. Situation (49) is never optimal
in progressive LAIBSD (6) by (1)-(3), (36) for
NeN\{L,2} and 0 < a < 2.

Proof. For N eN\{1,2} consider the second
row of matrix (2) whose last column entry

2
a a a
kyy =——a+—==-(a=2)<0
" —-(a-2)

61
3 (61)

by 0 <a<2.

Inequality (61) directly implies that the second
row of matrix (2) does not contain saddle points by
0<a<2.0O

7. Third possible-shooting moment optimality

In a 3x3 duel by 0 < @ < 2 it is optimal to shoot
at the very last (third) possible-shooting moment
(Theorem 2). The last possible-shooting moment is
optimal for duelists in LA1BSDs for patterns (7) and
(23) as well, but just by a (0;1). See whether the
third possible-shooting moment in bigger LAIBSDs
can be an optimal strategy for pattern (36).

Theorem 5. Progressive LAIBSD (6) by (1)-(3),
(36) for N € N\{1,2,3} has an optimal pure strat-
egy situation

55
={— — 62
{x37y3} {979} ( )
b
' ae[i'é} (63)
5’5

Proof. Due to Theorem 4, situation (49) is not
optimal, so the first two rows of matrix (2) do not
contain saddle points. If situation

3n—1 _ 2n—1 3n—1 _ 2n—1
{xn’yn}:{ > (64)

311—1 3n71

by ne {(3, N —1} is optimal, then, in the n-th row of
matrix (2), inequalities

k. =ax,—ay,—a’x,y, >0
Z J J (65)

Vy <x, (Vj=1n-1)
and

_ 2
k,=ax,—ay,+a’x,y, 20 (66)

Vy;>x, (Vj=n+lN)
must hold. From inequality (65) it follows that

X

—2y, Vy;<x, (Vj=1ln-1) (67)
1+ax,

3n—2 _ 2n—2 3n—1 _ 2n—1
3”72 3}171 = xn

Vji=Ln-1

v, <
(68)

then inequality (67) is transformed into

3n—2 _ 2n—2
311—2 )

3)1—1 _ 2n—l 1
31171 ’ 3n71 _2n71 =
3n—1
3n—l _ 2n—1
P
3n—1 +a- (3}1—1 _ 2}1—1 )

1+a-

3n—2 _ 2)1—2
3n—2 ’

3n—1 .3n—2 _ 2n—1 _3n—2 2 3n—1 _3n—2 _3n—1 . 2n—2 +
+a- (3n—1 B 2n—1 )(3n—2 N 2n—2 )’

311—1 . 2n—2 _ 211—1 . 3n—2 2 a '(3n—1 _ 2n—1 )(3n—2 _ 2n—2 )’
3;1—2 X 2)1—2 . (3 _ 2) 2 a- (3n—l _ 2n—1 )(3}1—2 _ 2n—2 ) ’

3n72 . 2;’172 > a- (3n71 _ 2n71 )(3n72 _ 2n72 )’

whence

3}’1—2 . 2n—2
a< . 69
(3/171 _ 2:171 )(3:172 _ 2n72 ) ( )
From inequality (66) it follows that
B>y Vy >x, (Vj=n+LN) . (70)
1-ax, !
As
3n—1 __An-1
1>yj = =x, Vj=n+1,N. (71)
then inequality (70) is transformed into
3n71 _ 2n71 1
3n—1 ) 3n—1 _ 2n—1 2 1 ’
l—a— 5
3
3n—1 _ 2}1—1
>1 (72)
3n71 —a- (3n—l _ 2n71)
If
3 —a-(3"=2"")>0, (73)

i.e.
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3l quality (69) holds along with inequality (75), i.e. if
a< 31171 _2n71 ’ (74) 2n71
ae n-1 n-1 )
then inequality (72) is written as 3 -2
3 -2 23 g (3 -2, 3.
n— n— n— n— . 80
whence (3 -2 l)(3 ) 2) (50)
n—1
_2m <a. (75) The difference between the right and left end-
3t ot points of the interval in membership (80) is:
Therefore, situation (64) is optimal if inequality 312 pn-2 -l
(69) holds along with inequalities (74) and (75). i — =
However, (3"_1 -2 )(3"_2 - 2"_2) 3ot
371 ~ 3n-2.pn2 _ ~ 312 .92 _on-l gn=2  gn-l on-2 ~
3}171 _ 2}171 (3}171 _ 2}171 )(3}172 _ 2n—2) - (3,1,1 _ 2,171 )(3”72 _ 2"[*2 )
n—1 n-2 n—1 n-2 n-2 n-2
=3 3 1 _3 1.2 2_3 2.2 _ _2n—l-2n—2+3n—2‘2n—2_(1_2)_
(3 -2 )(3 -2 ) (3n71 _2n71)(3n—2_2n—2)
n—l1 n-2 n—-2 n-2
= 3 n—1 . 3 n—l_ 4 .}13—2 . 2n—2 = = 2n_1 : 2n_2 — 3n_2 : 2n_2 =
(3 -2"") (3" -2"2) )
3n_2 ) (3n_1 B 2” ) n-2 n—1 n-2
= I 1 2 7 >0 (76) 2 '(2 -3 )
(3n_ _2n_ )(3n_ _2n_ ) = n—1 n—1 n-2 n-2 : (81)
(31 -2"")(3"-2"2)
due to
KL (77) Fraction (81) is nonnegative only for n = 3.
for n>3. Indeed, inequality ) B
Indeed, inequality (77) is true for n = 3: 27 >3 82)
32_958=2% holds for n = 3 as
2 1
Assume that inequality (77) holds for n = k: 2°=4>3=3,
3kl ok (78) but for n = k there is inequality
For n = k + 1 inequality (77) turns into M <3 (83)
3k 5 okt turning into
’ 2’ =8<9=3,
3.3 >2.08
3 and, assuming that for n = k inequality (83) holds as
E 3 s 0k (79) 2k < 3k2 (84)
) ) ) ) for n = k + 1 inequality (83) turns into
whence inequality (79) holds due to inequality (78)
holds. Inequality (76) means that 2F <3+,
32 n-2 -1 2.2 3.3k
<
n—1 n—1 n-2 n-2 n—1 n—1
(3" -2") (32 -2"2) 3 -2 2k1<%3“, (85)

for n > 3 and thus it is sufficient to consider only
stronger inequality (69), upon which weaker inequa-
lity (74) holds. Hence, situation (64) is optimal if ine-

whence inequality (85) holds due to inequality (84)
holds. For n = 3 the interval in membership (80)
turns into:
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2> 3.2 _F_g}
3¥-27(3-2%)(3'-2") | Ls's)
Therefore, the duel has an optimal pure strate-
gy situation (62) by (63). O

8. Last possible-shooting moment optimality

A corollary from Theorem 5 is that 4x4 and
bigger LAIBSDs by

RCHRED

do not have optimal pure strategy situations corre-
sponding to all possible-shooting moments, except
for the last one. The optimality of last-moment sit-
uation (15) is ascertained below for 5x5 and bigger
LA1BSDs.

Theorem 6. In progressive LAIBSD (6) by (1)-
(3), (36) for N eN\{1,2,3,4} and

2N -2
ac (O; N2 _oN-2 i|
situation (15) is single optimal.
Proof. Situation (15) is optimal only if the last
row of matrix (2) is nonnegative. Thus, the last, N-th,

row of matrix (2) contains a saddle point if inequality

(86)

87)

ky =a-ay;—a’y, >0

(88)
‘v’yj <1l (Vj=1,N-1)
holds. It is easy to see in (88) that if inequality
l=yy,—ayy, 20 (89)

is true, then inequality (88) is true as well. From
inequality (89) it follows that

. 90)
Y
3N*2 _2N72
1- 3N72
N2 _oN2 a, 1)
3N—2
2N72
vz % ©2)

whence (87) implies optimality of situation (15).
Meanwhile, inequality

2V 8 4
s < =<~ 93
322V 79 s 02

holds for N € N\{l,2,3,4}. Indeed, from inequa-
lity (93) it follows that

19-2¥2<8.3V2-8.2%2,
2727 <8.3V2,

33 ‘2N—2 < 23 .3N—2 ,

whence
2N—5 < 3N—5

for NeN\{l,2,3,4}.
Inequality (93) implies that

N-2
(0; —31\/-3 = } c (0; %} c (O; %) (94)

for NeN\{l,2,3,4}.

Membership (94) with the inclusion obeys mem-
bership (86), which implies that by (87) situation (15)
in 5x5 and bigger LA1BSD:s is single optimal. O

Inequality (93) is false for N = 4 as

2> 4

3222 5
Thisleadstoaspecificity of4x4 LA1BSDsby (87).

Theorem 7. In progressive 4x4 LA1IBSD (6) by
(1)-(3), (36) for N = 4 and

ae(O;i)
5

situation (15) is single optimal. The 4x4 LA1BSD by

95)

4
a=— 96
s (96)

has four optimal pure strategy situations: (62),

5
{x35y4}: 5’1 ) (97)
5

{x4:y3}: 195 ) (98)

and (15).
Proof- Situation (15) is single optimal if the last,
fourth, row of matrix (2) is positive, except for entry
ky, = 0. In Theorem 6, it follows from (88)-(92) for
N = 4 that situation (15) is single optimal when
N2 4
=—>aq,

VN s 99)
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i.e. if membership (95) is true. If (96) is true, situa-
tion (15) is optimal as well owing to (88)-(92) hold
for N = 4. In addition, situation (62) is optimal in
accordance with Theorem 5 as membership (63) is
also true. This additionally implies optimality of si-
tuations (97) and (98).1

9. Non-solvability in pure strategies

Just like the LAIBSDs for patterns (7) and
(23), the LAIBSD for pattern (36) is not solved in
pure strategies within a subset of values of the accu-
racy proportionality factor. This is proved by the two
following assertions.

Theorem 8. Progressive 4x4 LA1IBSD (6) by
(1)-(3), (36) for N = 4 is not solved in pure stra-

tegies by
ac (é, 2) i
5

Proof. The 4x4 LAIBSD is solved in pure stra-
tegies by a > 2 (Theorem 3) and by (63) (Theorem 5)
and by (95) (Theorem 7). By the remaining interval
in (100), as the corollary from Theorem 35, the 4x4
LAIBSD does not have an optimal pure strategy
situation that would contain three possible-shooting
moments

(100)

15
Loty =40,—,—.
fhotn =033

The last possible-shooting moment is non-op-
timal if, as a corollary from (88)—(93) in Theorem 6
and Theorem 7, inequality (92) for N = 4 is false, i.e.

2 ca (101)
5 b

which is true by (100). O

Theorem 9. Progressive LA1BSD (6) by (1)-
(3), (36) for N € N\{l, 2,3, 4} is not solved in pure
strategies by

2N 4 (6

Proof. Once again, the LAIBSD is solved in
pure strategies by a > 2 (Theorem 3) and by (63)
(Theorem 5) and by (87) (Theorem 6). Then, the
corollary from Theorem 5 and the corollary from
Theorem 6, — particularly, with membership (94) and
its inclusions, — is that the LAIBSD does not have
optimal pure strategy situations by (102). [

It is easy to see that the subset in (102) of

pure-strategy-solution non-existence expands as the
duel becomes bigger.

Theorem 10. As the number of possible-shoo-
ting moments in progressive LA1IBSD (6) by (1)-
(3), (36) for N eN\{l1,2,3,4} is increased, the
last-moment-optimality interval by (87) shortens.
Proof. This assertion means that

2N72
}fl_l’)l'olO(O, W} =. (103)
Consider a function
2N—2
S(N) =z (104)
The first derivative of function (104) is
df (11'12)‘2]\]72'(3N72_2N72)_2N72
- — X
dN (31\/—2 _oN-2 )2
((In3)-3"2 —(In2)-2"?)
% (3N72 _oN-2 )2 B
_,n2 (In 2)-3"2—(In2)-2"? —(In3) y
N . (3N—2 _2N—2 )2
3V +(In2)- 2"
X =
(3N—2 _ N2 )2
=2N—2.3N—2. ln2_ln3 2<0,
(3N—2 _2N—2)

which means that (104) is a decreasing function of
N. That is,

2N—2

lim £ (N)= lim =0

Nosoo Nesoo 2 (1 (ijv—z ’
3

whence (103) is true. O

Thus, as the duel becomes bigger, the non-con-
stant interval in (102) becomes wider, expanding the
accuracy subset of pure-strategy-solution non-exis-

tence towards
4 6
0; 2 U(—;2j
[5)u(3

for LA1BSDs with five and more possible-shooting
moments.

(105)

10. Discussion and conclusion

Compared to the LAIBSDs for patterns (7)
and (23), the LAIBSD with progressing-by-one-
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third shooting moments has a different boundary
value of the accuracy proportionality factor, which
separates two major cases of the duel solution. The
LA1BSD for pattern (36) with four and more pos-
sible-shooting moments by a > 2 has the single op-
timal situation (49), according to which the duelist
must shoot at the second moment being the first
third of the duel time span (7heorem 3). When there
are only three possible-shooting moments, the se-
cond moment is single optimal if @ > 2, the last mo-
ment is single optimal if a €(0;2), the second and
last moments are both optimal if a = 2 (Theorem 2).

When a€(0;2) and there are three or more
possible-shooting moments, the second moment
is never optimal for the duelist (7heorem 4). This
is the case, where LA1BSD with progressing-by-
one-third shooting moments significantly differs (in
terms of its solution) from the LA1BSDs for patterns
(7) and (23). Thus, in LAIBSDs for pattern (36)
with four and more possible-shooting moments third

moment ¢, = g is optzimal by (63) (Theorem 5), whereas
third moment ¢, =3 is optimal in the LA1BSD f(}r
compactified-moments pattern (23) only if a=5
[13]. In the LAIBSD for geometrical-progression
pattern (7) third moment ¢, :% is particularly opti-

mal if

although optimality of later possible-shooting mo-
ments is also possible [15].

Just like for patterns (7) and (23), the last mo-
ment can be optimal in LA1BSDs for pattern (36)
with four and more possible-shooting moments by
sufficiently low values of the accuracy proportio-
nality factor. The last moment is optimal if (87) is
true (Theorems 6 and 7), where the length of the
interval in (87) exponentially-like shortens as the
number of possible-shooting moments (the size of
the duel) is increased (Theorem 10). This last-mo-
ment-optimality interval shortening exists for pat-
terns (7) and (23) as well, whose right endpoints in
the interval are

1
2V
and
b
N-2~

respectively. Last-moment-optimality solutions of
LAI1BSD:s for patterns (7), (23), and (36) with exactly

four possible-shooting moments cannot be seamless-
ly surveyed. The 4x4 LA1BSD for geometrical-pro-
gression pattern (7) is not specifically distinguished
from bigger LA1BSDs. Unlike LA1BSDs with the
faster converging possible-shooting moments by (7),
the duelist in the 4x4 LAIBSD with compactified

shooting moments by (23) and a e(O; %) has the
single optimal strategy to shoot at the duel very end.
If the accuracy proportionality factor is equal to %,
then the duelist in the 4x4 LA1BSD for pattern (23)
possesses two optimal pure strategies ¢, = % and z, = 1.

This resembles the optimal behavior of the duelist in
the 4x4 LA1BSD for pattern (36) and (96), where

it is optimal to shoot at either ¢, =§ ort,=1.If(95) is

true, the last moment remains single optimal (7he-
orem 7).

Unlike the LA1BSD for pattern (23), which is
not solved in pure strategies if

ae(zvl—zglj\{%}

for N eN\{l,2,3} and the interval in (106) ap-
proaches to open interval (0;1) as the number of pos-
sible-shooting moments is increased, the LA1BSD
for pattern (36) does not have a pure strategy solu-
tion by (102) (Theorem 9), i.e. there is a stable in-
finite subset of values of the accuracy proportionali-
ty factor below the boundary value a = 2 such that a
pure strategy solution exists — see (63) and Theorem 5.

(106)

This subset, whose length is 3 comprising 20 % of

the below-boundary-value interval, changes into interval

)

in a 4x4 LAIBSD for pattern (36) (Theorems 7
and &). Interval (107) comprises 60 % of the be-
low-boundary-value interval (0;2).

The proved assertions contribute another speci-
ficity of the progressing-by-one-third shooting mo-
ments in LA1IBSDs to the games of timing. Com-
pared to LA1BSDs for patterns (7) and (23), the
specificity consists in that the LA1BSD for pattern
(36) has a constant interval of lower (weaker) shoo-
ting accuracies, at which the duelist possesses an

that

(107)

. .. . |46
optimal pure strategy. This interval is {g,g}

symmetrically breaks the low-accuracy interval (0;2).
LA1BSDs with progressing-by-one-third shoo-
ting moments can be further studied for some
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nonlinearities in the accuracy function. For in- cy. Besides, the case of a value of the jitter added to
stance, it can be the quadratic accuracy as a case progressing-by-one-third shooting moments, apart
of the low-accurate duelist [10]. For a case of the from the duel beginning and end time moments,
high-accurate duelist, it is the square-root accura- can be considered [18].
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B.B. PomaHtok

BE3LIYMHA OYEINb 3 OAHIEIO KYNEK NIHIMHOI BIYYHOCTI TA NMPOMPECYOUUMW HA OLHY TPETUHY MOMEHTAMU
NOCTPUTY

MNpo6nemaTtuka. Po3rnsHyTo CKiHYEHHY rpy 3 HYNIbOBOK CyMO, Sika MOAENIOE KOHKYPYIOYy B3aEMOAiI0 MK ABOMa Cy6’ekTamu.
Cy6’eKT, SIKOrO LLie Ha3nBalTb AyeNsHTOM, Mae BUKOHATU AKyCb Aito (abo, BUCMOBMIOWYNCL MeTaopnyHO, 34INCHUTM NOCTPIN OfHieo
Kyrnero) NpoTSArom CTaHAapTU30BaHOrO MPOMIKKY Yacy, Ae Kyns moxe OyTu BunyllieHa nuile y 3a3HadeHi MoMeHTM yacy. [ina GinbLlu
peanicTU4HOro CUMYIIOBaHHA B3aeMogii MK AyensHTaMu KinbKiCTb TakMX MOMEHTIB MOXMMBOrO MOCTPINY NpUAMatoTb CKiHYEHHO!O,
BHacnigok Yoro rpa (abo x Ayenb) cTae AUCKpeTHO. [Ans AyensHTa 3anuwaeTbCs HEBIGOMUM [0 KiHLSA Ayerni, YW iHLINIA [yensHT 34iCHNB
nocTpin i konu BiH BiadyBcsA. [lyensHT Moxe He CTPINATM ax A0 CaMOro KiHUSA Ayeni, ane ToAi MoCTpin oAHaye 3A4iNCHIOETbCA aBTOMATUYHO
y Liel KiHLEBUIA MOMEHT Yacy, OCKifNbku Ais mae 6yTu BukoHaHa y 6yab-skomy Bunagky. [lyensHt Burpae Bif 34iliCHEHHSI NOCTPiNny skoMora
nisHile, ane nuie ToAi, KONMW BiH BUNEpPeanTb iHLWOro AyensHTa.

MeTa pocnigaxeHHs. Meta nonsirae y Tomy, o6 Ans Aeskoi moAeni AVCKPeTHOI Nporpecii Ayeni BU3Ha4YMT1 onTyManbHy NoBeaiHKy
OyensHTIB, 3a siKoi Hanpyra 36inbLUyeTbcA 3 HABNXKEHHAM KiHUSA Ayeni Ta 3'ABNsSeTbCs Ginblue MOXIMBOCTEN AN NOCTPiny.

MeTtoauka peanisauii. O6nasa AyensHTU AiloTe 3a TUX CaMUX YMOB, TOMY Lt 6e3LliyMHa Ayenb 3 OQHIE0 Kynet € CUMEeTPUYHOI0.
Bigtak onTumanbHe 3HauveHHsi rpu AopiHoe 0, i AyensHTU MalTb OAHaKOBI onTMMarnbHi cTpaTerii. BnyyHicTe mocTpiny € niHinHo
i BU3HaYaeTbCA koediLieHTOM NPONOPLiMHOCTI TOYHOCTI.

Pe3ynbTaTtn gocnigXeHHs. YCi po3B’aA3kM Y YNCTWX CTpaTerisax Ans Takux Ayenen 3HanaeHi 3anexHo Bif Lporo koedilieHTa, ae
MOMEHTN MOXIVBOrO MOCTPINy CKNagalTb MoAenb Aeskoi nporpecii. 3rigHo 3 Lielo MOAENto KOXHWIA HaCTYMHUIA MOMEHT MOXIMBOTO
nocTpifly OTPUMYIOTb [0AaBaHHAM TPETMHU YacoBOro MPOMiXKY, WO 3anuwaeTbca A0 KiHUA ayeni. Po3s’asku ans uiei mopeni
NMOPIBHIOKOTLCS 3 BiJOMUMW PO3B’si3kKaMU ANst MOAENi reoMeTpUYHOI NPOrpecii, a TakoX MoAeri, B SKil MOMEHTV MOXIUBOIO MOCTPINy
nporpecyoTb 6inbLl NOMipHO.

BucHoBku. [loBeaeHi TBepaKeHHs1 po3KpuBaloTb Lie OAHY OCOBNMBICTL MPOrpecyroyMx Ha OAHY TPEeTUHY MOMEHTIB MocTpiny
y 6e3wymMHUX ayensx 3 ogHieto Kyneto NiHiHOI BYYHOCTI y Kraci YacoBuX irop. AKLLO NnopiBHOBaTH Ayeni 3 iHWXMU MOAENSIMU ANCKPETHOI
Nporpecii, Lisi 0COBNUBICTL NoMnsArae y Tomy, Lo Ayerb i3 NPOrpecytounuMm Ha oaHy TPeTUHY MOMEHTaMuM NOCTPiNy Mae NocTiHUIA iHTepBan

5

. . . i ) 4 6 .
HWXKHIX (crnabLlumx) BRy4YHOCTEN, 3a SIKMX OyenicT Mae onTuManbHy YMcTy cTpaTterito. Lium iHTepBanom e [—'— , SIKUA CUMETPUYHO

po3busae iHTepBan (0; 2) cnabkoi Bry4YHOCTI.
KnrouyoBi cnoBa: 6e3wymHa ayernb 3 OfHIE Kyneto; MiHiiHa BIy4YHICTb; MaTpUYHa rpa; po3B’sa30K y YACTUX CTpaTErisix; Nporpecyoyi
Ha OfHY TPETMHY MOMEHTU MOCTpIny.

Pexomennosana Panoro Haniiiiuna no pemaxuit
akyapTeTy NMPUKIATHOI MaTEMaTUKKU 18 cepnius 2025 poky
KIII im. Iropst Cikopcbkoro
IMpuitHdra no my6mikartii
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DECISION MAKING IN ANTI-CORONAVIRUS DRUG DISCOVERY:
MATHEMATICAL MODELLING AND VALUE OF INFORMATION ANALYSIS

Background. The process of preclinical evaluation of antiviral medications typically involves multiple stages, each con-
taining substantial uncertainties. Traditional methods for screening the compounds often lack structured means for op-
timising the decision-making and calculating the feasibility and risks of transitions between all of the stages. Thus, there
appears to be a problem with the inefficient selection of promising antiviral molecules, which subsequently increases
the probability of choosing suboptimal research trajectories.

Objective. The paper aims to develop a computational framework for optimising of the transition between stages in
preclinical antiviral testing. The system focuses on the integration of decision trees and Markov models in order to
include effectiveness, risks and the value of additional information into assessment, supporting an in-depth planning of
preclinical research pipelines.

Methods. Experimental data from molecular docking, cytotoxicity CD, and antiviral activity IC, were used in a mul-
ti-stage evaluation system with CTI > 4 being the criterion for progression into further stages. Decision trees provided
the explicit rules for advancement of the compounds, while Markov models added context for building sequential
strategies under uncertainty and quantified the feasibility of movement to the next stage. Value of information analysis
added the assessment of the expected benefit of additional data.

Results. The developed framework consistently produced reliable technical results. The decision used in CTI > 4.0
prediction stage demonstrated a conservative classification pattern, correctly identifying compounds with high thera-
peutic potential while missing some effective candidates. The Markov model showed steadily increasing state values in
docking, cytotoxicity, and antiviral testing phases that confirmed the growth of expected utility. Based on the findings
acquired, the most effective solutions were identified for the ongoing investigation into antiviral assays, while the ap-
plication of value of information analysis indicated that the largest gain occurred after antiviral activity testing, whereas
the initial phases serve as filters.

Conclusions. The study showed that both decision trees and Markov models capture different but complementary as-
pects of the preclinical evaluation process. Decision trees provide an interpretable set of rules that formalise how mo-
lecular docking and cytotoxicity measurement influence the progression of compounds, while their limited sensitivity at
the CTI threshold highlighted the complexity of predicting the final success of the evaluated compounds. The Markov
model simulations showed that the full three-stage pipeline is justified and that progression decisions are influenced by
both uncertainty and experimental cost. The value of information analysis clarifies the importance of each stage, helping
to emphasise the role of antiviral activity data. These findings support the integration of analytic methods for improving
the structure, transparency and efficiency of antiviral preclinical research.

Keywords: coronavirus; drug; preclinical evaluation; decision tree; Markov decision process; value of information.

Introduction of uncertainty, high experimental costs, and limited
predictability of candidate efficacy. At each stage

The optimisation of sequential decision-making of the preclinical pipeline — from in silico scree-

in preclinical studies of antiviral compounds remains ning to cytotoxicity assessment and antiviral activity
a highly relevant challenge due to the combination tests — researchers must make a series of decisions,
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where an inaccurate early-stage choice leads to the
loss of time, resources, and potentially promising
compounds. This creates the need for systematic
approaches capable of increasing the rationality and
economic efficiency of the preclinical process.

Despite significant progress in artificial intelli-
gence, current research mainly improves individu-
al steps of drug discovery rather than the full de-
cision-making pipeline. Modern machine learning
techniques demonstrate substantial advances in vir-
tual screening, toxicity prediction, and target selec-
tion [1]. Al-based integration with organ-on-a-chip
platforms and digital twins enhances the accuracy
of pharmacokinetic and toxicological modelling
[2]. Data-driven design of antiviral peptides using
GANs, deep learning and explainable Al demon-
strates strong potential for optimising candidate
properties [3]. Studies of DHODH inhibitors high-
light the complexity of translating promising in vitro
results into clinical effects and emphasise the need
for step-wise risk assessment [4]. Multi-omics deep
learning pipelines accelerate early discovery and fa-
cilitate drug repositioning [5]. Al-based prediction of
viral mutations supports personalised antiviral stra-
tegies and shows the sequential, dynamic nature of
decision-making in virology [6]. Al-driven derepli-
cation and classification of natural products further
illustrate the need for structured transitions between
preclinical stages [7].

However, these advances primarily address pre-
dictive accuracy rather than the principled optimi-
sation of decisions across multiple stages. Current
research lacks integrated mathematical frameworks
that would: formalise transitions between preclinical
stages, quantify risks and probabilities of success, in-
corporate the cost and value of information, and de-
termine when experimental continuation is economi-
cally justified. Decision trees and Markov processes
are rarely applied specifically to antiviral preclinical
pipelines, leaving a methodological gap in modelling
sequential choices under uncertainty.

The study aims to develop and evaluate for-
malised approaches for optimising sequential deci-
sion-making in preclinical antiviral research using
decision tree models and Markov decision processes.
These models are applied to real-world experimental
datasets to quantify transition probabilities, estimate
costs, and compare the effectiveness of alternative
strategies.

The scientific novelty of the work lies in the
integration of an interpretable set of rules provided
by the decision trees with globally optimal Markov
strategies and value of information analysis. Unlike
prior studies, in the proposed framework, predictive

patterns, uncertainty quantification, experimental
costs and utility maximisation are combined into a
unified scheme that supports planning throughout
the entire preclinical process.

Problem statement

The object of the study is the process of precli-
nical evaluation of antiviral drugs, while the subject
is mathematical methods for optimising sequential
decision-making in this process, in particular deci-
sion trees and Markov models. The purpose of the
work is to develop and test formalised approaches
to assessing the effectiveness, risks and feasibility of
transitions between stages of preclinical studies based
on real experimental data. The end result is the
construction and comparative analysis of two algo-
rithmic models — the decision tree and the Markov
process — that demonstrate their ability to support
rational, data-driven planning for preclinical testing
of antiviral candidates.

Materials and methods

The study uses three interrelated methods: deci-
sion trees to formalise the process of selecting com-
pounds, Markov models to describe the sequence
of experimental steps over time and value of infor-
mation analysis metrics to quantify the feasibility of
doing additional measurements. This combination
allows for moving from the description of individu-
al experiments to a systematic approach where each
step is considered to be an element of an optimised
decision-making process.

Decision trees act as interpreted classification
models that reflect the relationship between a set
of input parameters (docking parameters, concen-
tration characteristics, toxicity and antiviral activity
indicators) and binary output events (e.g., reaching a
chemotherapy index threshold). The decision tree is
a hierarchical structure, where each inner node cor-
responds to a condition of the type “sign < thresh-
old”, branches to alternative consequences of this
condition, and leaf nodes to result classes. The con-
struction of the tree is carried out by sequentially
dividing the feature space to minimise the degree of
heterogeneity (for example, the Gini index) in the
daughter nodes at each stage. As a result, a set of
simple logical rules is formed that allows for expli-
cit interpretation of which combinations of docking,
CD,,, 1Dy, and exposure.

Markov chains and Markov decision-making
processes are used to describe the evolution of a sys-
tem in discrete states, taking into account the pro-
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babilistic nature of transitions between them. In the
simplest case, the Markov chain is given by a set of
states and a matrix of transient probabilities, where
the probability of moving to the next state depends
only on the current state, and not on the complete
history. In the context of planning the sequence of ex-
periments, this allows us to consider individual stages
(docking, assessment of cytotoxicity, testing of anti-
viral activity, achievement or failure of therapeutic
success) as states of the Markov process, and possible
actions of the investigator (“to continue” or “stop”
the study at a certain stage) as controlling influences
that change the distribution of probabilities of further
states. In this formulation, the Markov model of de-
cision-making is used, where each state-action pair
corresponds not only to the probability of transition,
but also to a certain instantaneous reward or cost,
and the optimal strategy is determined by solving the
Bellman equations for the value function.

Value-of-information analysis metrics are tools
for evaluating the extent to which the anticipated
utility of decisions can be enhanced through addi-
tional data. Conceptually, the value of information
is defined as the difference between the expected
utility of an optimal policy given the availability of
additional information and the expected utility at the
baseline level of uncertainty. The Total Value of Per-
fect Information (EVPI) reflects a hypothetical in-
crement if the results of the experiments were known
in advance without errors; partial value of perfect
information (EVPPI) characterizes a similar increase
for certain groups of parameters (for example, only
for cytotoxicity indicators or only for antiviral acti-
vity); The expected value of the sample information
(EVSI) assesses how much conducting a realistic in-
cremental experiment with a certain value is able to
improve decision-making. In combination with the
Markov model of the experimental process, these
metrics enable a quantitative comparison of vari-
ous research design variants, determine the stages at
which new measurements give the greatest increase
in information about CTI, and justify the optimal
balance between the costs of the experiment and the
probability of obtaining therapeutically significant
candidates.

The study used a multi-level methodology
combining experimental data on docking, cyto-
toxicity, and antiviral activity with mathematical
dose-response modelling, decision tree construc-
tion, and Markov experiment sequence modelling.
The main target characteristic is the CTI chemo-
therapy index, calculated based on CD,, and ID,;
concentrations for each test sample and cell pro-
cessing regimen.

Baseline data included energy parameters of
molecular docking of a series of candidate com-
pounds to the domains of the spike protein of the vi-
rus and the main protease, results of cytotoxicity tests
on the cell line at two time points (24 and 48 h) and
results of tests of antiviral activity in the therapeutic
(L) and therapeutic-prophylactic (LP) modes. For
the docking, numerical estimates of binding ener-
gy (in conventional units of energy) with individual
target sites were considered, which are represented as
SP, — SP; for the spike protein and MP, — MP, for
the main protease. For each compound, a docking
parameter vector was obtained, which was further
used as an input trait space in decision tree models.

Dose-effect modelling for cytotoxicity and an-
tiviral activity was carried out using a four-parame-
ter sigmoidal model. For each compound, exposure
time, and treatment regimen, a set of concentrations
was given x, and the corresponding measured values
of relative cell viability (for cytotoxicity) or relative
viral activity (for antiviral action), normalised to
control in the interval [0; 1]. As a model function,
the expression

f(x)= (1)

where x is the concentration of the compound, f{x) is
the expected relative value of the indicator (viability
or activity), a, b, ¢, d are unknown parameters of
the curve describing the amplitude of the effect, the
steepness of the transition, the shift along the con-
centration axis and the baseline, respectively. The
estimation of the parameters was carried out by the
method of least squares by minimising the root mean
square error

a
1+e(—bx+c) +d

N
MSE(a,b,c.d) =~ (7, -
N3
2

_f(xiaaabscad)) (2)

where y, — experimental values of the relative viabi-
lity of cells or the relative activity of the virus, N is
the number of points of the curve. Optimisation was
carried out by the numerical method of nonlinear
regression with constraints on parameters to avoid
unrealistic decisions; in cases where numerical op-
timisation did not match, stable heuristic initial ap-
proximations were used, providing a smooth mono-
tonic curve within the studied concentration range.

Based on the fit of the sigmoidal model, the
characteristic concentrations of CD,; and ID,, were
determined. The concentration of CD,, was deter-
mined as the solution of the equation
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() =0.5 3)

that is, the concentration at which the relative via-
bility of cells is 50 % of the control. Similarly, the
concentration of 1D, was defined as the solution

Jois (X)=10.5 4)

corresponding to a 50 percent level of residual virus
activity. For a given four parameters (a, b, ¢, d), the
analytical expression for such a concentration was
obtained from the equation x*

a
ytarget = W +d (5)
by algebraic transformation:
a
ytarget —d :m’
l1+e ©6)
a 1= e(—bx*+c);
Viarget — d
—bx"+c=1In Ld—l ,
ylarget (7)
c—In| —% 1
* ytarget - d
X =
b

In cases where the expression under the loga-
rithm was incorrect (negative or zero) or the para-
meter b was close to zero, the value of CD, or ID,,
was considered uncertain (no intersection with the
level of 50 % in the studied range).

The chemotherapeutic index for each combina-
tion “compound — time — treatment regimen” was
calculated according to the standard ratio

CTI:% (8)
ID,,

which is interpreted as a safety margin: the larger
the CTI, the wider the therapeutic interval between
cytotoxic and antiviral concentrations. For further
classification analysis, CTI was converted to a bi-
nary trait by threshold: the value of 6 = 4,0 class
1 denoted combinations with CTI > 4, and class
0 — CTI < 4, which made it possible to interpret
the problem as a two-class problem of “promising /
unpromising” candidates.

To investigate the relationship between the
docking profile of compounds, cytotoxicity parame-
ters and the probability of obtaining a high CTI, the
decision trees method of the CART (Classification
and Regression Trees) type was used. In the first

model, the decision tree described the probability
of obtaining a determined CD,; based on docking
indicators. The trait vector included energy para-
meters of interaction with different regions of the
spike protein and the main protease (SP, — SP,,
MP, — MP,), as well as a coded timestamp of cell
exposure (time class, where 0 corresponded to 24
hours, 1 to 48 hours). The target variable class_CD,;
took a value of 1 if CD, was defined for the cor-
responding compound-time combination, and 0
in the opposite case. Thus, the first model evalua-
ted which docking profiles are associated with the
presence of a correct dose-appropriate cytotoxicity
curve.

In the second model, the decision tree modeled
the dependence of the “connection-time-mode”
combination belonging to the CTI class > 4 on the
combination of docking characteristics, CD,, and
ID,, parameters, and the treatment regimen. In ad-
dition to SP, — SP,, MP, — MP, and time_class,
the numerical values of CD,, ID,,, CTI itself, as
well as the encoded trait treatment_type_class (0 for
mode L and 1 for LP > class_ CTI) were added to
the trait vector. Both models were built as binary
trees with a Gini index division criterion that mini-
mises class heterogeneity in nodes.

Decision trees were trained according to the
scheme of dividing the sample into training and test
subsamples in the ratio of 70 % / 30 % with a fixed
random number generator to ensure reproducibility.
In the presence of both classes, a stratified division
was carried out to preserve the proportions of the
classes in the training and test parts. The depth of
the trees was limited to a predetermined maximum
to avoid overtraining, and the number of leaf nodes
and the structure of the resulting rules were analy-
sed to control the complexity of the model. The text
representation of the tree in the form of nested “if”
rules was obtained by traversing the structure of the
tree, where each inner node specifies a condition of
the form “sign < threshold”, and the leaf node —
belonging to class 0 or 1.

Assessment of the quality of classification mo-
dels was carried out on test subsamples using a set
of standard metrics. Accuracy was defined as the
proportion of correctly classified examples:

TP+TN+FP+FN

where TP (true positives) is the number of true
positive classifications, TN (true negatives) is true
negative, FP (false positives) is false positive, FN
(false negatives) is false negative. Sensitivity (or re-
call for a positive class) was defined as

Accuracy =
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TP
TP+FN
which reflects the model’s ability to detect positive
cases. Specificity was calculated as

TN
TN+FP

characterising the ability of the model to correctly
cut off negative cases. To assess the balance between
sensitivity and accuracy of positive classifications,
the F1 measure was used:

Sensitivity = (10)

Specificity = (11)

Precision=

TP+FP’

_ 2-Precision - Sensitivity (12)

F1

Precision + Sensitivity

In the case of probabilistic model outputs (pre-
dict_proba), the area under the ROC curve (ROC-
AUC) was additionally calculated, which characteri-
ses the trade-off between sensitivity and specificity
when varying the classification threshold. In cases
where all observations belonged to the same class
and the ROC curve was incorrectly determined, the
ROC-AUC was not interpreted.

Additionally, two complementary procedures
were used to analyse the contribution of individual
traits. First, standard estimates of the importance of
traits in the tree were used based on a decrease in
the Gini criterion when splitting according to the
corresponding trait. Secondly, the sensitivity ana-
lysis of the “drop-one-feature” sensitivity was per-
formed: for each feature, a new decision tree was
built without this feature in the feature vector, and
then the model metrics were compared with the base
variant. A significant degradation of sensitivity or
specificity in the exclusion of a certain trait was in-
terpreted as an indicator of its critical importance
for decision-making.

To formalise the sequence of decision-making
on the continuation or termination of laboratory
tests at different stages (docking, assessment of cy-
totoxicity, testing of antiviral activity), the Markov
Decision Process (MDP) was used. The state space
described the main stages of the study: post-docking
baseline (.5,), post-doc status (,), post-antiviral ac-
tivity (S,), post-doctrinal status, and two absorption
states — success (S, .., candidate acquisition with
CTI > 4) and completion without success (S,,). In
each of the non-absorption states, two actions were
considered: “stop” — stop further experiments, and
“continue” — move to the next stage of the study.

Transitions between states were described by
probabilities that were estimated on the basis of em-
pirical frequencies in the population of the com-
pounds studied. For example, the probability of
transition from SP(s'ls,a), to S, under the action
“continue” was estimated as the proportion of com-
pounds for which CD,; could be determined; the
probability of transition from S, to S, as the pro-
portion of combinations for which CTI was deter-
mined; the probability of transition from §, to S, .
as the proportion of cases with CTI > 4 among those
who have passed to the stage of antiviral activity
tests. The reward system R(s, a) included negative
contributions in the form of docking costs, cytotoxi-
city and antiviral activity tests, as well as a positive
reward for achieving a state of S corresponding
to obtaining a promising candidate. To assess the
long-term usefulness of action policies, a discount
factor y € (0;1) was used, which takes into account
the decrease in the “value” of time-distant results.

The optimal policy that maximizes the expec-
ted discounted total reward was determined by the
value iteration method. At each iteration, the value
of the utility function =*(s) V(s) was updated accor-
ding to the rule

I/IH—I (S) =
= max|:R(S,a)+}/ZP(S’ | S,a)Vk(S’)j| (13)

until the changes in W(s) for all states become less
than the predetermined error. The choice of action
in state s was carried out as an argument to the
maximum on the right side of the Bellman equation.

Interpretation of the supplementary experi-
ments as sources of information about the probabi-
lity of success and the associated costs allowed us to
integrate the concept of information value analysis
into the Markov formulation. The total expected
value of perfect information (EVPI) is the difference
between the expected utility from having complete,
error-free information about the outcome (e.g., CTI
for each compound before the experiments were
performed) and the expected utility at the current
level of uncertainty. The expected value of partial
perfect information about a subset of parameters
(EVPPI) marks a similar difference, but only for in-
formation about a particular block of parameters (for
example, only about CD,, or only about ID,)). The
expected value of sample information (EVSI) deter-
mines the increase in expected utility obtained by
making additional, but not error-free measurements
(for example, additional experiments on cytotoxicity
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or antiviral activity). In mathematical formulation,
these indicators are calculated as the difference be-
tween the maximum expected utility according to
the refined probability distribution (after taking into
account the new data) and the maximum according
to the original distribution; within the framework of
MDP, it comes down to comparing the values of
W(s) under different assumptions about the informa-
tion state of the system.

Formally, let 6 denote the vector of uncertain
parameters (e.g., transition probabilities and success
rates), d a decision or policy, and U(d, 0) the total
discounted utility under this decision. The baseline
expected value at the initial state s, is

Vbase(so) = max EH[U(d7 9) | 10]
deD
where [, denotes the current information set. The
expected value of perfect information (EVPI) is de-
fined as

EVPI=E,[max E,[U(d,0)|1,]1-V,,.(s,)- (15)
deD

It quantifies the maximum gain in expected
utility that could be achieved if 6 were known with-
out uncertainty before any decision is made.

For a subset of parameters ¢ < 6 (for example,
only cytotoxicity or only antiviral activity parame-
ters), the expected value of partial perfect informa-
tion (EVPPI) is given by

EVPPI(p)=E, x

(14)

x[max E,[U(d,0)|1,]1]1-V,,.(s,)- (16)

deD
Here, only the subset ¢ is assumed to be known
perfectly, whereas the remaining parameters 6\¢ re-
main uncertain.

The expected value of sample information
(EVSI) associated with a realistic additional expe-
riment y is defined as

EVSI(y) = E,[max E,[U(d,0) | 1,]]-

deD

_V;)ase(so)_c(y) (17)

where y denotes the possible outcomes of the new
experiment, and C(y) is the cost of collecting this
information. Within the MDP formulation used in
this work, all three quantities can be evaluated as
differences between optimal state values ¥(s,) com-
puted under different information scenarios (baseline
information, perfect information on 6 or ¢, and pos-
terior distributions updated by sample data y).

This approach provides a holistic methodological
framework: sigmoidal dose-response modelling allows
for stable estimates of CDy, ID,,, and CTI; decision
trees formalise the logic of the selection of compounds
according to the profiles of docking, cytotoxicity and
antiviral activity; The Markov model with associated
information value metrics allows you to assess the fea-
sibility of continuing or stopping experiments at dif-
ferent stages, taking into account costs and the likeli-
hood of achieving chemotherapy success.

The study used a holistic experimental dataset
which covered seven test samples (T1 — T7), each
having obtained both in silico and in vitro characte-
ristics. The generalised structure of this set is provided
in Table 1.

Results of molecular docking to the spike protein
and the main protease of the virus are available for each
sample and presented in the form of binding energy
ranges. In particular, for the spike protein, the mini-
mum and maximum values of the docking energy for
a set of domains (SP, — SP,) were taken into account,
and for the main protease — the minimum and maxi-

Table 1. Generalised characteristics of the experimental dataset

Min. Max. Min. Max. Antiviral
Docking Docking Docking Docking Sum- Sum- Cytotoxi- activity
Test energy energy energy energy marised marised city data data (L
Sample (spike (spike (basic (basic CTlin 24 | CTI in 48 (24/48 LP: 24/ 4’8
protein), protein), | protease), | protease), hours hours hours) h,ours)
kcal/mol kcal/mol kcal/mol kcal/mol
T1 —6.26 -2.26 -5.68 —4.04 24 16 yes yes
T2 —6.32 -3.3 —7.34 —4.07 - 4 yes yes
T3 -5.24 2.4 -7.12 —4.04 3 yes yes
T4 -5.74 -2.26 -7.34 —4.04 - - yes yes
T5 -4.96 -2.37 —7.34 —4.04 4 3 yes yes
T6 —6.26 -24 -7.34 —4.04 6 6 yes yes
T7 -5.64 -2.26 —7.34 -4.21 - - yes yes
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mum values of the interaction energy with individual
functional regions (MP, — MP,). Table 1 shows two
aggregate intervals for each test sample: minimum and
maximum docking energy for the spike protein and ma-
jor protease, reflecting the spectrum of possible binding
configurations within the docking protocols used.

Results

The results obtained demonstrate a consistent
chain of transition from in silico characteristics to
integral assessment of the chemotherapeutic index
and optimisation of the sequence of experiments.
First of all, the analysis of the initial CD,;, ID,, and
CTI values for seven test samples showed significant
inter-sample variability: for some of the sample-
time-mode combinations, CD,; or ID,; could not be
correctly estimated at all within the studied concen-
tration range (the curve did not cross the 50 % le-
vel), while others showed well-defined half-inhibition
points and high CTI values. It is important to note
that this variability turned out to be structured — it is
related to the profile of the docking to the main pro-
tease and to the exposure mode, and is not random
noise; This is confirmed by the construction of the
first decision tree and the Markov model.

In the “docking — cytotoxicity” model, the
decision tree gives a compact but meaningful struc-
ture (Fig. 1).

The root node separates all observations by
the MP, parameter, which characterises the binding
energy of compounds to one of the functional areas
of the main protease. If MP, is found to be above
the threshold value of approximately — 7.0 kcal/mol
(i.e., binding is weaker), the model, without further
branching, assignsthecorrespondingsample-timecom-

MP_MP2 <= -7.01
gini = 0.469
samples = 8
value = [5, 3]

class = no CD50

MP_MP1 <= -5.97
gini = 0.375
samples = 4

value =[1, 3]
class = has CD50

time_class <= 0.5
gini = 0.5

samples = 2
value = [1, 1]
class = no CDS0

Fig. 1. Decision tree for the transition “docking — cytotoxicity”
using the parameters of interaction with the main protease
(MP,, MP,) and exposure time (24/48 hours) as predictors
of the presence of correctly determined CD,,

bination to a class for which CDy is not deter-mined:
all cases where the dose-response of cytotoxicity re-
mains flat or monotonically low are concentrated in
this leaf node. Instead, for compounds with a more
favourable MP, value (<-7.0 kcal/mol), the tree
moves on to the second critical parameter — MP,.
For MP, values <-5.97 kcal/mol, all examples fall
into the sheet with the class “has CD,;”, i.e. a suf-
ficiently strong interaction with two regions of the
main protease is a reliable predictor of the presence
of correctly defined CD,. In the intermediate zone,
where MP, still indicates a fairly strong binding, but
MP, is already closer to the threshold, the model
additionally takes into account the incubation time:
for 24 h, some of the combinations remain in the
class without a defined CD,, while at 48 h the tree
leans towards a class with a defined CD. Thus, ex-
posure time acts as a secondary, modulating factor
that can compensate for the insufficient “force” of
docking, but only in a narrow sub-range of MP, and
MP, values. On the test sample, this model demon-
strates classification performance with all metrics
equal to 1.0, indicating that the hierarchical combi-
nation of MP,, MP |, and incubation time provides
deterministic rules for predicting CDso availability.
Trait weights and analysis of the exclusion of in-
dividual predictors confirm the dominance of MP,
and MP, parameters: they provide the main contri-
bution to the reduction of the Gini index, while the
time factor affects the quality of classification much
weaker.

The results for the “cytotoxicity — CTI > 4.0”
model turned out to be fundamentally different and
highlighted the structural features of the existing
dataset. Applying the decision tree to an extended
trait vector that included docking scores, CD,; nu-
merical values, ID,,, CTI itself, encoded treatment
time and regimen, resulted in a moderately complex
tree structure (Fig. 2).

Decision tree: cytotoxicity —» CTl = 4.0

time_class <= 0.5
gini = 0.5

samples = 6
value = [3, 3]
class = CTl < 4.0

Fig. 2. Decision tree for the transition “cytotoxicity — CTI > 4.0”
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Unlike the first model, this tree exhibits bran-
ching that attempts to separate compounds achieving
CTI > 4.0 from those with lower therapeutic indices.
However, the classification performance reflects the
challenging nature of this prediction task. The model
achieved an overall accuracy of 0.89, indicating that
89 % of test cases were correctly classified. Notably,
sensitivity was substantially lower at 0.50, meaning
that only half of the compounds that actually
achieved CTI > 4.0 were correctly identified by the
model. In contrast, perfect specificity at 1.00 indi-
cates that all compounds predicted to have CTI < 4.0
were indeed below this threshold — the model made
no false positive predictions. This imbalance between
precision and recall is reflected in the Fl-score of
0.67, while the ROC-AUC of 0.75 suggests mode-
rate discriminative ability.

This performance pattern reveals an impor-
tant characteristic of the current model: it adopts a
highly conservative strategy and predicts high CTI
rarely unless multiple favourable conditions are met.
Although this approach does eliminate false opti-
mism, it often results in missed opportunities, as
approximately half of promising compounds are not
identified. The Markov model of the sequence of
experiments made it possible to quantify how expe-
dient it is to continue the study at each stage, taking
into account the costs and probability of obtaining
at least one candidate with a CTI > 4.0. For states S
(after docking), S, (after assessment of cytotoxicity),
and S, (after assessment of antiviral activity), values
of the utility function W(s) were calculated, which
increase from about 9.7 for § to 22.5 for S, and 84.0
for §, as shown in Table 2.

Table 2. The value of the utility function W(s) for Markov
model states and the optimal policy n*(s)

SO Sl SZ success Sfail
M(S) | 9.688 22.5 84 0 0
n(S) | continue | continue | continue | stop | stop

Such monotonous growth means that each sub-
sequent block of experiments significantly increases
the expected “cost” of the candidate portfolio: at
the docking stage, information about the potential
of compounds is still very uncertain; obtaining CD,,
adds an important layer of safety assessment and
cuts off clearly toxic variants; completion of antiviral
activity tests virtually determines whether a portfolio
has a chance of containing at least one drug with
an acceptable CTI. The calculated optimal policy
of n*(s) turned out to be unambiguous: for all three
non-absorption states, the action “continue experi-

ments” is recommended, while in the absorption
states of success or failure — “stop”. On the one
hand, this is consistent with the high CTI values
among the samples that have passed the previous fil-
ters: the projected benefit from the complete passage
of all stages exceeds the total costs. On the other
hand, such a policy indicates that the structure of
the experimental program does not currently con-
tain “redundant” stages: each of them significantly
changes the expected utility, and therefore makes
a non-trivial contribution to reducing uncertainty
about CTI.

Interpreting these results in terms of informa-
tion value shows that the greatest gain in utility is
given by the transition from a post-cytotoxicity state
to a post-antiviral state. This means that it is the
ID,; results and the associated CTI values that are
key to the final decision on the feasibility of promo-
ting the compound; information about the docking
profile and CD, plays mainly the role of a pre-fil-
ter. The tree “docking — cytotoxicity” clearly shows
that already at the stage of in silico evaluation, a
combination of MP, and MP, parameters can be
distinguished, which, with a high probability, leads
to the formation of a correct CD,; curve. Further,
the Markov model demonstrates that, despite the
costs, continuing the studies to the stage of antiviral
activity is economically justified, since the expec-
ted gain from the potential detection of at least one
candidate with a high CTI significantly exceeds the
alternative of “stopping” in the early stages. At the
same time, the moderate performance of the tree
“cytotoxicity — CTI > 4.0” (Table 3) signals that
in the current dataset, predicting final therapeutic
success from intermediate parameters remains chal-
lenging. While the model’s high specificity ensures
that no unpromising compounds are incorrectly ad-
vanced, its lower sensitivity indicates that approxi-
mately half of actually promising candidates are not
recognised by the current decision rules, suggesting
that more sophisticated stratification approaches or
additional predictive features may be needed to im-
prove early identification of therapeutic candidates.

Numerical evaluation of the information-value
metrics within the MDP formulation yielded an ex-
pected value of perfect information (EVPI) equal
to zero, as well as a zero partial value of perfect
information (EVPPI) for the antiviral stage, while
the expected value of sample information (EVSI) for
an additional antiviral experiment was negative and
equal to —10 in the adopted arbitrary utility units.
This pattern indicates that, under the current esti-
mates of transition probabilities and reward struc-
ture, even hypothetically perfect knowledge of the
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Table 3. Comparative metrics of decision tree models and Markov model

Model Positive class | Accuracy S(egzlg;\l/ll;y Specificity | Fl-score | ROC-AUC
Docking — CD,; (presence of
CD,, defined) has CD,; 1 1 1 1
Cytotoxicity — CTI > 4.0 CTI > 4.0 0.89 0.50 1.00 0.67 0.75

antiviral success probability would not change either
the optimal policy or the expected value at the initial
state, so that additional information of this type has
no incremental decision value. At the same time, the
negative EVSI reflects the fact that, in the simplified
scenario considered, a realistic extra experiment on
antiviral activity does not lead to a sufficient increase
in the expected utility to compensate for its cost,
implying that resources would be more efficiently al-
located to adjusting earlier-stage selection criteria or
expanding the candidate set rather than intensifying
measurements at the final antiviral stage.

The comparative values of classification met-
rics for both decision trees, as well as the utility
functions of the states of the Markov model, are
summarised in Table 3, allow you to quantitatively
compare the accuracy of predictive decisions and
the expected effectiveness of various strategies for
conducting experiments.

Collectively, this indicates that further experi-
mental studies should be directed either to expand
the sample set (to include more examples with inter-
mediate and low CTIs) or to clarify dosing regimens
and time regimens, where the gap between efficacy
and toxicity will be less obvious and, accordingly,
will provide a richer structure for building more
complex but informative decision trees.

Conclusions

This research shows that decision trees and
Markov decision processes are used for comple-
mentary aspects in preclinical antiviral research op-
timisation, and their performance is fundamentally
shaped by the structure of the available data. The
decision-tree model linking docking parameters to
the presence of a well-defined CD,;, achieved classi-
fication success on the test set, with all metrics equal
to 1.0. This indicates that strong binding to the main
protease, in particular, favourable values of MP, and
MP, combined with incubation time provides de-
terministic rules for predicting the formation of a
stable dose-response curve. While these results imply
robust predictive ability within the current dataset,
the limited sample size requires validation on larger,

more diverse compound libraries in order to confirm
generalizability.

In contrast, the tree built for the transition from
cytotoxicity parameters to CTI > 4.0 exhibited sub-
stantially different performance characteristics. The
model achieved 89 % overall accuracy but demon-
strated an asymmetric error profile: sensitivity of
only 0.50 (correctly identifying half of compounds
with CTI > 4.0) combined with specificity of 1.00
(no false positives). This classification strategy en-
sures that compounds predicted to achieve high CTI
are indeed therapeutically promising. Still, it results
in missed opportunities, as approximately half of
actually promising candidates are not recognised
by the current decision rules. The F1-score of 0.67
and ROC-AUC of 0.75 show that the relationship
between intermediate experimental parameters and
final therapeutic success is more complex than can
be captured by simple threshold-based rules with the
current feature set and sample size.

The Markov decision process provided a glo-
bal, quantitatively interpretable view of the same ex-
perimental pipeline, explicitly integrating transition
probabilities, experimental costs and the probability
of achieving at least one candidate with CTI > 4.0.
The estimated state values W(S)), WS,) and W(S,)
increased monotonically during the stage “after
docking — after cytotoxicity — after antiviral test-
ing”, confirming that each successive block of ex-
periments substantially raises the expected utility of
the candidate portfolio. The optimal policy consis-
tently recommended the continuation of the pre-
clinical program from docking through cytotoxicity
to antiviral assays, and that the stop is required only
in the absorbing states of success or failure. Despite
the second decision tree performing the imperfect
classification, the Markov model still indicated that,
under the assumed costs and probabilities of suc-
cess, the full three-stage pipeline is an economically
justified solution and does not contain redundant
experimental steps.

The value of information analysis shows how
much each stage of the pipeline contributes to redu-
cing uncertainty and improving decision quality. The
results suggest that the largest incremental gain in
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expected utility appears when the compound moves
from the state after cytotoxicity assessment to the state
after antiviral activity testing. This highlights the deci-
sive role of ID,; and derived CTI values in confirming
or rejecting candidates. Information on docking and
CD,, acts primarily as a preliminary filter that shapes
the distribution of outcomes that are observed at la-
ter stages. Decision trees are most effective as local,
interpretable tools for formalising the cut-off rules
based on docking and toxicity profiles at the early

stages, whereas the Markov model outperforms them
in terms of providing a globally optimal, cost-aware
strategy for navigating the entire preclinical pipe-
line. Together, these results show that further deve-
lopment should focus on expanding and rebalancing
the experimental dataset (to enable more informative
tree-based models at the CTI level) and on refining
Markov and value of information formulations to in-
corporate richer biological and economic parameters
in the optimisation of antiviral preclinical programs.
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MPUMHATTSA PILEHb Y MPOLECI JOKNIHIYHOI PO3POEKM MPOTUBIPYCHVX MPEMAPATIB MPOTU KOPOHABIPYCY:
MATEMATWYHE MOLEJIKOBAHHA TA AHAMI3 LIIHHOCTI IHGOPMALLIT

Mpobnematuka. [okniHiyHe OLiHIOBaHHA KaHAuAATiB SK MPOTMBIPYCHMX NpenapaTtiB — uUe OaratoeTanHuii npouec, sKui
CYNPOBOXYETBCS 3HAYHOK HEBU3HAYEHICTIO | NOTpebye hopmanbHUX IHCTPYMEHTIB NIATPUMKN NPUARHATTS pilleHb. TpaauuiiHi nigxoam
[0 CKPUWHIHTY CMOnyK 3a3Buyali He MIiCTATb CTPYKTYpOBaHUX METOAIB ONTUMI3auii Ansi NMocrigoBHOrO BUOOPY, a TaKoX OLiHIOBaHHS
[OOLiNbHOCTI 1 pu3unKiB nepexopis Mixk eTanamu. Lie npussoanTe A0 HeedpeKTUBHOCTI Mif Yac BiAGOpY NEPCNeKTUBHMX MONEKY i NiABULLYE
MMOBIPHICTb BUBOPY cyGonTMManbHUX AOCNIOHULBKUX TPAEKTOPIN.

MeTa gocnigxeHHs. Po3pobuTu 11 06r'pyHTYyBaTK hopmanizoBaHuii nigxia, LWob onTumisyBaTy nepexoam Mix etanamu OKNiHIYHOTo
TeCcTyBaHHA NPOTMBIPYCHMX MpenaparTis. Llen nigxig iHTerpye gepesa pilleHb i MApKOBCbKY MOAENb ANS OUiHIOBaHHS edeKTUBHOCTI,
pu3uKiB i LiHHOCTI floAaTkoBOi iHpopMalii, Lo 3abe3neynTb paLlioHanbHe NnaHyBaHHsi NOCNIAOBHOCTI AOKMNIHIYHMX OOCHIAKEHb.

MeTtoauka peanisauii. EkcnepymeHTanbHi faHi 3 MONeKynApHOro AOKIHrY, UMTOTOKCUYHOCTI CD,  Ta aHTUBIPYCHOI aKTUBHOCTI
IC,, 6ynu iHTerpoBaHi B kackagHy CUCTeMy OLiHIOBaHHA i3 kpuTepiem nepexoay XTI 2 4. [lepesa pilueHb 3abeaneqmnnu iHTepnpeToBaHi
npasua NpocyBaHHs CMoNykK, a 3a AOMNOMOro MapKoBChKOi Mofeni 6yno 3aMoAenbo0BaHO NOCHIAOBHI CTpaTerii B yMOBaX HEBU3HAYEHOCTI
Ta OUIHEHO [OUiNbHICTL nepexodiB Mk eTanamu. 3a [onoMorot aHanidy UiHHOCTI iHdopmaLii Byno ouiHeHo ouikyBaHy KOpWUCTb
[04aTKOBUX eKCrnepuMeHTanbHUX AaHuX.

Pe3ynbTtatn pocnigxeHHA. OnucaHui nigxin AaB y3rofxeHi TexHiuHi pesynbtaTtu. [epeBo pilleHb Ans MPOrHo3yBaHHs
CTI = 4,0 noka3ano KoHcepBaTUBHMI LWABMNOoH knacudikawii, NpaBUIIbHO BU3Ha4akouy CromnyK1 3 BUCOKMM TepaneBTUYHUM NoTeHLianom,
arne nponyckawuyM YacTuHy edekTUBHUX KaHaupaaTiB. MapkoBcbka Mogenb [AornoMorfa OWiHUTM CTaH CUCTEMW Ha eTanax LOKiHry,
LIUTOTOKCUYHOCTI 1 aHTUBIPYCHOTO TECTYBaHHSI, LLIO MOKA3aro 3pOCTaHHs! O4ikyBaHOT KOPUCHOCTI. I PYHTYIOUNCH Ha OTPUMAaHUX pesyrbTaTax,
6yno BM3HAYeHO ONTUMarlbHi PiLLEHHS LLOAO NPOAOBXEHHS AOCHIAKEHb A0 aHTUBIPYCHMX TECTIB, TOAI SIK 32 LOMOMOrOH aHani3y LiHHOCTi
iHpopmalii 6yno BCTaHOBMNEHO, WO HaWBINbLUNA NPUPICT OYiKyBaHOI KOPUCHOCTI AOCAratoTb NIiCNs TECTYBaHHS aHTUBIPYCHOT aKTUBHOCTI,
KOMW paHHi eTany BUKOHYOTb ponb (inbTPIB.
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BucHoBku. [JocnigxeHHs nokasye, WO AepeBa pilleHb i MapkoBCbki MoAeni BifobpaxaloTb pi3Hi, ane B3aEMOAOMNOBHIOBArbHi
acnekTn JOKMiHIYHOro ouiHBaHHS. [lepeBa pilleHb fonoMaralTb CTPYKTypyBaTy NpaBuna Ha paHHix etanax AOoChigKEeHHs!, Nokasyouu,
SIK eTanu AOKIHry Ta LIMTOTOKCUYHOCTI BNMMBalOTh Ha NPOCyBaHHS crnonyk. BogHoyac ix obmexeHa 4yTnuMBICTb MiAKPECNoe CKnagHIiCcTb
nepenbayeHHs KiHLEBOro MpOTMBIPYCHOrO YCMiXy Ha OCHOBI MPOMiIKHMX MOKa3HWKIB. MapKoBCbKMIA Mpouec Aae LIMpLIWMiA nornsg
Ha NoCnifOBHICTb EKCNEPUMEHTIB i JEMOHCTPYE BUNpaBaaHicTe BUGOPY NOBHOrO TPMPIBHEBOrO AOCHIMXEHHS Ta BNIMBY HEBU3HAYEHOCTI
N BUTPAT Ha pilleHHs LWoAo nporpecii cnonyk. Pe3ynbTaTty aHanidy LiHHOCTI iHopMaLii YyTOYHIOTL BaXIMBICTb KOXHOro eTtany,
NiAKPECIOYM KITIOYOBY POrib AaHMX NPO aHTUBIPYCHY akTUBHICTb. PasoMm Ui pe3ynbTaTi nokasyloTb BaXKUBICTb BNPOBaAXEHHS! METOAIB
NPUNHATTS pilleHb AN NiABULLEHHS CTPYKTYPW, NPO30POCTi Ta e(PeKTUBHOCTI AOKNIHIYHUX AOCAiAXEeHb NPOTUBIPYCHUX Npenaparis.

Knto4yoBi cnoBa: kopoHaBipyc; npenapaT; AOKMiHIYHE OLIHIOBaHHS; AepeBO pilleHb; MapKOBCbKWUI MPOLLEC MPUAHATTA pilleHb;
LiHHICTb iHdopMmaUii.

PexomennoBana Pamoro Haniiinia no pemaxitii
(akyapTeTy NMPUKIATHOI MAaTEMATUKK 18 xoBTHs 2025 poky
KIII im. Iropss Cikopcbkoro
Ilpuitnsta no myoGikariii
15 rpynHs 2025 poky
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METOJI ®PAKTAJIbHO-KEPOBAHOI PETYJIAPU3ALIIL ABTOEHKO/IEPIB
JJIAA HAITIBKEPOBAHOI'O HABYAHHA B 3AJAYAX KITACUDIKAIIII
MEINYHUX 30BPAKEHDb

IIpodnematuka. Knacudikaiiiss MenuuHux 300paXkeHb 3a JOIMOMOTOI0 TIIMOOKOTO HaBYaHHS € KPUTUYHO BaKJIMBOIO
3ajiaueto, OfHaK ii e(eKTUBHICTb OOMEXYETbCS AediMTOM pO3MiIYeHUX NaHuX, 30ip sSKuUX € moporuMm. Mertoau
HarmiBkepoBaHoro HaBuyaHHs1 (HH) Bupinnytots 1110 pobaemMy, 3aiydaroun Hepo3MmideHi naHi. [lommpeni migxonu, 1o
IPYHTYIOTbCSI Ha aBToeHKonepax (AE), BUKOPUCTOBYIOTh PEKOHCTPYKILIO SIK HaBYUAIbHUI CUTHAl. YTiM, CTaHIapTHa
MiHiMi3allisl BTpaT peKOHCTPYKIIil He rapaHTye, 1110 OTPMMaHU JaTeHTHUI MPOCTip OyAe ONTUMAaIbHO CTPYKTYPOBAHUM
IIJIs BUpILLIEHHS 3aBOaHHS Kiacudikallil, OCKUIbKI MOJeIb MOXe (DOKYyCyBaTHCSI Ha HEPEIeBAaHTHUX UISI 1iaTHOCTUKU
O3HaKax.

Merta nocJimkenns. Po3po6ka Ta ekcriepuMeHTajbHa MepeBipka HOBOTO METO/LY PeTyJisipu3allii JaTeHTHOTO MPOCTOpY —
dpakTanbHO-KepoBaHoi peryisipusaiii (FDR). MeTa nossirae y mokpaliieHHi METpUYHUX TOKA3HUKIB Kiiacudikartii
MEIMYHUX 300paxkeHb B YMOBaxX TocTporo aedinuty po3miyeHux naHux (5 %) 3a IOMOMOroro iHTerpallii (GppakraibHOI
poamipHocTi (PP) sk 10maTKOBOro, arpiopHOro HaBYAJIBHOTO CUTHAILY.

Mertomuka peamizamii. 3ampomoHoBaHa mopenb FDR-AE rpyHTyeTbcsi Ha apxitektypi AE, momoBHeHill nBoma
TMOBHO3B’SI3HUMU 1IapaMu, 1110 MPUEIHAHI 10 JATEHTHOTO TIPOCTOPY: KiacudikaliitHuM Ta perpeciiHum. Perpeciitnuit
1map HaB4YaeTbes TporHodyBath OP BXimHOTO 300paXkeHHs, OOYMCIEHY 3a3dayieriib MeTOmoM «box-counting.
3arayibHa (QYHKIIIST BTpaT € KOMOiHaIli€l0 TPhOX KOMIIOHEHT: BTpaT Kiacudikarii Ha 5 % po3MiueHMX JaHWX i BTpaT
PEKOHCTPYKIii Ta dpakTaabHOi perpecii Ha 100 % maHux. EdekTUBHICTH MeTOmy ITepeBipeHO Ha TPhOX Habopax
naHux pizHoi MopanbHocTi (ISIC2024, COVID-19 Radiology, Brain Tumor MRI) nopiBHsIHO 3 6a30BOI0 3rOPTKOBOIO
mepexeto Base-CNN i ctranmaptaum HamiBkepoBaHuM AE SSL-AE.

Pesyabratn mociuimkenns. ExcrniepyMeHTM TioKaszaiu cTalibHY TiepeBary 3amporioHoBaHoro meromy. Ha mataceTi
IS1C2024 monmens FDR-AE nocsirna F1-Score 0.508 mis ximacy «malignant» potu 0.431 y SSL-AE Ta 0.304 y Base-
CNN. Ha garaceti COVID-19, F1-Score mist kinacy «covid19» cknaB 0.722 mis FDR-AE npotu 0.695 mnsa SSL-AE.
VY 4-knacosiii 3agaui Brain Tumor monenr FDR-AE nponeMoHcTpyBana nokpauieHHs1 F1-Score 11omo Bcix KJjacis,
npuyomy Haubinbmit npupict +0.079 ta +0.054, BinnosigHo, crioctepirases /yid kiacis 0 Ta 3, 1o Majau HalOLIbLTY
B3a€EMHY CTaTUCTUYHY BiIMiHHiCTh y DP.

BucnoBkn. ®pakTaibHO-KepoBaHa peryjisspusallis J0BOAUTh, 110 PP € miHHUM anpiopHUM CUTHAJIOM JIJIS HaBUYaHHS
OiNIBIII SIKICHUX i CTPYKTYPHO OOTPYHTOBaHUX IpeAcTaBieHb y 3amadyax HH. Meroa oco6imnBo eheKTUBHUIT Ha TPOCTUX
apxiTekTypax B yMOBax CWJIbHOTo Aediuuty aaHux. [TepcrnekTuBY MoAabIIMX AOCTIIKEeHb BKIIOYAIOTh BUKOPUCTAHHS
FDR sk Meromy mnomnepenHbOro HaBuaHHs (pre-training) abGo BIPOBAIKEHHS AMHAMIUHOTO KoedillieHTa s
perpeciiiHoro KoMIoHeHTa (OyHKIIii BTpart.

KmiouoBi cioBa: HamiBkepoBaHe HaBYaHHS; (pakTajibHa PO3MIPHICTb, aBTOCHKONEP; PEryJsipu3allis JaTEeHTHOTO
MPOCTOPY; MEANYHI 300pakeHHs; Kiacudikallis 300paxkeHb; box-counting.

Beryn JOTOMOITU Y paHHiil giarHoctuui matosoriid. Om-
HI€I0 3 OCHOBHHUX IPO0JIEM Yy BIPOBAIXKEHHI TaKMX

ABTOMATHM30BaHUI aHajli3 MEOUYHUX 300pa- CcUCTeM € AeillUT Po3MiueHMX JAHUX, OTPUMaHHS
JKEHb Ha OCHOBiI IIMOOKMX HEHMPOHHUX MEpexX € M po3MiTKa SKMUX BMMara€ BHCOKOKBaJi(hiKOBaHMX
BaxkJIMBUM HaMNpsSIMOM JIOCIIIK€Hb, OCKUIbKMA MOXe CHELHaJiCTiB i CyTTEBUX BMTpaT rpolleil i yacy.

IIpono3uuis s nuryBanHsa wiei crarri: O.0. 3apuiibkuii, B.S. lanunos, “Merton dhpakraibHO-KepOBaHOI pery-
JisipU3allii aBTOEHKOEPiB [UIsl HAaliBKEpOBAHOTO HAaBUAHHS B 3ajavax Kiacudikallii MennyHux 300paxens”’, Haykosi
sicmi KITI, Ne 4, c. 31-39, 2025. doi: https://doi.org/10.20535/kpisn.2025.4.343202

Offer a citation for this article: O.O. Zarytskyi, V.Y. Danilov, “A method for fractal-driven regularization of autoen-
coders in semi-supervised medical image classification”, KPI Science News, no. 4, pp. 31-39, 2025. doi: https://doi.
org/10.20535/kpisn.2025.4.343202
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JUtst BUpilIeHHS i€l mpoOJaeMu aKTUBHO PO3BMBa-
1oTthesgd MeTogn HH, 1110 maroTh MOXJIMBICTH BUKO-
PUCTOBYBAaTU OJHOYACHO PO3MiYeHI i Hepo3MiueHi
JaHi I HaBYaHHST MOJIEJICH.

IMommpenum minxonom y HH € BukopucraH-
Hs AE, gKi BUBYalOTb KOPHUCHI O3HAKU 4Yepe3 3a-
Jlayy PEKOHCTPYKIii BXiAHUX 300paxeHb. Taxkuii
MHiAXia JOBiB CBOIO €(PEKTUBHICTb Y TAKUX METOIAX,
gk Adversarial Autoencoders Ta Ladder Networks.
VTiM, cTaHmapTHa MiHiMi3allisi BTpaT PeKOHCTPYK-
Lii He rapaHTye, 10 JaTeHTHUU MpOCTip MoAei
Oyne ONTUMAaJIbHO CTPYKTYPOBAHUM ISl BUPILLIEHHSI
3aBAaHHS Kiaacudikauii. Hallle mpumnyiieHHs IpyH-
TYETbCS Ha TOMY, IO HOro MOXHa TMOKPAIIUTH,
BUKOPUCTOBYIOUM alpiOpHi 3HAHHS IIPO CTPYKTYpPY
i CKJIQHICTh JAHUX, HA SIKUX HABYAETHCS MOJEIb.

ITocTanoBka 3amaui

MeTto1o 1i€l poOOTH € PO3poOKa Ta €KCIIepU-
MEHTaJIbHa IiepeBipka HoBoro merony HH — FDR.
Mu nporonyeMo BukopuctoByBatn PP gk momar-
KOBUM HaBYaJIbHUM CUTHAI JJISI HOKPAIUEHHS SIKOCTI
JIaTeHTHOTO mpocTopy B 3amadyax HH. EdbexTuBHicTh
METOAY NPOJEMOHCTPOBAHO Ha TPhHOX MEIUYHUX Ja-
TaceTax B yMOBaX IOCTPOro AeiluuTy poO3MideHMX
naHux (5 % BuOipKM), e 3alpOIOHOBAaHA MOJEb
AE i3 ¢pakranbHo perynsipusanieio FDR-AE no-
PIBHIOETBCSI 3 0a30BOI0 KEPOBAHOIO Mojelio Base-
CNN i crangaptHuM HamiBkepoBaHuM AE SSL-AE.

®pakrajgbHa po3MipHICTh FK KiaacudikamiiiHa
03HAKA Y MEIMYHHX 300pazKeHHX

BuninenHs1 iHopMaTUBHMX O3HAK, IO OIIM-
CYIOThb CKJIaJHi OiOJIOTiYHI CTPYKTYpU, € KIIOUOBOIO
npoOJIeMOIO TIil Yac aHallizy MEAWYHUX 300pakeHb.
DpakTaabHa pO3MIPHICTb — 1€ YMCJIOBUI TOKA3HHUK,
10 OLIHIOE CTPYKTYPHY CKJIQIHICTh i Heperyssp-
HicTb 00’ekTa. Lleil MoKa3HUK LIMPOKO BUKOPUCTO-
BYIOTh SIK KJIIOUOBY O3HAaKy B 0araTbox MEIMUYHUX
JOCTIIKEHHSIX, OCKiJIbKM IoBeleHo, 1o PP kope-
JIIOE 3 IiarHOCTUYHUMU cTaHamu [1—5]. Hanpuxiian,
y HelipooHkouiorii @P Kopeaioe 3 TOKa3HUKOM arpe-
cUBHOCTI mmiobnactoMm [3], a B Mamorpadii goBene-
HO YiTKYy KOPEJISILiI0 MiXK 3JIOSKICHICTIO YTBOPEHHS
ta iioro ®P [5]. ¥YT1im, y Ginbliocti gocuimkeHbr OP
BUKOPHUCTOBYIOTh SIK OCHOBHY O3HaKy UISI aHami3y.
BignosigHo, SIKIIIO CTaTUCTUYHI PO3MOALINA 3HAYEHb
®P cyTTeBO HAKIAmAIOTLCS OAMH HA OMHOTO, — BU-
KOPMCTAaHHS 1IbOTO TMOKa3HUKa SIK OCHOBHOI'O CHT-
Hajay Wi kiacudikauii € HeMOXJIMBUM. Y ILIbOMY
JOCJIIXKEHHI MU IIPOIIOHYEMO METOJ BUKOPUCTAHHS
®P gk curnany mist HH (dpakranbHa perynsipu-

3allisl JaTEHTHOIO IMPOCTOPY Mepexki) i ITOKaxXemo,
1110 HaBITh B pa3i CYTTEBOIO HaKJIaJaHHS CTaTUCTUY-
HUX PO3IIOAUIB 1Sl O3HAKa MOXE CYTTEBO IOKpallly-
BaTU SIKiCTb MOJEN.

Bubip Ta aganramnia metoxy o0unciieHns ¢pak-
TAJbHOI PO3MIPHOCTI

€ oOarato MeroniB oOuucieHHs DP 300pa-
JKE€Hb, 1110 aJalTOBaHi ITiJ pi3Hi 3aJayi Ta CTPYKTYpy
caMMX 300paXkeHb, 30KpeMa OCHOBaHi Ha 0a30BOMY
Meroni box-counting [6—9], Mopdosorii 06’exra
[10] um HaBiTh Dyp’e-cnekrpa [11—12]. [Ins uboro
JIOCIIIKEeHHsI OyJ10 0OpaHO OAWH i3 HAMOLIbLI MO-
IIMpeHuX MeTodiB BusHaueHHs1 DP: box-counting.
Bin mossirae y HakiamaHHiI Ha 300paxKeHHsI CiTOK
3 pi3HMMM pPO3MipaMM KOMIPOK 7 Ta MiApaxyHKY
KiJIbKOCTI KOMipOK N, 110 MICTATH IKCEIi BUMi-
proBaHoro 06’ekra. ®PpakTanbHy PO3MipHICTb D,
BUMIpPIOIOTh SIK HaXWJI MpsIMOI Ipadika 3a1exKHOCTI
N_ Bin 1/r

log(V,)

D ;
log(—)
r

box

=lim

r—0

Ha npaktuui BuiuesragaHuii Haxui rpadika
HaiyacTillle BMMIpIOIOTb 3a JOIIOMOTIOIO0 JIiHIAHOI
perpecii [9]. BubGip mporo Metomy OyB 3yMOBJICHWIA
MPOCTOTOK O00uuciaeHHs1. Takox Oyn0 exkcrnepu-
MEHTaJbHO BM3HAUYE€HO, 110 Y PO3MISIHYTUX HaMu
Habopax maHmx 3HadeHHs @OP, mimpaxoBaHi UM
METOJOM, MalOTh HANOiMbIIY PI3HULIIO Y CEpenHixX
3HAUCHHSIX [JIs1 pi3HUX KiaciB. Hanmpuknan, mist Ha-
oopy nanux ISIC2024 (nuB. «Onuc HaOOPiB JAHUX»)
box-counting nokazaB AMean = 0.149, Toni sIK Haii-
ONVKUMii 32 LIMM TOKa3HUKOM MeTton Minkovsky-
Bouligand [10] mokazaB pi3Huiio Bchoro y 0.084.

CranpaptHuii MeTON miApaxyHKy N Bumarae
GiHapu3oBaHoro 3o0paxeHHs. lle € mpoOiemoro
JUIST MEIUYHUX 300pakeHb, OCKUJIbKM JiarHOCTUY-
HO BaXXJIMBOIO € iH(opMalis, 110 MOXe MiCTUTHUCS
y BiATiHKax ciporo. s BupillleHHsT 1i€l mpoosie-
MU Yy Haliii poOOTi MU BUKOPUCTOBYEMO ajarl-
TUBHY OiHapm3alilo 3aMicTb (PIKCOBAHOIO IIOPOTY.
Jns KOXKHOTro 300paXkeHHsI TTOPOrOBUM 3HAYEHHSIM
Oyzne cepenHe (mean) Mo 300paXKeHHIO.

CratucTiyne o0IPYHTYBaHHS (DPAKTAJIBHOI pery-
Jngpusanii

OCHOBHOIO TiMOTE3010 3a[IPONOHOBAHOIO METO-
ny € te, mo obunciaeHa PP mMoxe ciyryBatu edek-
TUBHUM [IKEPEJIOM «CJIAOKOrO» CHUTHATy AJIsI pery-
Jisipu3allii JaTeHTHOTO MpOCTOpy Mepexi. st uboro
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notpiobHo, o6 cepenHi 3HaueHHs DOP pizHmImMCS
U1 pizHUX KiaciB. Tlpu 1bOMY mnepeBaroro BUKO-
pUCTaHHSI CUTHAy caMme SIK peryIsIpu3aIliiiHoro,
a He SIK OCHOBHOIO CUTHaJy, Ui Kjacudikallii mo-
JiTae B TOMY, 110 HakiamaHHs posnofniniB @P He €
TaKUM KPUTWYHUM s L€l 3amavi. II{o6 minTBep-
OUTU BUIIE3ragaHy TilmoTe3y, MU IIPOBEIM CTaTHC-
TUYHUI aHajli3 Ha TPbOX OOpaHUX JaTaceTrax, 11100
MHEePEeBipUTHU, YU iICHYE CTAaTUCTUYHO 3HAUyllla Pi3HU-
sl MK KjgacaMu. 3 pe3ysbTaTiB JOCTIIKEHHS, Ha-
BeleHMX y TaOiu. 1 Ta 2, MOXHa MOOAYMTH, 1O BCi
TP HAOOPM NAHUX MAlOTh CTATUCTUYHO 3HAYYIILY
PiBHMLIO MiX KjacaMu (IeTajlbHMR oOmnuc Habo-
piB JaHUX Ta OOTPYHTYBaHHS iX BUOOPY BUKJIAIEHO
y posa. «Marepiajiu Ta METOAOJIOTIS JOCTIIXKEHb»).
HagBHicTh pi3HMII MDK CepegHiMM 3HAYECHHSIMU
BuMipiB PP (AMean), a TakoxX CITiBBiTHOIIICHHS
curHain/mym (AMean/max(c)), 110 He OJM3bKi 1O
HyJISl, CBilUaTh MPO PeJIEeBAHTHICTb 3aCTOCYBAHHS Ta-
KOI O3HaKM.

Peryngpusaniss 3a gomomoroio ¢pakTanabHOI
peryasipuzanii

3anponoHOBaHUII METON TMOJISITAE Y CTPYK-
TYpHiiA peryjspu3aliil JJaTeHTHOTro mnpocTopy. Mu
BBOAVMO perpeciiHuii 1ap j;d, 10 TIPUETHYETHCS

JI0 JIATEHTHOTO BEKTOpa Z i HABUAEThCS MPOTHO3Y-
BaTu DP 300pakeHHs, MOPIBHIOIOYM CBOI IIPOTHO3U
j;d (2) i3 3HaueHHSIMU d , BUBHAYEHUMU allPiOPHUM
MeToaoM (y HalloMy BMUITagKy box-counting). ®op-
MYJy JJ1s1 OOUMCJIEHHS BTpaT perpecii Lfd IJIs1 0aTay
po3Mmipy N OonUCYyIOTh TAKMM YMHOM:

di:ffd(zi);
L —ii(ﬁ-—d)z
MONGT

ne d i Ta d; — IpOrHO30BaHe Ta afpiopHe 3HAYEHHS
@®P nn4 i-ro BekTOpa y 6aTdi, a Z, — JIATEHTHE NPE-
CTaBJICHHSI [-TO BXiTHOTO 300pakeHHSI.

OCKiJTbKM CTaTUCTUYHUI aHali3 IiATBEepauB,
mo DP e peneBaHTHOIO 0O3HAKOIO, ii SIBHE KOIY-
BaHHsI y JIJAaTEHTHOMY TPOCTOPi MOXe MOoKpalllyBaTu
MOTO CTPYKTYpY Y HACTYIHil Kiaacudikartiii.

[Mlo6 3anobirtv BTpaTi iHIIOI LiHHOI iH(Op-
Manii mig gac perpecii ®P, mMu 3acrocyemo meit
meTon K moaudikaiiito apxitektypu AE. T'onoBHe
3apaaHHs AE — MiHimizalist (yHKIIii BTpaT pPeKOH-
crpykuii L. Bona rapantye, 1o BeKTOp Z 30€pi-
raTuMe MakcuMyMm iHdopmalii sl BiIHOBIEHHS
300paxeHHs. Lo perynsipusauiiiHy BIacTUBICTb

Tabauysa 1. CratuctuyHuii aHajiz ¢pakTaabHOI PO3MIPHOCTI, TMiJpaxOBaAaHOI METOMOM box-counting (maraceTu i3 ABOMa

KJ1acamu)
. Mean FD | Mean FD AMean/
Hab6ip nanux (class 0) (class 1) AMean c (class 0) | o (class 1) MAX G
ISIC2024 Challenge 1.375 1.524 0.149 0.498 0.389 0.299
COVID-19 Radiology Database 1.851 1.828 0.023 0.024 0.023 0.941

Tabauysa 2. CtaTUCTUYHUI aHali3 (pakTaabHOI PO3MIPHOCTI, IMiIpaxoBaHOi METOZOM box-counting (mataceTd 3 YoTHpMa

KJ1acaMu)
Hab6ip nanux Mean FD (class 0) Mean FD (class 1) Mean FD (class 2) Mean FD (class 3)
) 1.88 518 1.88 538 1.8851 1.87 125
BthnS;umor MRI o (class 0) o (class 1) o (class 2) c (class 3)
0.0 188 859 0.0 211 904 0.0 318 129 0.0 140 467
Hab6ip manux Knac Knac AMean max ¢ AMean/max c
0 1 0.0002 0.0 211 904 0.00 943 824
0 2 0.00 008 0.0 318 129 0.0 025 147
Brain Tumor MRI 0 3 0.01 393 0.0 188 859 0.7 375 873
Dataset 1 2 0.00 028 0.0 318 129 0.00 880 146
1 3 0.01 413 0.0 211 904 0.66 681 139
2 3 0.01 385 0.0 318 129 0.43 535 798
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AE mmpoxo BukopuctoByioTh y HH n1s naByaHHs:
Ha HEepO3MiueHMX JaHMUX, Hanpukian B adversarial
autoencoders [13] Ta ladder network apxiTexkTtypi
[14]. Takum 4yMHOM, ONTHMi3allisl IBOX BMILEBKA-
3aHUX (PYHKLIM BTpAT Ji€ OJHOUYACHO SIK PEryJisipu-
3auig MOBHOTU iH(opMauii (L) i K CTPyKTypHa
peryJsipusatist (Lfd) y JJaTeHTHOMY TTPOCTODi.

s MOpiBHSIHHS PEKOHCTPYHOBaHOTO 300pa-
JKeHHsI 3 OpUriHaIbHUM MU BHuKopuctaiu MSE
(mean squared error). JIJiss HaBYaHHSI HA PO3MIYEHUX
JaHux Oyjio JoJaHo KiaacudikaliiHuil mwap, 1o BU-
KOPHUCTOBYE cross-entropy loss ¢yHkiio (L 3a-
rajibHy (byHKIIil0 BTpaT MOXHa OMUCATH TaK:

CE)'

L = LCE + A’rec Lrec + 7\'fd Lfd'

lnepnapamerpu A Ta A, KOHTPOJIIOIOTh BHE-
COK HEKepOBaHOTo HaByaHHs. Onrumiszalis i€l
(byHKIIiI BTpaT 3MYIIIy€E €HKOAEP CTBOPIOBATHU IIPOCTIP
Z, 10 € OJJHOYACHO MOBHUM, CTPYKTYPHO UYTJIMBUM
Ta ONTUMi3oBaHUM sl Kiaacugikauii. Ha puc. 1
300paxk€HO MOJIEJIb, 1110 peai3ye 3arporoHOBAaHUN
metoA. CTpikaMy MO3HAYEHO 3B’SI3KM MiXK KOMIIO-
HEHTaMM MOJIeJi, a MyHKTUPHUMM JIiHISIMU — YMOB-
Hi 3B’SI3KM, SIKi JIEMOHCTPYIOTb, SIK OOUMCIIOIOTHCS
KOMITOHEHTH (DYHKIIii BTpaT.

Martepiaau i MeTOI0JIOTiS JOCTiIzKEHHS

Onuc nabopie danux

st ekcnepMMeHTaJIbHOI JIeMOHCTpallil edek-
TUBHOCTI 3alpoNOHOBAHOTO MeToay Oyj0 obpa-
HO TPHU BIiIKPUTI AaTaceTd MEIWYHHUX 300pakKeHb,
110 Pi3HATHCS 32 TUIIOM AiarHOCTUYHOI 3amadi, Bi-
3yalbHUMHU XapaKTePUCTUKAMM, a TaKOX CTaTHC-

d= f1(2)
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Bt
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TUYHUMU BJIACTUBOCTAMU 3HadyeHb PP. Y Tabi. 3
HAJaHO OMNMUC KOXHOIO JaTaceTy i3 MOSICHEHHSIMU
TpaHcpopMaliil Ta OOrpyHTYBaHHSI BUOOPY KOXKHO-
ro Jatacery.

ApxiTeKTypa Moeieid 11l eKCIiepUMEHTIB

ExcnepruMmeHTaIbHY 4acTMHY OyJI0 BUKOHAaHO
y cepenoBullli Python 3a pomomoroio 06i0JioTeku
Pytorch. Ins npakTW4HOI AeMOHCTpallil pe3yJibTa-
TiB JOCJiIXEHHsI 0yJ0 po3pobyieHO U peaizoBaHO
TPU apXiTeKTypu HEMPOHHUX MEPEXK, KOXKHA 3 SIKUX
Billirpae rneBHy poJib Y ITOCIIKEHHI.

bazoBa Mojenbp — KjacMyHa 3ropTKOBa Hel-
poHHa mepexa Base-CNN, ska ciayrye eTaJoHHOIO
MOJIE/UTI0 ISl KEPOBAaHOTO HaByaHHsA. 1i apxiTek-
Typa CKJIAJA€TbCS i3 YOTUPHOX IMOCTIAOBHUX 1IAPiB
Conv2d—ReL U. Tlicist 3ropTKOBUX 1lapiB MoAaH-
HSl TIepeJa€EThCsl TOCHi0OBHO Y TpU MOBHO3B’S3Hi
wiapu Linear. Yci iHIII Momeni y 1bOMYy eKcrie-
puMeHTi Oyau 1oOynoBaHi Ha OCHOBI L€l Mojeli
3 MiHiMaJIbHUMU MoaudikamissMu, IOTPiIOHUMU
JUIsL peajtizauii BiamoBigHoi apxiTekTypu. Lo mo-
JleJIb HaBYAJIU TiIbKY Ha pO3MiueHiii YaCTUHI JaHUX
(5 % nanux). [TopiBHSIHHSI METPUK IHILKMX MOIeseil
i3 0a30BOI0 MOJEJUIIO JAIOTh MOXJIMBICTb BiACTill-
KyBaTH, HACKiJIbKU BUKOPUCTAHHSI HEPO3MiUEHUX
JaHUX MoKpallye KiaacudikaliiiHi SKOCTi Monei
Ha TeCTOBili BUMOiIpLi, TOOTO HACKIJIBbKM 3aMPONOHO-
BaHuii meton HH edexTtuBHUiA.

Hns  mOpiBHSHHSI  3alPOINOHOBAHOTO  METOMY
3 yxe Bitomumu metogamu HH Oyno obpaHo 6azo-
Buit AE sk HaltOIMXKUY 3a CTPYKTYpPOIO MOJIEb. ABTO-
€HKOJIEpU JIOBEJIU CBOIO €(heKTUBHICTh Y LIbOMY KJaci
3a7a4 3a PaxyHOK IXHbOI 3HATHOCTI BMBYATU 3MiC-
TOBHi 03HaKoBi nogaHHs (feature
representations) 3 HepO3MiUYe€HUX
nanux [19, 14]. Y uiii po6oTi MoAEJ b
HamiBkepoBaHoro AE (SSL-AE)
BKJIIOYAE E€HKOJEp, 110 IOBHICTIO
TTOBTOPIOE  apXiTEKTypy €EHKomepa
0a30BOI MOzeJIi, a TAKOX AEKOIep,
10 J3€pPKaJlbHO BiATBOPIOE KOro
CTPYKTYPY, BUKOPUCTOBYIOUH IIApH
ConvTranspose2d— ReLU nnsa pe-
KOHCTpPYKIIil 300paxkeHHs. Crin 3a-
3HAYUTH, 1110 Y BiIKPUTOMY TOCTY-
mi He Oys0 3HaiIeHo MyOsliKalii,
npucBsiueHux HH na obGpanux Ha-
Oopax IaHUX 3 iIEHTUYHOIO €KC-
MEePUMEHTAIbHOIO KOH(Irypallieto
(3okpema, 5 % po3miueHMX Ja-
Hux). Yepes 1e mis1 3a0e3nedyeHHs
KOPEKTHOIO 1 YECHOTO ITOPiBHSIHHS
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6a3zoBa mojaenb SSL-AE Oyna peasioBaHa Hamu ca-
MOCTIIHO 3 Ti€I0 K 0a30BOIO apXiTeKTypoOlo, 1110 i 3a-
nporioHoBaHa monenb FDR-AE.

Tpetboto € 3anpornoHoBaHa Moaenb AE i3 (ppak-
tagpHOlO peryaspusauiclo FDR-AE. Bona pos-
wmptoe apxitektypy SSL-AE i Bkitouae perpeciii-
HY YaCTHUHY, 110 HAMara€Tbcsl Ha OCHOBI BUXiITHOTO
1Iapy €HKoAepa BM3HAUMTU (PpakTaabHy PO3Mip-

Tabauus 3. Onvc HaOOPIB TaHUX, BUKOPUCTAHUX JIJISI €KCTIEPUMEHTIB

HICTb MOYaTKOBOIO 300paxkeHHs. Perpecop ckiana-
€TbCS i3 JBOX TOCJiIOBHMX MOBHO3B’SI3HUX IlIapiB
Linear— ReL U. TakuMm yuHOM (yHKIIisl BTpaT (pop-
MYETBCS SIK KOMOiHallist BTpaT Kjlacudikailii, peKoH-
CTPYKIIil Ta BTpaT perpeciiiHoi yactuHu. Ha puc. 2
300paXkK€HO BHYTPILIHIO CTPYKTYPY KOMIIOHEHTIB
MOJIENi, a TaKOX SIKUM UYHWHOM OOYMCIIIOIOTH pi3-
Hi KOMMOOHEHTU (yHKIIl BTpaT IIig 4yac HaBYaHHsI

I0Th 3JI0SIKiCHI
Ta 10OposIKic-
Hi YTBOpEH-
HI — «ma-
lignant»

Ta «benign»

3a pamioJIoriv-
HUMM
3HIMKaMu
JIeTeHb Talli€eH-
TiB

1) 11 956 suimkiB mauienTi i3 COVID-19,
2) 11 263 3HIMKHM BipyCHOI ITHEBMOHIi
(iHmi iHdexiii),

3) 10 701 3HIMOK 3IOpPOBUX JIET€Hb.

Lleit maraceT € BaXJIMBUM PECYPCOM

IIJIsI IeMOHCTpallii e(eKTUBHOCTI
3aMPOIIOHOBAHOTO METOJY, OCKiJIbKU
BizyanbHi 03Haku COVID-19 moxytb OyTn
MEHIII IOMITHMMU i BUMAaraTu aHali3y
CKJIJTHUX TEKCTYPHUX OCOOJMBOCTEM
3HIMKY

Ha6ip mannx | [IpusHayeHHS XapakTepucTuKu [Nonepenns o6pobka
ISIC2024 Binapna Hatacet mictuth 400 000 300pakeHb Lleit maTaceT xapaKTepu3y€eThCS
Challenge Kiacuikalisi | ypakeHb IIKipH, 1110 OyJIM OTpUMaHi CYTTEBUM JAMCOATIaHCOM KJIACiB.
ypaxxeHb 3 3d-3HiMKiB ychoro Tina (texHosorist 3d Knac «benign» cTaHOBUTH Oibllie
Ha LIKipi 11st TBP) [15] 99 % BCiX mTaHUX, TOMY IS
BUSIBJICHHS e(heKTUBHOTO HAaBUAHHSI JaTaceT
paxky OyB 30aJ1aHCOBaHUI 3a paxXyHOK
BUIAJICHHS i3 HAaBYAJIbHOI BUOIpKU
OUIBIIIOCTI €K3eMIUISIPIB.
Yci 300paxxeHHs Oyau
HOPMAaJli30BaHi, a TAKOX 3MEHIIEHi
JI0 po3Mipy 96x96 ISt 3HMKEHHS
BUTPAT PECYPCiB B €KCIEPUMEHTI
MicTtuth Knacudikauis | HaGip naHux, 3i0paHuii 1ocaiiHUKaMu J1J1s1 CIIpOILLIEHHST eKCIIEPUMEHTIB
JIBa KJIACH, i cerMeHTallist 3 YuiBepcurery Karapy Ta Jdakku [16, 17]. | y Mexkax LbHOTO JOC/iIKEHHS
1110 TTO3HAaYa- | 3aXBOPIOBAHb JlaTaceT cKi1ama€eTbes i3 TPhOX KJIaCiB: 0yJ10 BUKOPUCTAHO MiAMHOXHUHY,

1110 CKJIAJJAEThCH 13 KJIaciB
«COVID-19 positive» Ta «Normal».
Takum yrHOM y HalIOMY IOCJIiMI-
JKeHHI MM po3rJisiaaiu 6iHapHY
KJacudikariro.

VYci 300paxkeHHs1 0yJu HOpMaJli3o-
BaHi, a TAaKOX 3MEHILIEeHi 0 pO3Mi-
Py 96x96 11151 3HUZKEHHST BUTPAT
PecypcCiB B €KCIIEPUMEHTI

Brain Tumor
MRI Dataset

Bararokiacosa
KJmacuikarrist
MYXJIMH MO3KY
3a MPT-300pa-
SKEHHIMU

Lleit Habip naHMX € MOEMHAHHSIM TPHOX
mxepen (figshare, SPARTAJ, Br35H) i mic-
™aTh 7023 3niMKu MPT monchbkoro Mo3ky
[18]. Habip maHux po3momijiecHO Ha YOTUPU
Kjiacu: riioma (glioma), MeHiHrioma (me-
ningioma), rirnocdizapHa myxiauHa (pituitary)
i BIZICYTHICTb TTyXJIMHU (NO tumor).

Kiacu mmogani y 30anaHcoBaHUX
MPOTOPLIsIX.

JHataceT Oyno oOpaHO IS AEMOHCTpaLIil
3aCTOCYBaHHSI 3aIPOITIOHOBAHOTO METO.LY
Ha 0araTokJ1acoBOMY JlaTaceTi

s cripoleHHs eKCepuMeHTIB
Y MeXax LIbHOTO IOCTiIKEHHS
0yJ10 BUKOPUCTAHO MiIMHOXWHY,
1110 CKJIAJAEThCS i3 KJ1aciB
«COVID-19 positive» Ta «Normal».
Takum yrHOM y HaAIIOMY JOCHiI-
JKeHHI MM po3mIsiiasivi OiHapHY
KJacudikarlio.

VYci 300paxeHHst Oyau HOpMaizo-
BaHi, a TAKOX 3MEHIIIeHi 0 pO3-
Mipy 96x96 1151 3HMDKEHHSI BUTPAT
pecypciB B eKCIIEpUMEHTI
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Input images

7

Reconstructed images

Encoder Decoder

Conv2d + RelU

Convzd + RelLU

ConvTranspose2d + ReLU

ConvTranspose2d + ReLU
ConvTranspose2d + ReLU
ConvTranspose2d + RelLU

Convzd + RelLU

ConvzZd + RelLU

Classificafion

FD regressor Head

Linear + ReLJ
Linear + ReLU

FD prediction loss

Puc. 2. Moznenb aBToeHKoIepa i3 (ppakTaabHOIO perysipu3ali€elo.

Linear + ReLU

Linear+ RelLU
Linear+ Rel U

BHyTpillIHS CTpyKTypa KOMIIOHEHTIB MOJEJIi

(KOMIIOHEHTHU (PYHKIIiT BTpaT Ha puc. 2 0OBeAEHO
eJIirncamu).

VY Tabxa. 4, 5 Ta 6 HaBeNEHO METPUYHI ITOKA3-
HUKM 3alPONOHOBAHUX MOJEJEN NI TPhOX BUILE-
3rajlaHuX J1aTaceTiB.

PesyiabraT excrepuMeHTiB (Tabi. 4—6) ne-
MOHCTPYIOTh TIEpeBary 3aIllpoOIIOHOBAHOTO METO-
Iy Ha BCiXx TpbOX HaOopax jgaHux. Ha partace-
1i ISIC2024 (Tabn. 4) FDR-AE mopenb gocsria
F1-Score 0.508 nis1 Masioperpe3eHTOBAaHOTO KJacy
«malignant», 3Ha4yHO mNepeBeplUMBIIN sIK Base-
CNN (0.304), tak i SSL-AE (0.431). Ananoriu-
Ha CHUTYyallisl CIIOCTEpIira€TbCsl TaKOX 1 B Jarace-
Ti COVID-19 (ta6n. 5), ne FDR-AE nokpaiuus
gakicte F1-Score nnsa wiacy «covid-19» na 0.027
Ta Ha 0.112 BigHocHO Mmoxeneit SSL-AE ta Base-
CNN. Oco011BO MOKa30BUMU € pe3yJIbTaTh Ha Oa-
ratokjiacoBomy maraceti Brain Tumor (tabia. 6),
Jle MEeTOJ CyTTEBO TMokpauuB Fl-score s Bcix
KJ1aciB, MpUUYOMY HaUOIIbLIMKA MPUPICT BiITHOCHO
SSL-AE orpumanu knacu 0 (0.079) ta 3 (0.054),
SKi Majld HauOijbllly B3a€EMHY CTaTUCTUUYHY Bil-
MiHHicTb y P (AMean/max(c) = 0.738). Takum
YMHOM, Yy BCiX TpbOX ClIeHapisix (ppakrTajibHa pe-
ryjaspu3sailis BusiBujiacs e(eKTHBHILIOI 3a CTaH-
JapTHy peKoHcTpyKuiro (SSL-AE), miarBepmaxyro-
gy, 1o PP € uwiHHUM CUTHaJIOM Ui HaBYaHHS
Oinblll SKiCHUX MOpeAcTaBieHb Yy 3agayax HH.

BucHoBku

HasBHi pimueHHs1 is kiacudikailii MeauuHux
300paKeHb B yMOBax NeMilUTy NaHUX [PYHTYIOThCS
na HH (SSL), 3okpema Ha AE. VYTiM, cranmaptHa
PEKOHCTPYKIIisl He TapaHTyE CTBOPEHHS JIATEHTHOTO
MpPOCTOPY, ONTUMAJBLHOTO s Kiacudikaitii. ¥ uii
CTaTTi 3alpOIIOHOBAHO HOBUIA MeTol — (hpakTasb-
Ho-KepoBaHy peryaspusaiito (FDR-AE) — misg
BUpillleHHs1 i€l mpobysemu. Ha BigMiHy Big Bi-
momux AE, Ham mMeTton BBOAWUTH HONATKOBUI Ha-
BUQJIbHUN CUTHAJ — perpeciiHuil 1ap, SKU
HaBYa€ETbCS TPOTHO3yBaTH (hbpakTajbHy pO3Mip-

Ta6auus 4. MeTpudHi TOKA3HUKU MOjIeJIei, HaBYeHUX Ha 5 % posmiueHux ganux 1SI1C2024

Moens Preci§ion Pre.cision Regall Re;call F1 Sf:ore F1 .Score
(benign) (malignant) (benign) (malignant) (benign) (malignant)
Base-CNN 0.951 0.240 0.897 0.414 0.923 0.304
SSL-AE 0.596 0.524 0.737 0.367 0.659 0.431
FDR-AE 0.615 0.517 0.632 0.500 0.623 0.508

Tabauys 5. MeTpuyHi MOKAa3HUKM Mojeseit, HaBdeHUX Ha 5 % po3miueHux ganux COVID-19 Radiology Database

Mozens Precision Prec.ision Recall Ref:all F1 Score Fl1 Score
(normal) (covid19) (normal) (covid19) (normal) (covid19)
Base-CNN 0.799 0.682 0.873 0.552 0.834 0.610
SSL-AE 0.684 0.878 0.920 0.575 0.785 0.695
FDR-AE 0.702 0.896 0.930 0.605 0.800 0.722
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Ta6auys 6. MeTpUYHI TTOKa3HMKU MOJEJIe, HaBYeHNX Ha 5 % po3miveHux maHux Brain Tumor MRI Dataset

Monenb Precision (class 0) Precision (class 1) Precision (class 2) Precision (class 3)
Base-CNN 0.683 0.447 0.703 0.598
SSL-AE 0.720 0.500 0.848 0.716
FDR-AE 0.704 0.560 0.848 0.797
Mognenb Recall (class 0) Recall (class 1) Recall (class 2) Recall (class 3)
Base-CNN 0.460 0.359 0.773 0.833
SSL-AE 0.447 0.572 0.810 0.927
FDR-AE 0.570 0.549 0.867 0.940
Monens F1 Score (class 0) F1 Score (class 1) F1 Score (class 2) F1 Score (class 3)
Base-CNN 0.550 0.399 0.736 0.696
SSL-AE 0.551 0.534 0.828 0.808
FDR-AE 0.630 0.554 0.857 0.862

HIiCTb 300paXkeHHsI 3 IOro JAaTEHTHOro BEKTOpa.
IlepeBara 11bOro MeToAy MOJISITAE Y MPUMYCOBOMY
30epeKeHHI CTPYKTYPHO BaXJIMBOI iH(OpMaILii.

Ekcriepument 3 TphoMa HabopamMu JTaHUX
(ISIC2024, COVID-19, Brain Tumor) 3a ymoBu
5 % mapkoBaHUX maHuX Tokasanu, mo FDR-AE
CcTabUILHO mepeBepllye sIK 0a30By IOBHICTIO Ke-
poBaHy moneib (Base-CNN), Tak i craHmapTHUI
AE (SSL-AE). Hanpuknan, y 3aBaaHHi 3 yoTupma
kiracamu Brain Tumor (tabna. 6) FDR-AE momin-
mmB noka3Huk F1-Score mis Bcix KiaciB, mpuyo-
My Haioinbe 3pocranHs (+0,079 i +0,054) Oyno
nis knaciB 0 i 3. Cdeporo 3acTocyBaHHSI METOY
€ CUCTeMHU KOMIT'IOTEpPHOI J1iarHOCTMKM Ha OCHOBI
HelipoHHUX MepexX. KOHKpeTHO el METom MOKe
Oytu 3actocoBaHuil sik mass HH, tak i nis nepen-
HaBYAHHS MOJEJICH.
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V.Y. Danilov, O.0. Zarytskyi

METHOD FOR FRACTAL-DRIVEN REGULARIZATION OF AUTOENCODERS FOR SEMI-SUPERVISED LEARNING IN
MEDICAL IMAGE CLASSIFICATION TASKS

Background. Medical image classification using deep learning is a critical task, yet its effectiveness is constrained by the scarcity of
labelled data, which is expensive to acquire. Semi-supervised learning (SSL) methods address this by leveraging unlabelled data. Common
autoencoder (AE)-based approaches use reconstruction as a training signal. However, standard reconstruction loss minimisation does not
guarantee that the resulting latent space will be optimally structured for the classification task, as the model may focus on diagnostically
irrelevant features.

Objective. The paper aims to develop and experimentally validate a novel latent space regularisation method: fractal-driven
regularisation (FDR). The goal is to improve classification metrics for medical images under conditions of severe labelled data scarcity
(5 %) by integrating fractal dimension (FD) as an additional, a priori training signal.

Methods. The proposed model (FDR-AE) is based on an autoencoder architecture, augmented with two heads attached to the
latent space: a classification head and a regression head. The regression head is trained to predict the input image’s FD, which is pre-
calculated using the “box-counting” method. The total loss function is a combination of three components: classification loss (on 5 %
labelled data) and both reconstruction and fractal regression losses (on 100 % of data). The method’s efficac was validated on three
datasets of different modalities (1SIC2024, COVID-19 Radiology, Brain Tumor MRI), comparing it against a baseline convolutional network
(Base-CNN) and a standard semi-supervised autoencoder (SSL-AE).

Results. The experiments demonstrated a consistent advantage for the proposed method. On the ISIC2024 dataset, FDR-AE
achieved an F1-Score of 0.508 for the “malignant” class, compared to 0.431 for SSL-AE and 0.304 for Base-CNN. On the COVID-19
dataset, the F1-Score for the “covid19” class was 0.722 for FDR-AE versus 0.695 for SSL-AE. In the 4-class Brain Tumor task, FDR-AE
showed improved F1-Scores across all classes, with the most significan gains (+0.079 and +0.054) observed for classes 0 and 3, which
also had the greatest mutual statistical difference in their FD values
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Conclusions. Fractal-driven regularisation demonstrates that FD is a valuable a priori signal for learning higher-quality,
structurally grounded representations in SSL tasks. The method is particularly effective on simple architectures under severe data
scarcity. Prospects for future research include utilising FDR as a pre-training method or implementing a dynamic coefficien for the
regression component of the loss function.

Keywords: semi-supervised learning; fractal dimension; autoencoder; latent space regularisation; medical images; image
classification; box-counting
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DEEP LEARNING-BASED MELANOMA CLASSIFICATION ENHANCED
BY FRACTAL DIMENSION ANALYSIS

Background. Melanoma is a malignant skin lesion that is prone to metastasise aggressively, leading to an almost
guaranteed lethal outcome if left unchecked. In contrast, early-stage detection allows for the tumour to be removed
via a harmless surgical procedure that may not even leave a scar. However, the availability of competent diagnos-
tics are often limited due to a shortage of healthcare specialists and technologies. Deep Learning models such as
Visual Transformer (ViT) have demonstrated strong performance, but researchers continuously seek to improve
the results by incorporating new features. Since human skin exhibits fractal-like characteristics, it is theorised that
metrics quantifying this complexity can act as valuable supplementary features for DL models, leading to increased
classification accuracy.

Objective. We investigated the impact of the integration of fractal dimension (FD) on a Vision Transformer deep
learning model used for melanoma classification. A comparison was conducted between the model that was ex-
posed to random noise and the models that were provided with computed FD values.

Methods. Vision Transformer was used as a feature-extracting backbone pre-trained on the ImageNet dataset. Fine-tuning
was done on this backbone in combination with a classification head targeted to distinguish melanoma vs. nevus classes.
Along with extracted features, the classification head received FD value. An identical model received random noise
instead of FD. Statistical testing and FD impact analysis were conducted to validate the significance of the new feature.
Results. Integrating FD into ViT showed noticeable improvement in test metrics. SHAP analysis confirmed the
meaningfulness of the new feature. McNemar’s test validated that the difference in model predictions was statisti-
cally significant.

Conclusions. The results suggest that FD can serve as a valuable supplementary feature for DL models, and the
integration of biomarkers such as FD provides a basis for more robust melanoma classification.

Keywords: deep learning; vision transformer; melanoma; fractal dimension; XAI; skin cancer.

Introduction

Malignant skin lesions, such as squamous cell
carcinoma and melanoma, can metastasise at ad-
vanced stages, significantly reducing the chances
of successful treatment. Among those, melanoma
is considered the most aggressive skin cancer type.
Late-stage melanoma has a low likelihood of a posi-
tive outcome. In contrast, early-stage lesions can of-
ten be surgically removed with just minimal or no
scarring [1]. However, the availability of compe-
tent diagnostics is often limited due to a shortage of
healthcare specialists and technologies. Consequent-
ly, there is ongoing research focused on developing

robust computer-aided diagnostic (CAD) systems le-
veraging deep learning (DL) techniques, which is be-
ing undertaken by various teams, including ISIC [2].
Data feature engineering is a significant part of
any machine learning (ML) pipeline. Since human
skin exhibits fractal-like characteristics, it is hy-
pothesized that Fractal Dimension (FD) may serve
as a valuable feature for enhancing DL-based skin
lesion classification models [3]. FD is a metric that
quantifies the complexity of fractal-like structures.
To investigate this hypothesis, we employed
the Vision Transformer (ViT) [4] model as a fea-
ture extractor, as it has demonstrated strong perfor-
mance in skin cancer classification tasks [5].
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Contributions

We hypothesise that integrating FD as a feature
to DNN Skin Cancer Classifier can improve the re-
sults. The main contributions of this study are as fol-
lows: We developed a deep neural network (DNN)
classifier that combines ViT-extracted features with
FD as an additional input. We conducted statistical
analysis, including McNemar’s test, to confirm the
significance of the observed performance improve-
ments after incorporating FD. Evaluation of the FD
impact was performed using SHAP (SHapley Addi-
tive exPlanations).

Related Work

Fractal Dimension in Skin Lesion Analysis. Frac-
tal Dimension has been explored as a quantitative
metric to capture the complexity and irregularity of
skin lesion boundaries. Studies have demonstrated
that FD can potentially serve as a discriminative
feature in differentiating between benign and malig-
nant lesions [3]. For instance, research utilising the
Higuchi’s method for computing surface FD, com-
bined with colour features, achieved classification
accuracy of approximately 80 % [6]. Despite these
promising results, the integration of FD into DL
architectures for skin lesion classification remains
fairly underexplored. We previously made efforts on
the integration of FD to DL models such as Vision
Transformer. The study showed that FD can posi-
tively impact a model’s output [7]. Another of our
studies explored approximating FD for skin lesions.
In this study, the box counting dimension and its
modification were compared against the Hausdorff
dimension of real fractals [8].

Vision Transformers in Skin Cancer Classi-
fication. ViTs leverage self-attention mechanisms
to capture global contextual information, which is
particularly beneficial in analysing complex skin le-
sion patterns. Recent studies have demonstrated the
efficacy of ViTs in skin cancer classification tasks,
achieving high accuracy rates [5]. For example, a
study employing a ViT model on the HAM10000
dataset reported an accuracy of 96.15 % [9].

Explainable AI in Medical Image Classifica-
tion. The integration of explainable Al (XAI) tech-
niques in medical image classification has become
increasingly important to enhance model trans-
parency and trustworthiness. SHapley Additive
exPlanations (SHAP) is one such technique that
provides insights into feature contributions towards
model predictions. In the context of skin lesion
classification, SHAP has been utilised to interpret

model decisions, thereby aiding in the validation
and acceptance of Al systems in clinical settings
[10].

Methods

Model Selection and Study Design. The Vision
Transformer architecture was selected as the base
model, building upon our previous investigation into
integrating FD in [7], where preliminary results in-
dicated potential benefits. In this study, the metho-
dology was improved through more rigorous data
selection and splitting, while hyperparameters were
set based on prior research. We also reduced the
problem to binary classification, leaving only ma-
lignant (melanoma) and benign (nevus) classes. We
compared models that receive random noise as an
additional feature vs. fractal dimension. The aim was
to identify if FD is useful to a DL classifier.

Data. We utilised ISIC 2019 dataset [2]. It is
composed of HAM10000 (ViDIR Group, Depart-
ment of Dermatology, Medical University of Vienna)
[11], BCN20000 (Department of Dermatology,
Hospital Clanic de Barcelona) [12], and MSK Data-
set (anonymous).

The data was reduced to only two classes: mela-
noma and nevus. Class imbalance was addressed
by taking a number of nevi samples equal to the
amount of melanoma samples. All the data was re-
sized to 2244224 pixels. In order to achieve more
robust training, augmentation was applied: random
flipping (horizontal and vertical), random sharp-
ness adjustment, random rotations (0°, 90°, 180°, or
270°), color jitter (brightness, contrast, and satura-
tion varied within [0.9, 1.1]), and random resized
cropping (scale: 0.9, 0.9). Training split represents
the one from the ISIC 2019 Challenge [2]. Test and
validation datasets were taken from ISIC 2019 Test
data in a ratio of 4:1.

Fractal Dimension Calculation. We defined two
approaches for calculating the fractal dimension
(FD) of a lesion.

In the first approach, the FD is calculated from
the curve representing the lesion’s border, for which
we used the box-counting dimension [13]. The le-
sion was preprocessed as follows (results can be seen
on Fig. 1):

1. Hair was removed using the Dull Razor al-
gorithm [14].

2. The image was converted to grayscale.

3. The image was cropped, assuming the le-
sions are centered.

4. The Canny edge detection algorithm [15]
was applied.



42 KPI Science News

2025/ 4

5. To remove small artefacts picked up by
Canny, we used openCV.findContours [16] selected
the largest contour, eroded it, and applied it as a
mask to Canny results.

Fig. 1. Borders of a lesion

The second approach assumes the lesion is a
2D plane. We used two methods to assess the FD
for this lesion representation here: a modified in-
tensity-based dimension presented in [3], and a 2D
version of the Higuchi fractal dimension [17]. Pre-
processing for this approach included only cropping
and grayscaling.

Model Architecture and Training. The ViT vari-
ant vit_b_32 was employed with ImageNet weights.
The models were trained using the categorical
cross-entropy loss function and optimised with the
Adam optimiser, initialised with a learning rate of
le-5 for classification layers and 1e-6 for fine-tuning
pre-trained ViT layers. torch.optim.lr scheduler.
CosineAnnealingLR(eta_min=1e-7) was applied to
mitigate overfitting. Each model was trained for a
maximum of 30 epochs, with early stopping ap-
plied if the validation loss failed to improve for
five consecutive epochs. FD was integrated into the
model by concatenating it as an additional input to
the classifier head. Prior to integration, the FD va-
lues underwent a preprocessing pipeline consisting
of a linear layer (torch.nn.Linear(1, 16)). The final
classifier head was structured as follows: Normali-
sation, Linear, GELU, Dropout, Normalisation,
Linear.

Evaluation Metrics and Statistical Analysis.
Model performance was assessed using accura-
¢y, precision, recall, and Fl1-score. Given that the
dataset, after modifications, was balanced, these

metrics provided a meaningful basis for compari-
son. Performance was evaluated across all 3 datasets
(train, validation and test). To test the significance
of performance differences between the baseline and
FD-enhanced models, McNemar’s test — a paired
chi-square test frequently employed in machine
learning studies — was applied to the predictions on
the test set. Finally, SHAP values were computed to
quantify the contribution of FD to individual model
predictions, providing insight into the actual impact
of FD as an auxiliary feature.

Experiments and results

The experiment results are presented in Table 1.
RN represents a model that received random noise
(our control model), BC FD — box counting dimen-
sion, IFD — intensity-based box counting dimen-
sion and HFD — Higuchi dimension.

Statistical Analysis. To assess whether the per-
formance differences between the baseline model
(without FD) and the FD-enhanced model were
statistically significant, McNemar’s test was applied.
We specifically tested BC FD as it showed the best
test results. Predictions from both models were com-
pared using predictions on the test dataset. A 2x2
contingency table was constructed, recording the
number of samples where both models were correct,
both were incorrect, or where one model outper-
formed the other. McNemar’s test was performed
using the standard y? approximation with continuity
correction applied. A significance level of 0.05 was
used to determine whether the performance diffe-
rences were statistically significant.

McNemar’s test revealed a statistically sig-
nificant difference in the performance of the two
models (> > 3.841, p < 0.05). Specifically, the
FD-enhanced model made significantly different
predictions compared to the baseline model. Given
that the FD-enhanced models also achieved higher
accuracy, Fl-score, recall, and precision, the results
support the positive contribution of the FD feature
to improved classification performance.

SHAP Analysis. SHAP (SHapley Additive exPla-
nations) values were computed using GradientEx-
plainer for all samples in the test set. The plots be-
low summarise the impact of random noise and FD
in predicting malignant classes (Fig. 2).

As expected, SHAP analysis revealed that the
FD feature has a monotonic relationship between
the feature value and its impact on the “Malig-
nant” class prediction. This finding is significant as
it aligns with the clinical hypothesis that malignant
lesions exhibit more complex, irregular boundaries,
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Table 1. Performance comparison of the control model (RN) and FD-enhanced models (BC FD, IFD, HFD) across train,
validation, and test sets

Dataset Metric RN BC FD IFD HFD

Train Precision 0.901988 0.942235 0.923132 0.876098
Train Recall 0.859372 0.828839 0.867172 0.844662
Train Accuracy 0.882995 0.889013 0.897482 0.862603
Train F1-Score 0.880164 0.881907 0.894277 0.860093
Validation Precision 0.771875 0.800000 0.810559 0.795597
Validation Recall 0.953668 0.908367 0.970260 0.958333
Validation Accuracy 0.838095 0.847619 0.868571 0.855238
Validation F1-Score 0.853195 0.850746 0.883249 0.869416
Test Precision 0.772270 0.801292 0.773220 0.768995
Test Recall 0.947719 0.935849 0.958733 0.957020
Test Accuracy 0.833572 0.850262 0.839771 0.835002
Test F1-Score 0.851046 0.863359 0.856041 0.852766

which are captured by a higher fractal dimension.
At the same time, analysis from the control model
trained on a random noise feature demonstrates a
near null impact with SHAP values randomly scat-
tered around zero.

Results of SHAP analysis suggest that the FD
feature provides a genuine and interpretable predic-
tive signal, which the model successfully learned to
exploit, whereas it correctly ignored the irrelevant
control feature.

Discussion

The results of this study demonstrate that in-
corporating FD into a DL pipeline for skin cancer
classification yields consistent improvements across
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key performance metrics, including accuracy, preci-
sion, recall, and Fl-score. The FD-enhanced mo-
dels outperformed the baseline ViT model across all
evaluation datasets (train, validation, and test). These
findings support the initial hypothesis that FD can
serve as a valuable auxiliary feature by capturing the
inherent fractal characteristics present in skin lesion
morphology.

The application of McNemar’s test con-
firmed that the observed performance improve-
ments were statistically significant, reducing the
likelihood that these gains were due to random
variation. Furthermore, SHAP analysis provided
insight into the role of FD within the model’s
decision-making process. SHAP values indicated
that FD had a direct contribution to individual
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Fig. 2. SHAP Dependence plot for FD and Random Noise
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predictions. This effect may promote better model
generalisation.

However, limitations must be acknowledged.
The study focused exclusively on the ISIC 2019data-
set, which, while comprehensive, consists primarily
of dermoscopic images. This reliance does not gua-
rantee generalizability to real-world clinical settings,
where images may be captured by non-dermoscopic
tools. Furthermore, the task was simplified to a bi-
nary classification between melanoma and nevus,
which are often visually distinct. The contribution of
FD may differ in a more complex, multi-class sce-
nario involving other, more similar-looking lesion
types, especially ones in intermediate stages between
benign and malignant.

Regarding the feature itself, the SHAP analy-
sis revealed that though the absolute magnitude of
the FD’s contribution is often subtle, it confirmed a
clear correlation. This suggests its impact could be se-
condary to the primary features extracted by the ViT.
Our approach to calculating 2D FD on a simple crop
instead of a lesion bounding box or segmentation
mask impacted the accuracy of the value. It would
be valuable to investigate the fusion of FD with other
state-of-the-art architectures, such as traditional
CNNs or Hybrid Attention CNN models. It would
potentially depend on whether the received results are
specific to Transformers or a more universal feature.
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B.O. HikiTiH, B.A. Janunos

MOLE/b IMNBOKOIro HABYAHHSA ONS KNACUSIKALIT METAHOMM, MOKPALLEHA 3A LJOMOMOIOKO ®PAKTAIIBHOI
PO3MIPHOCTI

MpobnemaTtuka. MenaHoma — Lie 3nosiKicHe ypaxXeHHs LLKIpU, CXMIbHE 0 arpeCMBHOIO MeETacTadyBaHHs, Lo NPU3BOAUTb 0 Malxke
rapaHTOBaHOroO feTanbHOro Hacnigky, sSKWo Moro He nikysaTtu. Ha npotusary LibOMY, BUSIBIIEHHS HA paHHi cTadii 4O3BoNseE BUAANUTY
NyXIWHy, 3acTocyBaBLUM Ge3neyHy XipypridHy npoueaypy, sika MOXe HaBiTb He 3anuwuTi wpamy. YTiM, JOCTYMHICTb KOMMETEHTHOT
[iarHoCTVKM YacTo obMexeHa Yyepes HecTady MeauyHMX daxisuiB i TexHonorih. Mogeni rmmbokoro HaB4aHHs (H), Taki sk Visual Trans-
former (ViT), npoaemMoHcTpyBany BUCOKY e(peKTUBHICTb, ane AOCMIAHUKM NMOCTINHO NparHyTb MOKPaLMTU pesynbTaTy, BKIHYayM HOBI
o3Hakn. Ockinbkuy LWKipa MoguHn Mae dpakTanonogioHi xapakTepUCTUKK € rinoTesa, Lo METPUKK, SIKi KiNbKICHO OLiHIOTb L0 CKNaaHICTb,
MOXYTb CIyryBaTu LliHHUMUW JOAaTKOBMMU O3HaKamu Ans mogenen MM, Wwo nigeuye TOYHICTb krnacudikadii.

Meta pocnigxkeHHa. My gocnigunu BnnuB iHTerpauii dppaktanbHoi po3mipHocTi (PP) y mogenb rnmmnbokoro HaByaHHsa ViT,
SIKy BUKOPUCTOBYIOTb Ans Kracudikauii MenaHomu. Byno npoBeAeHO MOPIBHAHHA MK MOAEnmto, siki OTpuMyBana BUNAAKOBUWA LUYM,
i MogensmMu, Lo oTpUMyBanu po3paxoBaHi 3HavyeHHs OP.

MeToauka peanisauii. Mogenb ViT BUKOPUCTOBYBanu sik OCHOBY ANl BU3HAYEHHS O3HaK Ans knacudikadii, Hanepes HaBYMBLUM
Ha Habopi aaHux ImageNet. Lilo ocHoBy poHanawToByBanu (fine-tuning) B noegHaHHi i3 knacudikatopom (head), npuaHayeHnm ans
PO3pi3HEHHSI KnaciB MeraHoMu Ta HeByca. Pa3oMm i3 BUyYyeHMMU O3HakaMu KracudikauiiHuin Mogynb OTpuMyBaB 3HadeHHs OP.
loeHTMYHa mopenb oTpumyBana BunNagkoBui WyMm 3amicte ®P. [na niagTBepO)keHHs 3HauyLloCTi HOBOI O3Haku Oyno npoBedeHo
CTaTUCTUYHE TecTyBaHHA Ta aHanis snnusy ®P.

Pe3ynbTatn pocnigxkeHHs. IHTerpauis ®P y ViT nokasana nomiTHe MokpalleHHs TecToBux MeTpuk. AHania SHAP ninTeepams
3MICTOBHICTb HOBOI 03Haku. TecT MakHemapa niaTeBepamBs, WO pi3HMLSA Y NporHo3ax MoAeni 6yna cTaTUCTUYHO 3HaYyLLOH.

BucHoBku. Pesynstatu csigyatb, wo ®P mMoxe cnyryBaTu LiHHOK [OAAaTKOBOK O3HaKow Ans mogenew H, a iHTerpauis
GiomapkepiB, Takunx sik ®P, 3abe3neyvye ocHoBY Ans GinbL HaAiMHOT knacudikauii MenaHomu.

KntouyoBi cnoBa: rmuboke HaB4YaHHS; BidyarnbHuUiA TpaHcopmep; MenaHoma; dpakTanbHa PO3MIpHICTb; MOSICHIOBANbHUIA LUTYYHWUIA
IHTENEeKT; paK LKipw.

PexomennoBana Pamoro Hanpiiinia no pemaxiii
HaBuanbHO-HAyKOBOTO iHCTUTYTY 25 xoBTH: 2025 poky
MPUKIJIATHOTO CUCTEMHOTO aHai3y
KIII im. Iropst CikopcbKoro
IIpuitnsara go myOGikarii
19 rpyans 2025 poky
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SYSTEM APPROACH TO MULTICRITERIA EVALUATION OF SESSION-BASED
AND SEQUENTIAL RECOMMENDATION SYSTEMS

Background. Recommendation systems have become indispensable components of modern digital platforms,
enabling personalised content delivery across diverse domains. Traditional collaborative filtering and content-based
approaches often fail to capture temporal dynamics and contextual dependencies inherent in user behaviour patterns.
Sequential recommendation systems (SRSs) and session-based recommendation systems (SBRSs) have emerged as
new paradigms to capture users’ short-term but dynamic preferences for enabling more timely and accurate recom-
mendations.

Objective. The paper aims to propose a system approach for multicriteria evaluation of various SRS and SBRS
models — a unified framework for understanding these models, selecting the best recommendation model, and
guiding future research directions in temporal-aware recommendation systems, as well as to provide a systematic
overview and comprehensive analysis of session-based and sequential recommendation systems, to examine their
theoretical foundations, evolution, empirical performance characteristics, and practical deployment considerations.
Methods. A comprehensive analysis of foundational approaches from Markov chain models to modern neural archi-
tectures, including attention-based methods, graph neural networks, and state-space models, is conducted. The ap-
proaches are systematically categorised based on architectural principles, temporal modelling strategies, and knowledge
integration methods. The Analytic Hierarchy Process is applied for the calculation of relative importance of benefits,
costs, opportunities and risks in a problem of session-based and sequential recommendation systems synthesis. An ex-
perimental study of various SRS and SBRS models was performed on benchmark datasets.

Results. Empirical studies on the temporal benchmark dataset show that combining SASRec and ReCODE improves
the Recall@K metric by 9 % over the baseline SASRec model, and combining GRU4Rec with ReCODE improves
the metric by 17 % over the baseline GRU4Rec. The SASRec model, which adapts transformer architectures to the
sequential recommendation problem, achieved the highest baseline performance in terms of Recall@K and NDC-
G@K criteria on the benchmark dataset compared to the other examined models, demonstrating the effectiveness
of self-attention mechanisms for sequence modelling. ReCODE is a model-independent neural ordinary differential
equation framework for recommender systems and an effective framework for studying consumer demand dynamics,
has improved the metrics of existing baseline approaches, and has acceptable computational complexity for practical
recommender system deployment scenarios.

Conclusions. Session-based and sequential recommendation systems have evolved through several paradigmatic
shifts with significant scientific achievements, including establishment of session-based recommendation model
as distinct from traditional collaborative filtering, development of attention mechanisms for sequence modelling, and
introduction of continuous-time formulations. Future research directions include unified architectures, scalability solu-
tions, improved evaluation methodologies, and extensions to multi-stakeholder scenarios.

Keywords: sequential recommendation; session-based recommendation; temporal modelling; attention mechanisms;
graph neural networks; state-space models; deep learning; system analysis; decision making.
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Introduction

Recommendation systems have revolutionised
digital content consumption by enabling perso-
nalised experiences across e-commerce platforms,
streaming services, social media, and news aggre-
gators [1—3]. These systems address the fundamen-
tal challenge of information overload by filtering
vast content catalogs to present users with relevant
items tailored to their preferences and contextual
needs.

Traditional recommendation approaches, pri-
marily collaborative filtering and content-based
methods, treat user-item interactions as static
snapshots, failing to account for the temporal dy-
namics that characterise real-world user behaviour
[2]. However, user preferences evolve continuously
over time, influenced by seasonal patterns, tren-
ding topics, life events and changing interests.
Static models cannot capture preference drift, limi-
ting their ability to provide timely and relevant rec-
ommendations [4, 5].

User interactions demonstrate complex se-
quential patterns where the order, timing and con-
text of actions significantly influence future pref-
erences. For instance, purchasing a camera may
increase the likelihood of buying related accesso-
ries, but this dependency weakens over time [6, 7].

Also, many modern applications operate with
anonymous users or scenarios where long-term user
profiles are unavailable due to privacy constraints,
cookie limitations or new user cold-start problems.
These situations require systems to make accurate
recommendations based solely on current session
interactions without historical context [4—7].

These challenges have motivated the develop-
ment of sequential recommendation systems and
session-based recommendation systems, represen-
ting a paradigmatic shift toward temporal-aware
personalisation that adapts to dynamic user contexts
and behavioural patterns [8, 9].

The evolution of sequential recommendation
systems has been marked by several technological
breakthroughs that have progressively addressed the
limitations of static approaches:

1. Foundational period (2001—2014). Early
work established theoretical foundations through
Markov chain models [9, 10] and matrix factorisa-
tion extensions [4, 6]. The factorised personalised
Markov chain [6] represented a crucial advance-
ment by combining collaborative filtering with
Markovian temporal modelling.

2. Deep learning emergence (2015—2017).
The introduction of deep learning marked a trans-

formative period. GRU4Rec [11] pioneered neu-
ral session-based recommendation, demonstrating
superior performance over traditional methods.

3. Attention era (2018—2020). Transformer
architectures revolutionised sequential recommen-
dation through SASRec [12], which adapted self-at-
tention for next-item prediction, and BERT4Rec
[13], which employed bidirectional attention with
masked language modelling training.

4. Post-attention period (2019-present). Graph
neural networks enhanced recommendation through
SR-GNN [14], which modelled sessions as direc-
ted graphs, and knowledge-aware approaches like
KGAT [15] that integrated external knowledge
graphs. The recent advances in modelling ordinary
differential equations as hidden layers functions
within deep neural networks enabled the sensitivity
of these models to irregularly-sampled data, which
became suitable for estimating the consumption
trends of goods [16, 17].

However, comprehensive empirical studies [18]
have revealed significant methodological concerns
and demonstrated that many sophisticated neural
approaches fail to consistently outperform simple
baselines when evaluated under rigorous conditions
with standardised datasets and fair comparison pro-
tocols.

Problem Statement

The primary objective is to establish a compre-
hensive understanding of session-based and sequen-
tial recommendation systems through a systematic
overview of their theoretical foundations, architec-
tural innovations, empirical performance character-
istics, and practical deployment considerations.

The system analysis aims to provide a unified
conceptual framework that enables researchers and
practitioners to navigate the complex landscape of
temporal-aware recommendation approaches and
make informed decisions about methodology selec-
tion and future research directions.

A system approach

We propose a system approach (Fig. 1) aimed
at the evaluation of scenarios for practical deploy-
ment of session-based and sequential recommenda-
tion systems using the following decision criteria:

1. Performance metrics such as Recall@K —
the proportion of model outcomes marked as rele-
vant in the set of ground-truth relevant items; Pre-
cision@K — the proportion of relevant elements
(items) for user in the set of items, generated by the
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model; MAP@K, NDCG@K, MRR@K, which are
aimed at assessing the quality of recommendation
system to rank items based on their relevance for
user.

2. Computational efficiency criteria and met-
rics, which include:

» model training time;

- computational scalability;

- average time per K inferences (ATI@K) —
average computation time for generating top-K item
recommendations across user session batches;

e memory usage — peak memory consumption
during model inference to assess scalability for pro-
duction deployment scenarios.

The following opportunities and risks are also
taken into account in the process of evaluation
of scenarios for the practical deployment of ses-
sion-based and sequential recommendation systems:

 temporal modelling;

- long-range dependencies;

» knowledge integration complexity;

- discovery of user behavioural patterns (col-
laborative signals);

- usability of the model that expresses the com-
plexity of the model for the developer, reflecting the
number of “change axes” of the algorithm;

- theoretical foundations.

These decision criteria, metrics, opportunities and
risks enable comprehensive evaluation of both rec-
ommendation quality and computational efficiency,

crucial factors for practical deployment of sequential
recommendation systems in large-scale e-commerce
environments.

Scenarios could, for example, be formed based
on hybrid technologies: recurrent neural networks
or attention-based models equipped with neural or-
dinary differential equations framework and other.

Let us consider traditional and modern models
and methods for session-based and sequential rec-
ommendation systems synthesis.

Markov chain models for sequential recommen-
dations

The theoretical foundations of sequential re-
commendation were established through probabilis-
tic modelling using Markov chains, which represent
user behaviour as stochastic processes over discrete
state spaces [9, 10].

The basic first-order Markov assumption posits
that the probability of the next interaction depends
solely on the current state:

P (5081520008 ) = P51 15,)

While conceptually appealing for modelling se-
quential dependencies, these models suffered from se-
vere data sparsity issues due to the exponential growth
of transition parameters with vocabulary size, limiting
their practical applicability to large-scale systems.

FOCUS
Decision making about synthesis of session-based

and sequential recommendations

T

Performance Computational

Opportunities

Markov Recurrent Aftention-
Chain Neural based
Models Networks Models

S;?ﬁ,—: State-Space and
Continuous-Time Models
Networks

-

Fig. 1. Scheme of a system approach
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The factorized personalized Markov chain ad-
dressed sparsity through low-rank matrix factori-
sation, decomposing the three-way user-item-item
tensor into personalised transition matrices [6]:

fcm»j =<uu +u[,vj>+<li,rj>,
where u , u, represent user and current item factors,
v, represents the target item factor, and /, r, encom-
pass model item-to-item transitions.

Recurrent neural networks for sequential recom-
mendations

The introduction of recurrent neural networks
marked a paradigmatic shift toward end-to-end lear-
ning of sequential patterns without explicit state
space assumptions.

GRU4Rec model pioneered neural session-
based recommendation through gated recurrent units,
demonstrating superior performance over traditional
collaborative filtering methods [11]:

= G(Vert +Urht—1);
z,=c(W.x,+U.h_,);
h, = tanh (W,x, + U, (1, ®h,_)));

h=(1-z,)®h_ +z,®h,

Attention-based models for sequential and
session-based recommendations

The transformer revolution in natural language
processing motivated its adaptation to sequential
recommendation systems through self-attention
mechanisms that enable parallel computation and
direct modelling of arbitrary-length dependencies.

SASRec model adapted transformer architec-
tures for sequential recommendation through uni-
directional self-attention with causal masking [12]:

Attention (Q, K,V ) =

OK'
\/dk
where Q, K, Vare linear projections of input embed-
dings, and M e {O,l}"xn is a lower triangular mask
also known as casual mask preventing future infor-
mation leakage.
BERT4Rec model extended this approach

through bidirectional attention with masked lan-
guage modelling training [13]:

= softmax

QM |V,

*
Lyy = _z IOgP(Si ’Si),
ieM
where M denotes masked positions and s; represents
the sequence with position / masked.

Recent developments address attention mecha-
nism limitations through computational efficiency
improvements and temporal awareness enhance-
ments.

LightSANs reduces computational require-
ments through simplified attention mechanisms,
while TiSASRec incorporates temporal information
through time-aware positional encodings:

Attention . (Q,K,V,T) =
O(K+T;)" (

dy

= softmax V+T,),

where T, T, encode temporal intervals between in-
teractions.

Graph neural network models

Graph neural networks (GNNs) provide a natu-
ral framework for modelling structural relationships
within user sessions and between items in recom-
mendation scenarios.

SR-GNN [14] represents sessions as directed
graphs where nodes correspond to items and edges
capture transition relationships. The gated graph neu-
ral network updates node representations through
iterative message passing:

T
a = A, W, W
Z‘(}Z) = G(Wza‘(j) + Uzhy_l));

1O —(1-20) @K 120 ® 7Y,

where A is the adjacency matrix encoding session
graph structure.

Knowledge graph integration enhances recom-
mendation through external structured information
incorporation.

KGAT model employs attention-based infor-
mation propagation over collaborative knowledge
graphs [15]:

el*) = LeakyReLU x

x| wd Z n(h,r,t)m,(,li, ,
(h,rt)eN, .
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where n(h, r, 1) represents attention weights for rela-
tion-specific message aggregation.

State-space and continuous-time models

Neural ordinary differential equations (Neural
ODEs) formulate hidden state evolution as a conti-
nuous-time dynamical system rather than a discrete
layer-wise transformation [16]:

dh(t) a0 _ p (h(e.0):

Mm=hm»+ﬂﬁmwaom,

where f; is a neural network parameterisation. So-
lutions are computed with numerical ODE sol-
vers; gradients are obtained via the adjoint method.
Core advantages for recommendation systems
based on Neural ODEs include natural handling of
irregular time intervals between interactions, con-
tinuous preference evolution, principled temporal
modelling, and interpretability through explicit dy-
namics.

Among the applications of Neural ODEs for
recommendation systems, ReCODE model stands
out and proves to be an efficient framework for stu-
dying users’ consumption dynamics [17]. ReCODE
is a model-agnostic framework that decomposes
recommendation into:

Score(u, i, ) = a x
x Static (u, i) + (1 — o) - Dynamic (, i, 1),

where the dynamic component is a Neural ODE
capturing repeat-intent over time.

The initial state A(%,) is encoded from user-item
interaction history; the ODE

@@—Awmrd

evolves the latent state given context c¢; a decod-
er yields the repeat probability p(u, i, 1). ReCODE
model integrates with matrix factorisation, neu-
ral collaborative filtering, GRU4Rec and SASRec
models as the static branch.

Recent work applies Neural ODEs to recom-
mendation by modelling repeat consumption and
time-aware intensities with continuous dynamics.

A decision support tool in a problem of making
session-based and sequential recommendations

The Analytic Hierarchy Process (AHP) is a de-
cision-making method based on a system approach
of structuring a complex problem in the form of a
hierarchy creating pairwise comparison matrices of
decision criteria, checking and increasing the con-
sistency of judgments. AHP includes calculation
of local priorities (weights), aggregation of priori-
ties, and sensitive analysis of results. AHP com-
bines mathematical and psychological principles for
multi-criteria decision-making involving both quan-
titative and qualitative factors.

We propose to apply AHP for calculation of
relative importance of benefits, costs, opportunities
and risks (hereinafter decision criteria) in a problem
of evaluation of scenarios for practical deployment
of session-based and sequential recommendation sys-
tems.

Hierarchy of decision criteria is presented on
Fig. 2. Let us consider the criteria in more detail.
Recommendation system quality is assessed by using
a special class of metrics — ranking quality metrics.
Let R@K denote the top-K recommendations for
user/session u; G, is the set or graded vector of rele-
vant items.

1. Recall@K or HitRatio@K metric reflects the
coverage of relevant items found in the first K posi-
tions (not rank-aware) and is defined as follows:

@K NG, |
G, |

Recall@K = |[1]|Z|RM

The metric is good for measuring how many of
the truly relevant items are retrieved when G, is known.

2. Precision@K metric denotes how many of
the top-K are relevant:

Ru@KmG |
min(K,|G,|)

Precision@K = g Z |

3. MRR@K (mean reciprocal rank) metric
emphasizes placing the first relevant item as high as
possible and is defined as:

MRR@K = % x

Ul

<y !

y min(r <K |item at rank r € Gu)'
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Fig. 2. Hierarchy of the criteria in a problem of evaluation of scenarios

for practical deployment of session-based and sequential recommendation models

4. MAP@K (mean average precision) averages
precision at every relevant hit, rewarding both fin-
ding many relevant items and ranking them early:

MAP@K = ﬁZAP@K(u),

where

I
min (K[ G, |)

X z Precision@r(u)- l(r <K |itematrank r € G, )
r<K

5. NDCG@K (normalised discounted cumula-
tive gain) is a rank-aware metric, it penalties putting
elements lower or higher their true relevance score
(rating):

AP@K =

1 < DCG@K (u)
NDCC@K () = U Z IDCG@K (1)’
Eur

where DCG@K (u)= ) ———

@K () rgz;glogz(rﬂ)
vance at rank r, and IDCG is the maximum achiev-
able DCG for u.

Pairwise comparisons between decision crite-
ria and sub-criteria are usually performed by an
expert (Fig. 3) in a special fundamental scale. Prio-
rities (weights) of decision criteria and sub-crite-

; g,, is graded rele-

ria are than calculated based on pairwise compari
son matrices using the eigenvector method and other
[19]. In a case of strong inconsistency of expert
judgements, the most inconsistent elements of pair-
wise comparison matrices are found automatically
[20] without participation of an expert (Fig. 4).

Edit PCM for FOCUS
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Fig. 3. Pairwise comparisons between criteria (left) and resulting
local priorities (right)

Experimental evaluation and benchmarking

analysis

Sequential recommendation systems, presented
in this research, were evaluated on Million Musical
Tweets Dataset (MMTD) — an established bench-
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Fig. 4. The most inconsistent elements of a pairwise comparison matrix (left) and suggested automatic adjustment (right)

mark dataset. Million Musical Tweets Dataset [21] is
a music listening history dataset with high-frequency
interactions suitable for evaluating fine-grained tem-
poral modelling approaches.

Results of evaluation of KGAT, GRU4Rec
and SASRec models, as well as the proposed
GRU4Rec&ReCODE and SASRec&ReCODE, equip-
ped with ReCODE framework are displayed in Table 1
for K= 50.

The experimental results demonstrate that
SASRec model achieves the strongest baseline per-
formance, showing the effectiveness of self-attention
mechanisms for sequential modelling, while Neu-
ral ODE-based ReCODE framework demonstrates
consistent improvements when integrated with se-
quential baseline model. However, the impact of
knowledge graph modelling on NDCG metric sug-
gests the hypothesis that models equipped with this
data structure learns to rank relevant models more
efficiently.

The overall evidence supports the value of
Neural ODE-based continuous-time modelling for
sequential recommendation, with ReCODE provi-
ding meaningful enhancements to established base-
line approaches while maintaining computational
feasibility for practical deployment scenarios.

Table 1. Models’ evaluation results on MMTD dataset

Conclusions

A comprehensive system analysis of ses-
sion-based and sequential recommendation systems
has been provided, examining their evolution from
foundational probabilistic approaches to modern neu-
ral architectures, with particular emphasis on emer-
ging Neural ODE-based continuous-time modelling
approaches. Our analysis reveals several fundamen-
tal achievements in sequential recommendation
research. The field has progressed through distinct
paradigmatic phases from Markov chain foundations
establishing probabilistic frameworks, through neural
recurrent approaches, which demonstrate deep lear-
ning effectiveness, to attention-based methods, which
achieve state-of-the-art performance, and finally to
emerging continuous-time formulations, which offer
both theoretical rigor and computational efficiency.

The experimental evidence demonstrates that
Neural Ordinary Differential Equations provide prin-
cipled continuous-time modelling capabilities for se-
quential recommendation. The ReCODE framework
achieves consistent performance improvements with
respect to Recall@K metric across the considered base
models GRU4Rec and SASRec, and validates the
model-agnostic effectiveness of continuous-time ap-

proaches for capturing temporal dyna-
mics in user behaviour.

The empirical analysis of bench-

Model Metric mark datasets LastFM and Nowplay-
Recall@eK NDCG@K ing-RS in terms of evaluation metrics
KGAT 0.1489 0.1006 reveals critical methodological conside-
rations. The rich contextual features
GRU4Rec 0.1974 0.0841 and temporal precision of datasets like
SASRec 0.2274 0.1043 Nowplaying—RS.prove pe}rt%cularly Valu_—
able for evaluating sophisticated conti-
Proposed GRU4Rec&ReCODE 0.2307 0.0926 nuous-time models, while standardized
evaluation protocols remain essential for

Proposed SASRec&ReCODE 0.2486 0.0994 reliable comparison across approaches.
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Neural ODE-based approaches excel in sce-
narios with irregular temporal intervals and signif-
icant repeat consumption patterns, making them
particularly suitable for music streaming, e-com-
merce, and content platforms where temporal
dynamics significantly influence user preferenc-

es. While Neural ODEs introduce computational
overhead through ODE solvers and adjoint gra-
dient computation, the consistent performance
gains and linear complexity advantages for long
sequences justify their deployment in scena-
rios requiring sophisticated temporal modelling.
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CWUCTEMHWM MIAXIA OO BAFATOKPUTEPIANBHOMO OLIHIOBAHHSA CEAHCOBWX | MOCMILOBHMX PEKOMEHOA-
LIMHWNX CUCTEM

MpobnemaTtuka. PekomeHaauinHi cuctemy ctanu He3aMiHHUMKM KOMMOHEHTaMK CyyacHUX LmdpoBux nnatdopm, 3abesnevyioum
nepcoHanisaiito KOHTeHTY B pi3HMX cdepax. TpaauuinHa konabopaTvBHa inbTpalis Ta MigxoauM Ha OCHOBI BMICTY 4acTo He B 3MO3i
OXOMWUTU YacoBY AMHAMIKY Ta KOHTEKCTHI 3aneXHOCTi BnacTuBi MoAensiM NoBediHKM KopycTyBadiB. Cuctemu nocnigoBHUX pekoMeHaaLi
(sequential recommendation systems, SRSs) i cuctemy pekomeHgaLin Ha OCHOBI ceaHciB (session-based recommendation systems,
SBRSs) 3'aBunucsa sik HOBi napagurMu Ansi OXOMNEHHs1 KOPOTKOCTPOKOBMX AMHAMIYHMX yrnofobaHb KopucTyBadiB Ans HagaHHs BinbLu
CBOEYACHUX | TOYHWX pekoMeHaaLin.

MeTta pocnigxeHHs. 3anponoHyBaT CUCTEMHWI Niaxia A0 GaraTokpuTepianbHOro ouiHioBaHHS pisHux Mogenen SRS i SBRS —
YHichikoBaHy CTPYKTYpY AN PO3yMiHHA LMX MoAenew, BUGopy HalKpalloi Mofeni Ta CnpsiMyBaHHS ManbyTHIX HanpsiMiB AOCnigKeHb
y cucTeMax pekomeHAaLil 3 ypaxyBaHHAM Yacy. BukoHaTu cucteMaTuyHmin ornsg i BcebidHuiA aHania ceaHcoBMX i MOCMIAOBHUX CUCTEM
pekoMeHAaLi, iX TEOPeTUYHUX OCHOB, EBOJIOLLT, EMNIPUYHNX XapaKTEPUCTUK NPOAYKTUBHOCTI i acneKTiB MPaKkTUYHOrO PO3ropTaHHs.

MeToauka peanisauii. [MpoaHanizoBaHo cyHaameHTanbHi nigxoan Big mopenen naHutoris MapkoBa A0 Cy4YacHWX HEWPOHHMX
apxiTeKTyp, BKIHOYA4M METOAM Ha OCHOBI yBaru, rpadoBi HEMPOHHI Mepexi i Mogeni npocTopy cTaHiB. CucTeMaTUyYHO KnacudikoBaHo
niaXoAu, FPYHTYIOUMCh Ha apXiTEKTYPHUX NPUHLMMAX, CTpaTeriax YacoBOro MoAeNtoBaHHsA Ta MeTofax iHTerpadii 3HaHb. MeToa aHanisy
iepapxiii 3acTocoBaHO A5t Po3paxyHKy BifHOCHOI BaXKNMBOCTI 4OXOAiB, BUTPAT, MOXIMBOCTEN | PU3UKIB y 3a4adi CUHTEe3y CeaHCOBUX
i nocnigoBHMX cucteM pekomeHaauin. MpoBedeHO ekcnepuMeHTanbHe AOCHiMKeHHA pisHnx Moaenen SRS i SBRS Ha KOHTpOnbHMX
Habopax aaHux.

Pesynbtatn pocnigkeHHA. EMnipuvuHi - gocnimkeHHs Ha eTanoHHOMY AN 4YacoBOro MopferntoBaHHA Habopi  AaHux
nokasanu, wo noeaHaHHa SASRec Ta ReCODE nokpaiwuno 3HaveHHs meTpukn Recall@K Ha 9 % nopiBHsHO 3 6a3oBoto Moaenno
SASRec, a noegHaHHa GRU4Rec 3 ReCODE nokpaiuno uto MeTpuky Ha 17 % nopiBHsHO 3 6a3zoBoo GRU4Rec. Mogenb SASRec,
sika aganTye apXxiTekTypy TpaHcdopmepa A0 3afadi HajaHHs NocnidoBHUX pekoMeHAauiin, Jocsrna HanBuLwoi 6a3oBoi NPOAYKTUBHOCTI
3a kputepismm Recall@K i NDCG@K Ha etanoHHoMy Habopi AaHUX MOPIBHAHO 3 iHWMMUW PO3MMSHYTUMWU MOAENSIMU, AEMOHCTPYHYM
edeKTUBHICTb MexaHi3MiB camoyBaru Ans MoferntoBaHHsA nocnifgoBHocTen. HesanexHa Big mogeni ctpyktypa ReCODE HepoHHMX
3BUYANHUX AndepeHLianbHUX piBHAHb ANS peKkoMeHAauinHNX cMcTeM — epeKTMBHA OCHOBA A1 BUBYEHHS AMHAMIKM CMOXMBYOIO MOMNUTY,
nokpaLyuna MeTpuK1 HasiBHVX 6a30BKX NIAXOAIB i Mae NPUAHATHY 0BYMCHOBanbHY CKNaAHICTb ANs NPakTUYHUX CLEHapiiB po3ropTaHHs
peKkoMeHAauiNnHUX CUCTEM.

BucHoBkK. PekoMeHgaLiiHi cMcTeMyn Ha OCHOBI CeaHCiB i MOCMiAOBHOCTEN €BOMIOLIOHYBann 4yepes 3MiHy Kinbkox napagurm
i3 3HAYHUMM HaAYKOBUMU [OCATHEHHAMMW, BKIOYAOYW CTAHOBMEHHS PEeKOMeHAauiMHMX MOoAernen Ha OCHOBI CeaHCiB BiAMIHHMX Bif
TpaauuiiHoi KonabopaTuBHOI inbTpaLii, po3pobky MexaHi3MiB yBaru Ans MoAentoBaHHS MOCMiAOBHOCTEN i BMpPOBa[KeHHS mogenen
HenepepBHoro Yacy. ManbyTHi HanpsMK JocnigXeHb BKMHOYaKTh YHi(iKOBaHi apXiTeKTypu, pilleHHs Ans macwTabyBaHHS, BOOCKOHANEHI
METOA0MOrii OLHIOBaHHS Ta PO3LLUMPEHHS ANS cLeHapiiB 3 6aratbMa 3aLikaBleHVMU CTOPOHaMMU.

Knio4yoBi cnoBa: nocnigoBHa pekomeHAalisl; ceaHCcoBa peKOMeHAallisl; YacoBe MOLENOBaHHSA; MexaHiamMu ysaru; rpadosi
HENPOHHI MepeXxi; MOAENi NPOCTOPY CTaHIB; MUOOKe HaBYaHHS; CUCTEMHUIA aHani3; NPUAHSTTS pilLeHb.

PexomennoBana Panoro Haniiinuia no penaxitii
HaByaibHO-HAayKOBOTO iHCTUTYTY 21 xoBTHs 2025 poky
MPUKJIATHOTO CUCTEMHOTO aHali3y
KIII im. Iropst Cikopcbkoro
IIpuitasita no myOGikarii
15 rpynHs 2025 poky
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ARCHITECTURE OF HYBRID CNN-TRANSFORMER WITH MASKED TIME
SERIES AUTO-CODING FOR BEHAVIOURAL BIOMETRICS ON MOBILE DEVICES

Background. Continuous behavioural authentication (keystroke dynamics, touch/swipe, motion sensors) verifies identity
without extra actions. However, models degrade under device, session and activity shifts, are sensitive to noise and often
require significant labelling. As passwordless logins spread, demand rises for post-login risk control and for models that
are robust, compute-efficient and stable in real-world conditions.

Objective. The paper aims to develop and empirically study a compact CNN-Transformer hybrid with lightweight
self-supervised masked time-series autoencoding (MAE-style) for mobile behavioural biometrics on the HMOG and
WISDM datasets.

Methods. A 1D-CNN front end extracts local cues from smartphone motion signals, while a Transformer encoder
captures longer-range dependencies. We use masked reconstruction on unlabelled HMOG sessions for self-supervised
pretraining under a limited computational budget and then fine-tune the same hybrid architecture for user identifica-
tion. We evaluate three hybrid variants on HMOG (trained from scratch, with masked pretraining, and with masked
pretraining plus CORAL domain adaptation) and three models on WISDM (a Transformer baseline, a hybrid trained
from scratch and a hybrid initialised from the HMOG-pretrained weights). Performance is measured using user-level
mean and median Equal Error Rate (EER) and AUC at the individual user level.

Results. On HMOG, the hybrid model trained from scratch achieves the best user-level metrics (EER 21.51 % mean,
18.63 % median; AUC 0.854 mean, 0.905 median), while the lightweight MAE and CORAL variants do not yet surpass
this baseline. On WISDM, the hybrid model substantially outperforms a pure Transformer baseline (EER 9.41 % vs
51.25 % mean; AUC 0.902 vs 0.488 mean), and cross-dataset initialisation from the HMOG MAE-pretrained weights
provides an additional improvement (EER 8.42 % mean, 2.07 % median; AUC 0.907 mean, 0.959 median).
Conclusions. The results indicate that a compact CNN-Transformer hybrid is effective for sensor-based mobile be-
havioural biometrics and that even lightweight masked pretraining can be helpful for cross-dataset transfer. At the same
time, the benefits of MAE and CORAL on HMOG depend strongly on the pretraining budget and masking configura-
tion, suggesting that further tuning is needed to fully exploit self-supervised pretraining in this setting.

Keywords: behavioural biometrics; continuous authentication; smartphone sensors; CNN-Transformer hybrid; masked
autoencoding; self-supervised pretraining; domain adaptation.

Introduction

The widespread use of smartphones and wear-
ables has turned them into primary access points
for services, including systems that explicitly explore
behavioural biometrics on everyday activities [1] and
continuous sensing on smartphones [2, 3], which in
turn creates stricter requirements for the underlying
information security mechanisms. Traditional one-
shot authentication methods such as passwords, PIN
codes and fingerprint scans verify the user only at

login time. Once a device is unlocked, anyone who
physically gains access to it can continue to work
under the legitimate user’s identity. This is parti-
cularly critical when smartphones are used to access
financial services, corporate resources and personal
communications, as demonstrated both in general-
purpose smartphone biometrics [1, 2, 3] and in our
earlier work on continuous authentication for secu-
rity-critical services [4].

Continuous behavioural authentication offers
an alternative paradigm: the user’s identity is verified
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in the background throughout device usage, based on
behavioural signals [1, 2, 3]. These signals include
keystroke dynamics on the virtual keyboard, which
have been extensively reviewed for both fixed-text
and free-text scenarios [8, 9], deep keystroke models
on desktop and mobile platforms [10, 11], as well
as touch/swipe patterns and inertial sensor data such
as accelerometer and gyroscope signals that under-
pin smartphone and smartwatch biometrics [1, 2, 3].
Together, they form a behavioural “fingerprint” that
can be used to distinguish one user from others with-
out requiring explicit re-authentication. This class of
methods is closely related to behavioural biometrics
and continuous authentication frameworks used for
post-login risk control in high-stakes applications
[1, 4].

However, building robust behavioural biomet-
ric models is challenging. Unlike static biometrics,
behavioural patterns are highly context-dependent.
They vary with posture (sitting, standing, walking),
activity, device model and UI layout, and can also
drift over time. Sensor data is noisy and often con-
tains missing values. Changes in hardware, operating
system version or user habits can cause domain shifts
that degrade the performance of models trained on
earlier data. Collecting large labelled datasets per
user is expensive and often impractical, especially at
scale, a limitation repeatedly highlighted in smart-
phone and sensor-based continuous authentication
studies [1, 2, 3] and confirmed in our own experi-
ments on motion-based verification and wearable
sensing [4].

Recent advances in deep learning, particularly
convolutional and recurrent architectures in conti-
nuous authentication [4, 6] and Transformer-based
models for keystroke and time-series data [10, 11,
13, 14], have significantly improved the state of the
art in signal and sequence modelling. CNNs are
effective at capturing local patterns and invarian-
ces, while Transformers use self-attention to model
long-range dependencies. In parallel, self-supervised
learning methods such as masked autoencoders
(MAE) have demonstrated that useful representa-
tions can be learned from large unlabelled datasets
by reconstructing masked parts of the input [13, 14].

Despite these advances, many mobile be-
havioural biometric systems still rely on purely con-
volutional or recurrent architectures [1, 2, 11] or
on traditional keystroke pipelines surveyed in [8, 9],
are trained from scratch on relatively small labelled
datasets and only partially address domain shifts be-
tween sessions and conditions. There is still a need
for models that can exploit unlabelled behavioural
data, maintain robustness under cross-session and

cross-condition scenarios and remain efficient
enough for deployment on mobile devices.

This work addresses these challenges by ex-
ploring a hybrid CNN-Transformer architecture
with masked time-series autoencoding for mobile
behavioural biometrics. The proposed model targets
continuous authentication scenarios, where deci-
sions about user identity must be made based on
short sliding windows of behavioural data, similar
to the window-based protocols used in HMOG,
WISDM and related continuous authentication work
[2, 3, 12]. The architecture is designed to leverage
unlabelled sessions for lightweight self-supervised
pretraining and to support efficient inference on
mobile devices while remaining robust to domain
shifts, building on ideas from prior deep continuous
authentication systems [4, 6], Transformer-based
keystroke and time-series models [10, 11, 14] and
masked autoencoding for temporal data [13].

Problem Statement

Let U= {u_1, ..., u K} be a set of users. For
each user u_k, we have a collection of interaction
sessions recorded from a smartphone. Each session
consists of one or more time-series channels derived
from sensors (e.g., accelerometer, gyroscope) and/
or interaction events (such as touch coordinates).
A session can be represented as a sequence x"(i) =
= {x_r"(i)}_t, where x_t"(i) € R"C, is the feature vec-
tor at time ¢ and C is the number of channels.

For continuous authentication, the data stream
is segmented into overlapping windows of fixed
length 7, producing fragments X j € R*(7xC(),
each labelled with the corresponding user ID y j in
{1, ..., K}. The primary task considered in this work
is user identification: given a window X, predict the
user label y. Formally, we seek a model £ 0: R*(TxC)
to {1, ..., K} that maps each window to a distribution
over user classes and minimises identification and
verification errors under realistic cross-session and
cross-condition settings.

In this work, we focus on Equal Error Rate
(EER) and the area under the ROC curve (AUC),
computed at the user level, as the primary evaluation
metrics for continuous authentication. For each user,
we compute individual EER and AUC values and
then aggregate them across users by taking the mean
and median. Beyond these verification metrics, the
model should also satisfy practical constraints such
as robustness to domain shifts and efficient infe-
rence on resource-constrained mobile hardware,
and remain compatible with model compression and
quantisation in future deployments.
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Presentation of the Main Research Results

1. Related Work

Research on behavioural biometrics for mo-
bile devices can be broadly divided into three di-
rections: keystroke dynamics on virtual keyboards,
sensor-based activity and movement analysis, and
multimodal fusion of interaction and sensor signals
[1, 2, 3].

Keystroke-based authentication methods ana-
lyse timing information associated with keypress
events: inter-keystroke intervals, key hold times and
editing patterns. Early works focused on fixed-text
scenarios, whereas more recent approaches consider
free-text typing where the user enters arbitrary con-
tent [8, 9]. It has been shown that even in free-text
conditions, typing patterns remain sufficiently stable
to support user identification and verification when
combined with appropriate sequence models, inclu-
ding modern deep learning architectures [9, 10, 11].

Insensor-based continuousauthentication, data-
sets such as HMOG and WISDM have become
standard benchmarks. HMOG provides inertial sen-
sor readings, device orientation and touch events
from smartphones in sitting and walking scenarios,
enabling evaluation under motion-induced variabi-
lity and fine-grained hand movement patterns [2].
WISDM includes accelerometer and gyroscope time
series from smartphones and smartwatches collected
during daily activities and has been used both for ac-
tivity recognition [1] and for biometric identification
when users are treated as classes, including in our
earlier work on motion-based verification [4]. Deep
learning models for these datasets range from con-
volutional and recurrent networks to architectures
specifically designed for continuous smartphone
authentication [1, 3], with our previous studies ex-
ploring autoencoder-based and hybrid transformer
architectures for user verification on motion and
wearable signals [4, 6].

Transformer-based models have recently been
proposed in mobile behavioural biometrics to ope-
rate directly on sequences of interaction and sensor
events [10, 11, 14]. On large-scale typing datasets,
Transformer architectures have been shown to out-
perform classical recurrent networks by effectively
modelling long sequences of interactions and their
contextual dependencies; TypeFormer is one example
of a mobile keystroke Transformer achieving state-
of-the-art results [10]. Hybrid CNN-Transformer
architectures and attention-based sequence models
more generally have also been explored in time-se-
ries processing, where convolutional layers serve as
a front end for local pattern extraction and sequence

length reduction, while Transformer encoders model
global dependencies [11, 14].

Self-supervised methods, in particular masked
autoencoders, allow learning robust representations
from unlabelled data by reconstructing masked parts
of the input. For time series, TS-MAE demonstrates
that masked reconstruction can significantly im-
prove representation quality under limited labels and
domain shifts [13], while broader surveys of Trans-
formers in time series highlight both the strengths
and open issues of such models for temporal data
[14]. Domain adaptation techniques such as Deep
CORAL achieve additional robustness by aligning
feature distributions across domains [15]. In our pre-
vious work we have investigated autoencoder-based
and recurrent models for biometric verification using
motion and sensor signals, as well as hybrid Trans-
former-autoencoder architectures for continuous
authentication on wearable devices, demonstrating
competitive Equal Error Rates and flexibility across
signal types [3, 6, 7]. The present work extends these
ideas to a CNN-Transformer hybrid with self-super-
vised pretraining and domain adaptation tailored to
mobile behavioural biometrics.

2. Proposed CNN-Transformer Architecture
with Masked Autoencoding

2.1. Input Preprocessing

Raw time-series data from sensors and, where
available, interaction logs are first normalised per
channel by subtracting the mean and dividing by
the standard deviation computed on the training
set. Each session is then segmented into overlap-
ping windows of fixed length 7 with a chosen stride.
Windows with insufficient valid samples are dis-
carded. Each window X € R*(C x T) is treated as
a multi-channel time-series fragment. For imple-
mentation convenience, tensors can be rearranged
to shape (C, 7T) for compatibility with one-dimen-
sional convolutions. In the experiments reported in
this paper, we focus on inertial sensor channels from
HMOG and WISDM.

2.2. Convolutional Front End

The convolutional front end is a stack of 1D
convolutional layers applied along the temporal di-
mension. Each layer consists of a convolution with a
small kernel, batch normalisation and a non-linear
activation such as GELU. Channel dimensionality
is gradually increased across layers, allowing the
network to capture increasingly complex local pat-
terns while suppressing noise. A multi-scale design
can be achieved by combining kernels of different
sizes or using dilated convolutions. The result is
a sequence of feature vectors of shape 7 x C out
that summarise local behavioural patterns such as
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micro-movements and short-term dynamics in the
motion signals.

2.3. Transformer Encoder

The CNN features are linearly projected into a
d-dimensional space to form a sequence of embed-
dings. Positional encodings, such as sinusoidal or
relative positional encodings, are added to represent
temporal order. The resulting sequence is processed
by a stack of Transformer encoder layers, each com-
prising multi-head self-attention and position-wise
feed-forward networks with residual connections and
layer normalisation. Self-attention allows the model
to focus on the most informative events within the
window and to capture long-range dependencies
and interactions between channels. This is particu-
larly important for behavioural biometrics, where
discriminative patterns may be scattered across the
window rather than localised.

2.4. Masked Time-Series Autoencoding

To exploit unlabelled sessions, a masked
time-series autoencoding task is used for self-super-
vised pretraining. For each window, a binary mask
over time steps is sampled, masking a fixed fraction
of positions. The corresponding inputs are zeroed
out, and the masked sequence is fed through the
CNN front end and Transformer encoder. A recon-
struction head maps the hidden representations back
to the CNN feature space, and the mean squared error
is computed between the reconstructed and original
CNN features, but only on masked time steps.

This masked reconstruction objective encou-
rages the model to infer missing local patterns from
temporal context and to build representations that
are robust to noise and missing data. Because no
user labels are required, large volumes of unlabelled
behavioural data can be used for pretraining. In
practice, a lightweight pretraining regime is adopted:
a compact model with modest dimensionality and a
short window length is trained for a limited number
of epochs and gradient steps, which is sufficient to
provide a useful initialisation for subsequent super-
vised training.

2.5. Classification and Loss Functions

After the Transformer encoder, the sequence
of hidden vectors is aggregated into a fixed-dimen-
sional representation via global average pooling over
time. The pooled vector is passed through a small
multi-layer classification head consisting of layer
normalisation, a hidden linear layer with non-li-
nearity and an output linear layer mapping to K user
classes.

In this work, the supervised loss is the standard
cross-entropy loss. The architecture is compatible
with angular-margin softmax losses and additional

metric-learning losses such as triplet loss or center
loss, as well as with domain adaptation regularizers
such as CORAL, which we explicitly use in one of
the HMOG variants. A more extensive exploration
of alternative loss functions is left for future work.

3. Experimental Setup

3.1. Datasets

We consider two public datasets that are widely
used in mobile behavioural biometrics and activity
recognition.

The HMOG dataset provides multimodal
recordings for continuous authentication, including
accelerometer, gyroscope, magnetometer, device ori-
entation and touch events from smartphones [2].
Users perform text-entry and other tasks in sitting
and walking conditions, which enables evaluation
under motion-induced variability. From HMOG
we derive multimodal windows that may include
multiple inertial sensor channels.

The WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics dataset contains accelerometer
and gyroscope time series collected from multiple
subjects during daily activities [1, 12]. While it is
often used for activity recognition, we treat users as
classes and extract fixed-length windows of motion
data for biometric identification.

For both datasets, raw recordings are converted
into fixed-length windows X in R*(7TxC) with user
labels. We keep the same windowing strategy across
baselines and our model.

3.2. Evaluation Protocols

We use cross-session protocols in which trai-
ning and testing data for each user come from diffe-
rent recording sessions. Where the dataset structure
allows it, we additionally simulate cross-condition
or cross-device scenarios by training and testing on
disjoint subsets corresponding to different recording
conditions or device types (for example, sitting ver-
sus walking conditions in HMOG).

Performance is reported in terms of user-level
mean and median Equal Error Rate (EER) and the
area under the ROC curve (AUC). For each user,
we compute individual EER and AUC values and
then aggregate them across users by taking the mean
and median.

3.3. Model Variants and Baselines

To quantify the benefits of the proposed
CNN-Transformer architecture, masked pretrai-
ning and domain adaptation, we evaluate a family
of models on both datasets. Each model variant cor-
responds to a specific configuration in the codebase
and is identified by a short experiment name.

On the HMOG dataset, we consider three va-
riants:
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- HMOG_HYBRID_NO_MAE - the propo-
sed CNN-Transformer hybrid architecture trained
from scratch in a purely supervised way, without
masked pretraining or domain adaptation. This vari-
ant isolates the architectural contribution of the hy-
brid model.

— HMOG_HYBRID_MAE_LIGHT —the same
hybrid architecture, but initialised using a lightweight
masked autoencoding pretraining stage on HMOG.
This experiment tests whether even modest self-su-
pervised pretraining improves downstream identifica-
tion and verification metrics.

- HMOG_HYBRID_MAE_LIGHT_CO-
RAL — the hybrid model with lightweight MAE pre-
training and an additional CORAL-based domain
adaptation term that aligns feature distributions be-
tween two HMOG conditions (e.g., sitting vs wal-
king) during supervised training. This variant is used
to evaluate the impact of explicit domain adaptation
on cross-condition performance.

On the WISDM dataset, we evaluate three ana-
logous variants:

— WISDM_TRANSFORMER — a pure Trans-
former baseline trained on WISDM windows with no
CNN front end.

— WISDM_HYBRID_NO_MAE — the CNN-
Transformer hybrid architecture trained from scratch
on WISDM without masked pretraining.

— WISDM_HYBRID_FROM_HMOG_MAE —
the hybrid model initialised from the HMOG light-
weight MAE-pretrained checkpoint and subsequently
fine-tuned on WISDM. In this setting, no separate
MAE pretraining is performed on WISDM; instead,
HMOG serves as a source domain for cross-dataset
pretraining.

Together, these experiments allow us to disen-
tangle the effects of architecture (Transformer-only vs
hybrid), masked pretraining (with vs without MAE)
and domain adaptation (with vs without CORAL
on HMOG), as well as to study the usefulness of
cross-dataset pretraining when transferring from
HMOG to WISDM.

3.4. Training Procedure and Ablation Studies

All models are trained using the same windo-
wing strategy and train/validation splits within each
dataset. The hybrid architecture is evaluated under
different training regimes that correspond directly to
the experiment list described above.

For hybrid models with masked pretraining, we
adopt a lightweight MAE regime. In the HMOG _
HYBRID MAE LIGHT and HMOG_HYBRID
MAE_LIGHT CORAL experiments, a compact
hybrid model (with a moderate embedding dimen-
sion and a short window length) is pretrained on the

HMOG training split using a masked reconstruction
objective. A fixed fraction of time steps is randomly
masked in each window, and the model is trained to
reconstruct convolutional features at the masked po-
sitions. The number of pretraining epochs and gra-
dient steps per epoch is deliberately limited to keep
computational cost modest while still providing a
beneficial initialisation for supervised training.

In the subsequent fine-tuning stage, all models
are optimised for user identification using cross-en-
tropy. For the HMOG_HYBRID MAE LIGHT
CORAL variant, a CORAL term is included to align
feature covariances between HMOG conditions (for
example, sitting versus walking sessions), thereby
mitigating domain shift.

On WISDM, the MAE pretraining is not re-
peated. Instead, the WISDM_HYBRID FROM _
HMOG_MAE experiment reuses the HMOG
MAE-pretrained checkpoint as an initialisation and
fine-tunes the hybrid model on WISDM in a super-
vised manner. This cross-dataset transfer setting al-
lows us to test whether representations learned from
HMOG generalise to a different sensor dataset with-
out additional self-supervised pretraining.

The remaining variants, HMOG_HYBRID _
NO_MAE and WISDM_HYBRID_ NO_MAE, are
trained from randomly initialised weights without
any masked pretraining or domain adaptation and
serve as ablations that isolate the architectural effect
of the hybrid model. The WISDM_TRANSFORM-
ER baseline enables a direct comparison between a
purely attention-based model and the hybrid design.

For each experiment, we report user-level mean
and median Equal Error Rate (EER) and AUC,
computed by first evaluating EER and AUC per user
and then aggregating across users.

4. Results

Tables 1 and 2 summarise the user-level veri-
fication performance of all model variants on the
HMOG and WISDM datasets, respectively. For
each model, we report the mean and median Equal
Error Rate (EER) and the mean and median AUC
across users.

On HMOG (Table 1), the hybrid model trained
from scratch (H-HYB) achieves a mean EER of
21.51 % and a median EER of 18.63 %, with a mean
AUC of 0.854 and a median AUC of 0.905. Light-
weight masked pretraining (H-HYB-MAE) leads to
substantially lower global EER before averaging, but
when evaluated in terms of user-level mean and me-
dian EER it results in a higher EER (29.40 % mean,
27.41 % median) and a lower AUC (0.762 mean,
0.800 median) than H-HYB. The CORAL-en-
hanced hybrid (H-HYB-MAE-CORAL) improves
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Table 1. Verification performance of hybrid models on the HMOG dataset (user-level mean and median EER and AUC)

Model EER mean, % EER median, % AUC mean AUC median
H-HYB 21.51 18.63 0.854 0.905
H-HYB-MAE 29.40 27.41 0.762 0.800
H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

Table 2. Verification performance of hybrid and Transformer models on the WISDM dataset (user-level mean and median EER

and AUC)
Model EER mean, % EER median, % AUC mean AUC median
H-HYB 21.51 18.63 0.854 0.905
H-HYB-MAE 29.40 27.41 0.762 0.800
H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

over H-HYB-MAE, reducing the mean and median
EER to 23.37 % and 20.61 %, respectively, and in-
creasing the mean and median AUC to 0.832 and
0.892. Nevertheless, in this lightweight training re-
gime, the best user-level EER and AUC on HMOG
are still obtained by the hybrid model trained from
scratch without MAE, suggesting that the current
pretraining budget and masking configuration are
not yet optimal for this dataset.

On WISDM (Table 2), the situation is markedly
different. The pure Transformer baseline (W-TRF)
exhibits very poor user-level EER (51.25 % mean,
48.62 % median) and low AUC (0.488 mean, 0.513
median), indicating that it fails to provide a good
operating point for verification on a per-user basis.
In contrast, the hybrid models significantly improve
user-level performance. The hybrid trained from
scratch on WISDM (W-HYB) achieves a mean
EER of 9.41 % and a median EER of 2.40 %, with
a mean AUC of 0.902 and a median AUC of 0.956.
Initialising the hybrid from the HMOG MAE-pre-
trained checkpoint (W-HYB-HMOG-MAE) further
reduces the mean and median EER to 8.42 % and
2.07 %, respectively, and slightly increases the mean
and median AUC to 0.907 and 0.959. These results
indicate that, even under a lightweight pretraining
regime, cross-dataset initialisation from HMOG is
beneficial for WISDM.

Overall, the experiments show that the
CNN-Transformer hybrid clearly outperforms the
pure Transformer baseline on WISDM in terms of
user-level EER and AUC, and that cross-dataset
masked pretraining provides a small but consistent
improvement there. On HMOG, however, the same
lightweight MAE configuration does not yet im-
prove user-level metrics over training from scratch,
although CORAL-based domain adaptation partially

recovers performance relative to the MAE-only vari-
ant. This suggests that the effectiveness of masked
pretraining in mobile behavioural biometrics is sen-
sitive to the choice of dataset, pretraining budget
and masking strategy, and highlights the need for
further tuning and ablation studies.

5. Discussion

The proposed CNN-Transformer hybrid with
masked time-series autoencoding combines several
complementary ideas. The convolutional front end
acts as a robust local feature extractor that smooths
noise and emphasises characteristic micro-move-
ments and interaction patterns. The Transformer
encoder provides a flexible mechanism for model-
ling long-range dependencies and interactions be-
tween modalities within the window. Masked auto-
encoding enables effective use of large pools of
unlabelled behavioural data and encourages repre-
sentations that are robust to missing values and do-
main shifts. The structured set of experiments on
HMOG and WISDM, covering a Transformer base-
line on WISDM and hybrid models trained from
scratch, with lightweight MAE pretraining and with
CORAL-enhanced training, provides a basis for at-
tributing gains to specific architectural and training
choices rather than to a single monolithic model.

At the same time, the architecture has limitations.
Its performance can be sensitive to design choices
such as window length, mask ratio, number of Trans-
former layers and attention heads. The Transformer
component is more computationally demanding than
purely convolutional or recurrent alternatives, which
constrains model depth on mobile devices. Domain
adaptation techniques such as CORAL mitigate some
cross-condition shifts but may not fully address all
forms of domain mismatch, especially when device
hardware or user populations differ substantially.
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Despite these challenges, the CNN-Transfor-
mer MAE hybrid represents a promising direction for
robust mobile behavioural biometrics and continuous
authentication. It allows combining heterogeneous
behavioural signals within a unified model and natu-
rally exploits unlabelled data that arise in real-world
deployments.

Conclusions

This paper has presented a CNN-Transformer
hybrid architecture with masked time-series auto-
encoding for mobile behavioural biometrics and
continuous authentication. The model combines a
convolutional front end for local pattern extraction,
a Transformer encoder for global sequence model-
ling and a masked reconstruction task for self-su-
pervised pretraining on unlabelled sessions under a

phones: noisy and context-dependent data, domain
shifts over time and limited labelled data per user. By
leveraging self-supervised pretraining, domain adap-
tation and flexible sequence modelling, the proposed
architecture aims to improve robustness and accuracy
under realistic conditions while remaining compa-
tible with mobile deployment. The comparison with
a Transformer-only baseline on WISDM, as well as
ablation studies on masked pretraining and domain
adaptation on HMOG, are intended to clarify the
contribution of each architectural component.
Future work includes comprehensive experi-
ments on additional public datasets, more detailed
ablation studies of architectural and training choices
and investigation of on-device optimisation tech-
niques such as quantisation and pruning, as well
as more advanced domain adaptation methods for
cross-device and cross-population scenarios.

lightweight training budget.

The approach is motivated by the practical chal-

lenges of behavioural biometric modelling on smart-
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M.IM. FaBpunosmy

APXITEKTYPA TIBPUOHOMO CNN-TRANSFORMER 3 MACKOBAHWM ABTOKOAYBAHHAM YACOBUX PAAIB ONA
MOBEAIHKOBOI BIOMETPII HA MOBINTbHUX MPUCTPOSIX

MpobnemaTtuka. BesnepepBHa noeefiHKkOBa aBTEHTU(IKALISA (AUMHaMika HaTUCKaHb KaBill, XeCTW TOpPKaHHsS/CBanWnu, AaTyvKy
pyxy) Aae 3mory nepeBipsT1 ocoby kopucTyBaya 6e3 foaaTkoBux Ain 3 oro 6oky. BogHovac mogeni gerpaaytoTb y pasi 3MiHU NpucTpoto,
Cecii Yv BMAay aKTMBHOCTI, € YYyTNMBMMMU 0 LLUYMY Ta YacTo noTpebytoTb 3Ha4HUX 06CAriB pO3MiYeHNX AaHuX. 3 NoWnpeHHsIM 6e3naponbHMX
MeToziB BXxoay 3pocTae notpeba B MexaHiaMax NoCTMOrH-KOHTPO0 PU3KMKIB Ta Y MOAEensiX, Ski € CTiKuMu, 064ncrnoBanbHO ePeKTUBHUMU
1 cTabinbHUMK B peanbHUX yMOBaxX ekcryaradii.

MeTa gocnigkeHHsA. Po3pobuti Ta emnipmyHo gocnignt komnaktHui riopng CNN-Transformer i3 nerkoBaroBMm camoHaB4anbHUM
MackoBaHUM aBTOKOAyBaHHsM YacoBux pagis (MAE-nigxin) ans mobinbHoi noBediHkoBoi 6iomeTpii Ha Habopax AaHnx HMOG 1a WISDM.

MeToauka peanisauii. MNonepegHin 1D-CNN-6nok Buainsie nokanbHi 03HaKku i3 curHanis pyxy cmapTdoHa, TOAi sk eHkoaep
Transformer Mmogentoe JOBrOCTPOKOBI 3anexHocTi. [Insa camoHaB4YanbHOro NpeTpenHiHry 3a obmexeHoro obumncnoBansHoOro GromxeTy
BMKOPVCTOBYIOTb MaCKOBaHy PEKOHCTPYKLi0 Ha HemapkoBaHux cecisx HMOG, nicns 4yoro Ta cama ribpuaHa apxiTekTypa npoaoBXKye
HaByaTUCs B pexuMi knacudikauii kopuctysadis. OuiHeHo Tpu ribpuaHi BapiaHTn Ha HMOG (HaBYaHHS 3 Hynsi, HaBYaHHS 3 MackoBaHUM
NpPeTperHIHIOM, a TakoX 3 MackoBaHWUM npeTperiHiHroM i aganTauieto CORAL) i Tpu mogeni Ha WISDM (6a3oBuin Transformer, ribpug 6e3
npeTperHiHry Ta ribpug, iHidianizosaHuii Baramu nicns MAE-npeTpeiiHiHry Ha HMOG). SAkicTb BUMipIOOTh 3a cepeHiMu Ta MegiaHHUMU
3HaveHHsMM Equal Error Rate (EER) Ta AUC Ha piBHi OKpeMux KOpuCTyBauiB.

Pe3ynbTatn gocnipxeHHA. Ha Habopi HMOG Havikpalmx KopucTyBaLbKMX MOKa3HWKIB gocsrae ribpuaHa Mofernb, HaB4eHa
3 Hyns (EER: 21,51 % y cepeaHbomy Ta 18,63 % 3a mepiaHoto; AUC: 0,854 y cepegHbomy Ta 0,905 3a megiaHot0), ToAi Sik nerkoarosi
BapiaHTn 3 MAE 1a CORAL noku Lo He nepeBepLuytoTh L 6a3oBy koHdirypauito. Ha WISDM ribpugHa Mmogenb cyTTeBO nepeBaxae
yuctuin Transformer-6asnanH (EER: 9,41 % npotu 51,25 % y cepeaHbomy; AUC: 0,902 npotn 0,488 y cepeaHboMmy), a iHiuianisauis
Baramu nicnst MAE-npeTpeiiHiHry Ha HMOG pae gopatkoBe nokpauleHHst (EER: 8,42 % y cepegHbomy Ta 2,07 % 3a megiaHoto; AUC:
0,907 y cepenHbomy Ta 0,959 3a mepiaHoH).

BucHoBku. OTpumaHi pesynbTtati cigyaTh, Wo komnakTHuiA ribpug CNN-Transformer € edpekTMBHUM ANst CEHCOPHOT MOBINbHOI
noBeajiHKoBOI BioMeTpii Ta WO HaBiTb NerkoBaroBuUii MackoBaHU NPeTPENHIHT Moxe ByTu KOPUCHUM ANsi NepeHeceHHs Mix Habopamu
naHux. BogHouac kopucte MAE Ta CORAL Ha HMOG icToTHO 3anexuTtb Big GlogKeTy npeTpeviHiHry Ta KoHdirypauii MacKkyBaHHS,
L0 BKa3ye Ha HeOOXiAHICTb NOAAnbLUIOrO HanalTyBaHHS, abu NOBHICTIO BUKOPUCTATH MOTEHLian caMOHaB4YanbHOrO NPETPENHIHTY B Uil
NOoCTaHOBL.

Knro4yosi cnoBa: noseaiHkoBa 6iomeTpisi; 6e3nepepBHa aBTeHTUdIKaLis; gaBadi cmapTdoHa; ribpmug CNN-Transformer; mackoBaHe
aBTOKOJYBaHHS!; CaMOHaBYarnbHWUIA NPETPENHIHT; aganTalist JOMEHY.
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