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LINEAR-ACCURACY ONE-BULLET SILENT DUEL  
WITH PROGRESSING-BY-ONE-THIRD SHOOTING MOMENTS

Background. A finite zero-sum game is considered, which models competitive interaction between two 
subjects. The subject, referred to as the duelist, must take an action (or, metaphorically, shoot the single 
bullet) during a standardized time span, where the bullet can be shot at only specified time moments. The 
duelist benefits from shooting as late as possible, but only when the duelist shoots first.

Objective. The objective is to determine optimal behavior of the duelists for a pattern of the duel dis-
crete progression, by which the tension builds up as the duel end approaches and there are more possibilities 
to shoot.

Methods. Both the duelists act within the same conditions, and so the one-bullet silent duel is sym-
metric. Therefore, its optimal value is 0 and the duelists have the same optimal strategies. The shooting 
accuracy is linear being determined by an accuracy proportionality factor.

Results. Depending on the factor, all pure strategy solutions are found for such duels, whose possi-
ble-shooting moments comprise a progression pattern. According to this pattern, every next possible-shoot-
ing moment is obtained by adding the third of the remaining span to the current moment. The solutions for 
this pattern are compared to the known solutions for the geometrical-progression pattern and the pattern 
whose possible-shooting moments progress in a smoother manner.

Conclusions. The proved assertions contribute another specificity of the progressing-by-one-third 
shooting moments in linear-accuracy one-bullet silent duels to the games of timing. Compared to duels for 
other duel discrete progression patterns, the specificity consists in that the duel with progressing-by-one-
third shooting moments has a constant interval of lower (weaker) shooting accuracies, at which the duelist 

possesses an optimal pure strategy. This interval is 
4 6;
5 5
 
  

 that symmetrically breaks the low-accuracy

interval (0; 2).
Keywords: one-bullet silent duel; linear accuracy; matrix game; pure strategy solution; progressing-by-

one-third shooting moments.
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1. Introduction

A one-bullet silent duel is a timing zero-sum 
game, in which it is unknown to the player (also re-
ferred to as the duelist) whether and when the other 
duelist has fired its bullet until the end of the duel 
time span [1, 2]. The span is usually interval [0; 2]. 
The bullet is a metaphor for an option to make a de-
cision or take an action [3, 4]. In fact, shooting (or 
firing) a bullet means making a decision or taking an 

action during interaction between the two duelists 
(decision-makers, consumers, entrepreneurs, users, 
etc.) [5, 6]. The duelist may not fire the bullet until 
the very last (final) moment to shoot, but then it is 
nonetheless fired at the final moment, because the 
action must be taken anyway [2, 7, 8]. The duelist 
is also featured with an accuracy function which is a 
nondecreasing function of time [1, 9, 10].

To more realistically simulate interaction be-
tween the two duelists, discrete silent duels are 

ПРИКЛАДНА МАТЕМАТИКА
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considered, in which the duelist can shoot only at 
specified time moments [1, 3, 4, 11, 12]. The num-
ber of such possible shooting moments is finite. The 
moments of the duel beginning and duel end are 
included in this number [7, 13, 14]. So, in a discrete 
duel with   possible shooting moments the players’ 
pure strategy sets are

{ } { } { } [ ]1 1 1
0;1= = =

= = = = = ⊂
N NN

N i N j N qi j q
X x Y y T t  (1)

by

1+<q qt t  1, 1∀ = −q N  and t1 = 0, tN = 1 

for { }\ 1∈N .

It is presumed that both the duelists act within 
the same conditions, and so the one-bullet silent 
duel is symmetric. Therefore, its optimal value is 
0 and the duelists have the same optimal strate-
gies, although they still can be non-symmetric [3, 
11, 13, 15]. The duelist benefits from shooting as 
late as possible, but only when the duelist shoots 
first [2, 16, 17]. This is modeled, in particular, by a 
skew-symmetric payoff matrix [1, 7, 18]

	  
T

× ×
= = − = −      N ij ji NN N N N

k kK K       (2)

whose entries

( )2 sign= − + −ij i j i j j ik ax ay a x y y x      (3)

for

     1,=i N  and 1,=j N  by a > 0.	

The accuracy proportionality factor a defines 
the duelists’ linear accuracy functions [7, 16, 19]

        ( ) =Xp x ax ,    ( ) =Yp y ay ,	 (4)

through which entry kij can be generally given as

	

(5)

Hence, the global objective is to find pure 
strategy solutions of linear-accuracy one-bullet si-
lent duel (LA1BSD)

	  	 (6)

by (1)‒(3).
LA1BSD (6) is called progressive if the density 

of the duelist’s pure strategies between t1 = 0 and  
tN = 1 progressively grows (in accordance with a 
definite pattern) as the duelist approaches to the duel 
end tN = 1 [1, 7, 9, 10, 12, 13]. The duel’s shoo- 

ting-moment progression is quite natural because 
the tension builds up as the duel end approaches, 
and thus the duelist must have more possibilities to 
shoot [6, 11, 20, 21]. A particular interest of ap-
plying LA1BSDs exists in advertising, where com-
petitiveness and waiting to attract and harvest more 
audience data are modeled [22, 23].

2. Known results

The first particular case of the progressive 
LA1BSD was considered in [15], where

(7)

for 2, 1= −q N and pure strategy solutions had been 
obtained for any а ≥ 1, and specific conditions had 
been found for ( )0;1∈a  such, at which the duel has 
a pure strategy solution. Thus, situation

	  	 (8)

is single optimal in duel (6) by (1)‒(3), (7), and a > 1 
for { }\ 1, 2∈N . Situation (8) is non-optimal by  
          . However, situation (8) remains single op- 
timal by a = 1 for { }\ 1, 2, 3∈N . The duel by a = 1 
for N = 3 has four optimal situations (8),

	                                  ,	 (9)

	                                   ,	 (10)

	      { } { }2 3
1, ,1
2

=x y .                (11)

Situation

	  	 (12)

is single optimal by any a > 0 in the most trivial 
case, when N = 2 (and thus the duelist can shoot 
only either at the duel beginning or duel end, which 
annuls the progressiveness). Situation (9) is the single 
solution to 3×3 duels by ( )0;1∈a . For the gene-
ral case of N = 2 article [15] proves that only one

{ }3, 1∈ −n N exists such that situation

	  	 (13)

is optimal by

	  	 (14)

( ) ( )
( ) ( ) ( )sign .

ij X i Y j

X i Y j j i

k p x p y
p x p y y x
= − +

+ −

{ } { }1 1
, , , ,= =

=
NN

N N N i j Ni j
X Y x yK K

1 1

1
1

2 12
2

− −
−

−
=

−
= =∑

q q
l

q q
l

t

{ } { }2 2
1 1, ,
2 2

=x y

( )0;1∈a

{ } { }3 3, 1,1=x y

{ } { }3 2
1, 1,
2

=x y

{ } { }2 2, 1,1=x y

{ }
1 1

1 1
2 1 2 1, ,

2 2

− −

− −

− − 
=  
 

n n

n n n nx y

( ) ( ) ( )
2

1 1 2
1 2; 0;1

2 1 2 1 2 1

−

− − −

 
∈ ⊂ − − ⋅ − 

n

n n na

( ) ( )
( ) ( ) ( )sign .

ij X i Y j

X i Y j j i

k p x p y
p x p y y x
= − +

+ −
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and situation
	  { } { }, 1,1=N Nx y                  (15)

is optimal by

	  	 (16)

for { }\ 1, 2, 3∈N . If
	  	

(17)

then situations (15),
	  	

    ,    (18)

	                                          ,	 (19)

	  	 (20)

are optimal; apart from situations (15), (18)‒(20), 
there are no other pure strategy solutions in the duel 
by (17). If

	  	 (21)

then optimal situation (15) is the single one. If

	  	 (22)

and (14) holds, optimal situation (13) is the single 
one. Finally, if neither (14) nor (16) holds, then the 
duel does not have a pure strategy solution.

The second particular case of the progressive 
LA1BSD was considered in [13], where

	                                                       (23)

for 2, 1= −q N .	
This case was motivated by that the density of 

the duelist’s pure strategies between t1 = 0 and tN = 1 
grows too quickly if the geometrical progression by 
(7) is used. Progression (23) is smoother providing 
a sort of compactification of shooting moments. 
Meanwhile, article [13] proves that the solutions in 
the progressive LA1BSD (6) by (1)‒(3), (23) for N = 3  
are the same as the solutions in the progressive 
LA1BSD (6) by (1)‒(3), (7) for N = 3. Besides, 
the progressive LA1BSD (6) by (1)‒(3), (23) for  

{ }\ 1, 2, 3∈N and а ≥ 1 has the single optimal si- 

tuation (8), which coincides with the solution in the 
case of (7). Another coincidence is that in the case 
of (23) situation (8) is non-optimal by ( )0;1∈a  
for { }\ 1, 2∈N . The remaining results for (23) 
were proved  [13]  for ( )0;1∈a and { }\ 1, 2, 3∈N . 
Situation 

	  { } { }3 3
2 2, ,
3 3

=x y                 (24)

is optimal only if 
1
2

=a . Except for the third and

last shooting moments 3
2
3

=t and tN = 1, there are

no other optimal pure strategies. The 4×4 duel with

 has four optimal pure strategy situations: situ-

ation (24) and situations

	                                  ,	 (25)

	                                   ,	 (26)

	                                   .	 (27)

Finally, situation (15) is single optimal for
{ }\ 1, 2, 3, 4∈N  and

	                               .	 (28)

In the 4×4 duel with

	  	 (29)

situation (15) is single optimal as well.
Despite progression (23) is smoother than pro-

gression (7), it still lacks a reasonable last-to-penul-
timate ratio

	                               ,	 (30)

which is

	  	 (31)

for (23), whereas ratio (30) is

	  	 (32)

for (7). Indeed,
  
	               

( )2
10; 0;1

2 1−
 ∈ ⊂ − Na

2
1

2 1−=
−Na

{ }
2 2

1 1 2 2
2 1 2 1, ,

2 2

− −

− − − −

− − 
=  
 

N N

N N N Nx y

{ }
2

1 2
2 1, ,1

2

−

− −

− 
=  
 

N

N N Nx y

{ }
2

1 2
2 1, 1,

2

−

− −

− 
=  
 

N

N N Nx y

2
10;

2 1−
 ∈ − Na

2
1

2 1−≠
−Na

( )

1

1

1 1
1

−

=

−
= =

+∑
q

q
n

qt
n n q

{ } { }4 4, 1,1=x y

{ } { }3 4
2, ,1
3

=x y

{ } { }4 3
2, 1,
3

=x y

1 1
2 2

< =
−

a
N

1
2−

a
N



1 1

1

− −

=N

N N

t
t t

1

1 1
2−

−
=

−N

N
t N

2

2
1

1 2
2 1

−

−
−

=
−

N

N
Nt

2 2

2 2
1 2 2 1 2 1 1
2 2 1 2 2 1

− −

− −

− − + − +
− = − =

− − − −

N N

N N
N N
N N
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10 KPI Science News 2025 / 4

  2 2
1 1 1 11 1

2 2 1 2 2 1− −= + − − = − =
− − − −N NN N

  

( )( ) ( )( )
2 2

2 2
2 1 2 2 1 0

2 2 1 2 2 1

− −

− −

− − + − +
= = >

− − − −

N N

N N
N N

N N
  (33)

for { }\ 1, 2, 3∈N , where difference (33) between 
last-to-penultimate ratios (31) and (32) is 0 only 
at N = 3. So, in a duel with (23) the duelist gets 
a huge gap between the penultimate and last mo-
ment of possible shooting. Hence, another pattern 
of possible-shooting-moment progression is to be 
considered. According to this pattern, every next 
possible-shooting moment is obtained by adding the 
third of the remaining span to the current moment:

	
1

1

1
3

−
−

−
= + q

q q

t
t t                 (34)

for 2, 1= −q N .
Herein, the local objective is to find pure strate- 

gy solutions of progressive LA1BSD (6) by (1)‒(3), 
(34) for { }\ 1, 2∈N .

3. Trivia and convention

Clearly, the most trivial duel size is 3×3. Its 
possible-shooting-moment progression is trivially a 
triple

{ } { }3 1 2 3
1, , 0, ,1
3

= =T t t t .          (35)

It is worth noting that the middle of the 3×3 
duel time span is as twice as closer to the duel be-
ginning than to the duel end.

Inasmuch as a pure strategy solution of duel 
(6) corresponds to a saddle point of skew-symmet-
ric matrix (2) with entries (3), only a zero entry of 
this matrix can be a saddle point [7]. Therefore, a 
row containing a negative entry does not contain 
saddle points; neither does the respective column 
containing the positive entry. Hence, it is conven-
tionally possible to conclude only on saddle points 
in definite rows of matrix (2), which imply the same 
conclusions on saddle points in respective columns.

It is rather trivial, but inasmuch as

   
then the first row of matrix (2) with entries (3) is 
not an optimal strategy of the first duelist, and thus 
situation

 
is never optimal in the duel. Another trivial remark is 
that a nonnegative row of matrix (2) with entries (3) 

contains a saddle point on the main diagonal of the 
matrix [7]. If a row contains only positive entries, 
except for the main diagonal entry, all the other    
N – 1 rows of the respective column contain nega-
tive entries, and thus this row contains a single sad-
dle point which is the single one in the duel.

To study the duel in an easier way, pattern (34) 
of possible-shooting-moment progression ought to 
be represented similarly to (7) and (23), having the 
right-hand side term that depends only on q.

Theorem 1. Sequence (34) for (1) can be rep-
resented as

1
1

1 1 1 1

1
1

1
3

2 3 2
3 3

q
q q

q l q q

l q
l

t
t t −

−

− − − −

−
=

−
= + =

−
= =∑              (36)

for 2, 1= −q N .	

Proof. First, re-write (34) as

	                                                (37)

for 2, 1= −q N .	
Equality (36), considered without its last term, 

can be proved by induction. In the base case, q = 2 
and

           

1 1

2
1

2 1
3 3

−

=

= =∑
l

l
l

t ,                 (38)

which is true by (35). By the inductive hypothesis it 
is assumed that equality (36), considered without its 
last term, holds for any q = k:

	   

1 1

1

2
3

− −

=

=∑
k l

k l
l

t .                   (39)

By the inductive step, it is about to show that 
equality (36), considered without its last term, holds 
for 1= +q k :

	
1

1
1

2
3

−

+
=

=∑
k l

k l
l

t .                  (40)

Moment tk+1 can be given by using (37):
 

1 0= − <j jk ay 2,∀ =j N

{ } { }1 1, 0, 0=x y

11 2
3

−+
= q

q

t
t

1
1

1 1 1 1

1
1

1
3

2 3 2
3 3

q
q q

q l q q

l q
l

t
t t −

−

− − − −

−
=

−
= + =

−
= =∑

1 1

1
1

1 2 1 2 2
3 3 3 3

− −

+
=

+
= = + ⋅ =∑

k l
k

k l
l

tt
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1 10 1

1 1 1
1 1 1

1 2 2 2 2
3 3 3 3 3

− − −

+ +
= = =

= + = + =∑ ∑ ∑
k k kl l j

l l j
l l j

.  (41)

The last term in (41) coincides with the right-
hand side term in (40). This proves equality

	     

1 1

1

2
3

− −

=

=∑
q l

q l
l

t                     (42)

for 2, 1= −q N  by induction with (38) and (39), for 
the middle term in (36).

Equality

	
1 1 1 1

1
1

2 3 2
3 3

− − − −

−
=

−
=∑

q l q q

l q
l

          (43)

for 2, 1= −q N  is proved in the same way. In the 
base case, q = 2 and

1 1 2 1 2 1

2 1
1

2 1 3 2 3 2
3 3 3 3

− − −

−
=

− −
= = =∑

l

l
l

,    (44)

which is true by (38). By the inductive hypothesis 
it is assumed that equality (43) holds for any q = k:

	     

1 1 1 1

1
1

2 3 2
3 3

− − − −

−
=

−
=∑

k l k k

l k
l

.	 (45)

By the inductive step, it is about to show that 
equality (43) holds for q = k + 1:

	
1

1

2 3 2
3 3

−

=

−
=∑

k l k k

l k
l

.               (46)

The sum in the left-hand side of (46) can be 
represented as the sum of the right-hand side term 
in (45) and the k-th summand in the left-hand side 
of (46):

 

                                                .	 (47)

The last term in (47) coincides with the right-
hand side term in (46). This proves equality (43) by 
induction with (44) and (45).  

4. Three moments to shoot

Is the duel solution the same as for those two 
patterns of possible-shooting-moment progression, 
when the duelist has the fewest number of moments 
to shoot? The answer follows.

Theorem 2. Progressive LA1BSD (6) by (1)‒(3), 
(36) for three moments to shoot (N = 3)

	  	{ } { }3 3 3 3
1 1, , 0, ,1 , 0, ,1 ,
3 3

=X Y K K     (48)

has a single optimal situation (9) by ( )0; 2∈a , a 
single optimal situation

                        	 	 (49)

by a > 2. At a = 2 this 4×4 duel has four optimal 
situations (49),

{ } { }2 3
1, ,1
3

=x y ,                 (50)

                                     ,	 (51)

and (9).
Proof. Upon plugging elements of (35) into (3) 

for N = 3, the respective payoff matrix is

                                           .   (52)

If ( )0; 2∈a , matrix (52) has a single saddle 
point (9) due to the last row is positive except for 
main diagonal entry k33 = 0. If a = 2, the second and 
third rows are nonnegative, where

k22 = k23 = k32 = k33 = 0,

and matrix (52) has four saddle points: (49)‒(51) 
and (9). If a > 2, matrix (52) has a single saddle 
point (49) due to the second row is positive except 
for main diagonal entry k22 = 0.   

Theorem 2 reads the difference between pattern 
(36) and patterns (7), (23), which lies in different

second possible-shooting moments: it is 2
1
2

=t  being

the middle of the duel time span for patterns (7), (23),

whereas it is 2
1
3

=t  being the first third of the duel time

11 1 1

1 1

2 2 2
3 3 3

−− − −

= =

= + =∑ ∑
k kl l k

l l k
l l

1 1 1 1 1 1

1
3 2 2 3 3 2 2 3 2 2 3 2

3 3 3 3 3 3

− − − − − −

−

− − ⋅ − ⋅ −
= + = + = =

k k k k k k k k k k

k k k k k k

1 1 1 1 1 1

1
3 2 2 3 3 2 2 3 2 2 3 2

3 3 3 3 3 3

− − − − − −

−

− − ⋅ − ⋅ −
= + = + = =

k k k k k k k k k k

k k k k k k

{ } { }2 2
1 1, ,
3 3

=x y

{ } { }3 2
1, 1,
3

=x y

( )

( )

3 3 3

0
3

0 2
3 3

2 0
3

×

 − − 
 
 = = −    
 
 − −
 

ij

a a

a ak a

aa a

K
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span for pattern (36). Subsequently, duel solutions 
for pattern (36) differ from those for patterns (7), 
(23) in the boundary value of accuracy proportiona- 
lity factor a, at which the solution changes. It is  
a = 2 for pattern (36), whereas it is a = 1 for patterns 
(7), (23). Structurally, however, all the three patterns 
have similar solutions for progressive 3×3 LA1BSDs: 
the last possible-shooting moment is the single opti-
mal strategy for the accuracy proportionality factor 
below the boundary value; the second and last pos-
sible-shooting moments are only optimal strategies 
at the boundary value; the second possible-shooting 
moment is the single optimal strategy for the accura-
cy proportionality factor above the boundary value.

5. Second possible-shooting moment optimality

It is natural to conjecture that the boundary 
value of accuracy proportionality factor a = 2 must 
separate two cases of the duel solution just like value 
a = 1 separates those for patterns (7), (23). So, right 
below, 4×4 and bigger duels are considered by а ≥ 1.

Theorem 3. Progressive LA1BSD (6) by (1)‒(3), 
(36) for { }\ 1, 2, 3∈N  and а ≥ 2 has the single 
optimal situation (49)

Proof. Consider the second row of matrix (2), 
where

	  	 (53)

and

                                      	    . (54)

If a = 2 then

 1 3 1 0− + = −j j jy ay y 
and (54) is nonnegative:

	

(55)

                                  ,	

where k2N = 0 is the second zero entry after k22 in 
the second row. Due to (53) and (55), situation (49) 
is a saddle point. However,

 

 

	  	
(56)

due to

3

3
2 1
3

−

− <
N

N  and 
2

2
23 2
3

−

−⋅ <
N

N  for { }\ 1, 2, 3∈N .

Inequality (56) implies that the last row and 
last column of matrix (2) do not contain saddle 
points. So, situation (49) is single optimal by a = 2.

If a > 2 then it is sufficient to prove that

1 3 0− + >j jy ay   3,∀ =j N .          (57)

Inequality (57), implying that the second row 
is positive except for main diagonal entry k22 = 0, is 
equivalent to inequality

	    	 (58)

by

	                                      .	 (59)

As (59) is true, then

      ,

       

             ,

 

                           ,                (60)

whence inequality (60) directly implies that ine
quality (58) holds and situation (49) is single opti-
mal by a > 2.

6. Second possible-shooting moment non-opti-
mality

It was proved in [13, 15] that the second pos-
sible-shooting moment is not an optimal strategy by 
0 < a < 1 in progressive LA1BSDs (6) by (1)‒(3) 
and { }\ 1, 2∈N  for patterns (7) and (23). In those 
duels, noticeably, the second possible-shooting mo-
ment is the middle of the duel time span, unlike 
for pattern (36). See whether the similar property 
keeps for the LA1BSD with progressing-by-one-
third shooting moments by (36), only by 0 < a < 2 
and the second possible-shooting moment being the 
first third of the duel time span.

21 0
3

= >
ak

( )
2

2 1 3
3 3 3

= − + = ⋅ − +j j j j j
a a ak ay y y ay

( ) ( )2
21 3 1 0

3 3
= ⋅ − + = ⋅ −j j j j

ak y ay y 

3,∀ =j N

2 2 2 2

, 1 2 2
3 2 3 22 1 2 4

3 3

− − − −

− − −

− −
= ⋅ − ⋅ − ⋅ =

N N N N

N N N Nk
2 2 2 2

2 2
3 2 3 24 2 6

3 3

N N N N

N N

− − − −

− −

− −
− ⋅ = − ⋅ =

2 2

2 2
2 22 6 6 4 6
3 3

N N

N N

− −

− −= − + ⋅ = − + ⋅ =

3 1 13
−

> = −j

j j

y
a

y y
3,∀ =j N

1 1
3
< jy  3,∀ =j N

13 1>
jy


13 1− < − −
jy


10 3 2< − <
j

a
y


2

2
22 3 2 0
3

N

N

−

−

 
= ⋅ ⋅ − < 

 
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Theorem 4. Situation (49) is never optimal 
in progressive LA1BSD (6) by (1)‒(3), (36) for 

{ }\ 1, 2∈N  and 0 < a < 2.

Proof. For { }\ 1, 2∈N  consider the second 
row of matrix (2) whose last column entry

( )
2

2 2 0
3 3 3

= − + = ⋅ − <N
a a ak a a       (61)

by 0 < a < 2.
Inequality (61) directly implies that the second 

row of matrix (2) does not contain saddle points by 
0 < a < 2.   

7. Third possible-shooting moment optimality

In a 3×3 duel by 0 < a < 2 it is optimal to shoot 
at the very last (third) possible-shooting moment 
(Theorem 2). The last possible-shooting moment is 
optimal for duelists in LA1BSDs for patterns (7) and 
(23) as well, but just by ( )0;1∈a . See whether the 
third possible-shooting moment in bigger LA1BSDs 
can be an optimal strategy for pattern (36).

Theorem 5. Progressive LA1BSD (6) by (1)‒(3), 
(36) for { }\ 1, 2, 3∈N  has an optimal pure strat-
egy situation

{ } { }3 3
5 5, ,
9 9

=x y                 (62)

by

	                                 . 	 (63)

Proof. Due to Theorem 4, situation (49) is not 
optimal, so the first two rows of matrix (2) do not 
contain saddle points. If situation 

{ }
1 1 1 1

1 1
3 2 3 2, ,

3 3

− − − −

− −

− − 
=  
 

n n n n

n n n nx y     (64)

by { }3, 1∈ −n N  is optimal, then, in the n-th row of 
matrix (2), inequalities

                                        

(65)

	
and

(66)
	

must hold. From inequality (65) it follows that

                                           .   (67)

As

 
2 2 1 1

2 1
3 2 3 2

3 3

− − − −

− −

− −
< =

n n n n

j nn ny x  

(68)

1, 1∀ = −j n                   

then inequality (67) is transformed into

1 1 2 2

1 1 1 2

1

3 2 1 3 2
3 3 2 31

3

n n n n

n n n n

na

− − − −

− − − −

−

− −
⋅

−
+ ⋅

 ,   

( )
1 1 2 2

1 1 1 2
3 2 3 2

3 3 2 3

n n n n

n n n na

− − − −

− − − −

− −
+ ⋅ −

 ,

                                                             

                                        ,    

                                                                ,

                                                                ,  

                                                     ,

whence

( )( )
2 2

1 1 2 2
3 2

3 2 3 2

− −

− − − −

⋅
− −

n n

n n n na .          (69)

From inequality (66) it follows that

	                                .  (70)

As

.   (71)

then inequality (70) is transformed into

1 1

1 1 1

1

3 2 1 1
3 3 21

3

− −

− − −

−

−
⋅

−
− ⋅

n n

n n n

na
 ,

( )
1 1

1 1 1
3 2 1

3 3 2

− −

− − −

−
− ⋅ −

n n

n n na
  .          (72)

If

( )1 1 13 3 2 0− − −− ⋅ − >n n na ,           (73)

i.e.

4 6;
5 5
 ∈   

a

2 0= − +nj n j n jk ax ay a x y 

( 1, )j n N∀ = +∀ >j ny x

1+
n

j
n

x y
ax

 ∀ <j ny x ( 1, 1)j n∀ = −

1−
n

j
n

x y
ax

 ∀ >j ny x ( 1, )j n N∀ = +

1 1

1
3 21

3

− −

−

−
> =

n n

j nny x 1,∀ = +j n N

2 0= − −nj n j n jk ax ay a x y 

∀ <j ny x ( 1, 1)j n∀ = −

1 2 1 2 1 2 1 23 3 2 3 3 3 3 2n n n n n n n n− − − − − − − −⋅ − ⋅ ⋅ − ⋅ +

( )( )1 1 2 23 2 3 2n n n na − − − −+ ⋅ − −

( )( )1 2 1 2 1 1 2 23 2 2 3 3 2 3 2− − − − − − − −⋅ − ⋅ ⋅ − −n n n n n n n na

( ) ( )( )2 2 1 1 2 23 2 3 2 3 2 3 2− − − − − −⋅ ⋅ − ⋅ − −n n n n n na

( )( )2 2 1 1 2 23 2 3 2 3 2− − − − − −⋅ ⋅ − −n n n n n na
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( )( )
2 2 1

1 1 2 2 1 1
3 2 2

3 2 3 2 3 2

− − −

− − − − − −

⋅
− =

− − −

n n n

n n n n n n

( )( )
2 2 1 2 1 2

1 1 2 2
3 2 2 3 2 2

3 2 3 2

− − − − − −

− − − −

⋅ − ⋅ + ⋅
= =

− −

n n n n n n

n n n n

( )
( )( )

1 2 2 2

1 1 2 2
2 2 3 2 1 2

3 2 3 2

− − − −

− − − −

⋅ + ⋅ ⋅ −
= =

− −

n n n n

n n n n

( )( )
1 2 2 2

1 1 2 2
2 2 3 2

3 2 3 2

− − − −

− − − −

⋅ − ⋅
= =

− −

n n n n

n n n n

( )
( )( )

2 1 2

1 1 2 2

2 2 3
3 2 3 2

− − −

− − − −

⋅ −
=

− −

n n n

n n n n

1

1 1
3

3 2

−

− −<
−

n

n na  , (74)

then inequality (72) is written as

( )1 1 1 1 13 2 3 3 2− − − − −− − ⋅ −n n n n na ,

whence
1

1 1
2

3 2

−

− −−

n

n n a . (75)

Therefore, situation (64) is optimal if inequality 
(69) holds along with inequalities (74) and (75).
However,

(76)

due to
13 2− >n n (77)

for 3n .

Indeed, inequality (77) is true for n = 3:
2 33 9 8 2= > = .

Assume that inequality (77) holds for n = k:
13 2− >k k . (78)

For n = k + 1 inequality (77) turns into
13 2 +>k k ,

13 3 2 2−⋅ > ⋅k k ,

13 3 2
2

−⋅ >k k , (79)

whence inequality (79) holds due to inequality (78) 
holds. Inequality (76) means that

( )( )
2 2 1

1 1 2 2 1 1
3 2 3

3 2 3 2 3 2

− − −

− − − − − −

⋅
<

− − −

n n n

n n n n n n

for n ≥ 3 and thus it is sufficient to consider only 
stronger inequality (69), upon which weaker inequa- 
lity (74) holds. Hence, situation (64) is optimal if ine- 

quality (69) holds along with inequality (75), i.e. if

( )( )
1 2 2

1 1 1 1 2 2
2 3 2;

3 2 3 2 3 2

− − −

− − − − − −

 ⋅
∈  − − −

n n n

n n n n n na

( )( )
1 2 2

1 1 1 1 2 2
2 3 2;

3 2 3 2 3 2

− − −

− − − − − −

 ⋅
∈  − − − 

n n n

n n n n n na .  (80)

The difference between the right and left end-
points of the interval in membership (80) is:

 

         .	 (81)

Fraction (81) is nonnegative only for n = 3. 
Indeed, inequality

 1 22 3− −>n n 82)

holds for n = 3 as

2 12 4 3 3= > = ,

but for n = k there is inequality

1 22 3− −<n n        (83)
turning into

3 22 8 9 3= < = ,

and, assuming that for n = k inequality (83) holds as

1 22 3− −<k k , (84)

for n = k + 1 inequality (83) turns into

           ,

                   ,

                  ,	 (85)

whence inequality (85) holds due to inequality (84) 
holds. For n = 3 the interval in membership (80) 
turns into:

12 3 −<k k

1 22 2 3 3− −⋅ < ⋅k k

1 232 3
2

− −< ⋅k k

( )( )
1 2 2 2

1 1 2 2
3 3 4 3 2
3 2 3 2

− − − −

− − − −

⋅ − ⋅ ⋅
= =

− −

n n n n

n n n n

( )
( )( )

2 1

1 1 2 2

3 3 2
0

3 2 3 2

− −

− − − −

⋅ −
= >

− −

n n n

n n n n

( )( )
1 2 2

1 1 1 1 2 2
3 3 2

3 2 3 2 3 2

− − −

− − − − − −

⋅
− =

− − −

n n n

n n n n n n

( )( )
1 2 1 2 2 2

1 1 2 2
3 3 3 2 3 2

3 2 3 2

− − − − − −

− − − −

⋅ − ⋅ − ⋅
= =

− −

n n n n n n

n n n n
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( )( )
2 1 1

2 2 2 2 1 1
2 3 2 4 6; ;

3 2 3 2 3 2 5 5
 ⋅  =   − − −   

.

Therefore, the duel has an optimal pure strate-
gy situation (62) by (63).   

8. Last possible-shooting moment optimality

A corollary from Theorem 5 is that 4×4 and 
bigger LA1BSDs by 

	  
4 60; ; 2
5 5

   ∈   
   

a                (86)

do not have optimal pure strategy situations corre-
sponding to all possible-shooting moments, except 
for the last one. The optimality of last-moment sit-
uation (15) is ascertained below for 5×5 and bigger 
LA1BSDs.

Theorem 6. In progressive LA1BSD (6) by (1)‒
(3), (36) for { }\ 1, 2, 3, 4∈N  and

	  
2

2 2
20;

3 2

−

− −

 
∈ − 

N

N Na               (87)

situation (15) is single optimal.
Proof. Situation (15) is optimal only if the last 

row of matrix (2) is nonnegative. Thus, the last, N-th, 
row of matrix (2) contains a saddle point if inequality

	     	 (88)

holds. It is easy to see in (88) that if inequality

	  1 11 0− −− −N Ny ay                 (89)

is true, then inequality (88) is true as well. From 
inequality (89) it follows that

1

1

1 −

−

− N

N

y a
y

 ,                   (90)

         

2 2

2

2 2

2

3 21
3

3 2
3

− −

−

− −

−

−
−

−

N N

N

N N

N

a ,              (91)

     
2

2 2
2

3 2

−

− −−

N

N N a ,                (92)

whence (87) implies optimality of situation (15). 
Meanwhile, inequality

2

2 2
2 8 4

3 2 19 5

−

− − <
−

N

N N                 (93)

holds for { }\ 1, 2, 3, 4∈N . Indeed, from inequa- 
lity (93) it follows that

                                            ,

                                      ,

                                        ,

whence

                        5 52 3− −N N            

for { }\ 1, 2, 3, 4∈N .

Inequality (93) implies that

2

2 2
2 8 40; 0; 0;

3 2 19 5

−

− −

     ⊆ ⊂    −     

N

N N
       (94)

for { }\ 1, 2, 3, 4∈N .	
Membership (94) with the inclusion obeys mem-

bership (86), which implies that by (87) situation (15) 
in 5×5 and bigger LA1BSDs is single optimal.   

Inequality (93) is false for N = 4 as
2

2 2
2 4

3 2 5
=

−
.

This leads to a specificity of 4×4 LA1BSDs by (87). 
      Theorem 7. In progressive 4×4 LA1BSD (6) by 
(1)‒(3), (36) for N = 4 and

4 60; ; 2
5 5

   ∈   
   

a                       (95)

situation (15) is single optimal. The 4×4 LA1BSD by

	  
4
5

=a                          (96)

has four optimal pure strategy situations: (62),
	  

    { } { }3 4
5, ,1
9

=x y ,                 (97)

	   
           { } { }4 3

5, 1,
9

=x y ,                 (98)

and (15).
Proof. Situation (15) is single optimal if the last, 

fourth, row of matrix (2) is positive, except for entry 
k44 = 0. In Theorem 6, it follows from (88)‒(92) for 
N = 4 that situation (15) is single optimal when

2

2 2
2 4

3 2 5

−

− − = >
−

N

N N a ,               (99)

2 2 219 2 8 3 8 2− − −⋅ ⋅ − ⋅N N N
2 227 2 8 3− −⋅ ⋅N N

3 2 3 23 2 2 3− −⋅ ⋅N N

2 0= − −Nj j jk a ay a y 

1∀ <jy ( 1, 1)j N∀ = −
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i.e. if membership (95) is true. If (96) is true, situa-
tion (15) is optimal as well owing to (88)‒(92) hold 
for N = 4. In addition, situation (62) is optimal in 
accordance with Theorem 5 as membership (63) is 
also true. This additionally implies optimality of si- 
tuations (97) and (98).   

9. Non-solvability in pure strategies

Just like the LA1BSDs for patterns (7) and 
(23), the LA1BSD for pattern (36) is not solved in 
pure strategies within a subset of values of the accu-
racy proportionality factor. This is proved by the two 
following assertions.

Theorem 8. Progressive 4×4 LA1BSD (6) by 
(1)‒(3), (36) for N = 4 is not solved in pure stra- 
tegies by

         
6 ; 2
5

 ∈ 
 

a .                  (100)

Proof. The 4×4 LA1BSD is solved in pure stra- 
tegies by a ≥ 2  (Theorem 3) and by (63) (Theorem 5) 
and by (95) (Theorem 7). By the remaining interval 
in (100), as the corollary from Theorem 5, the 4×4 
LA1BSD does not have an optimal pure strategy 
situation that would contain three possible-shooting 
moments

                    { } { }1 2 3
1 5, , 0, ,
3 9

=t t t .            

The last possible-shooting moment is non-op-
timal if, as a corollary from (88)‒(93) in Theorem 6 
and Theorem 7, inequality (92) for N = 4 is false, i.e.

	          
4
5
< a ,                     (101)

which is true by (100).   
Theorem 9. Progressive LA1BSD (6) by (1)‒

(3), (36) for { }\ 1, 2, 3, 4∈N  is not solved in pure 
strategies by

2

2 2
2 4 6; ; 2

3 2 5 5

−

− −

   ∈   −   


N

N Na .     (102)

Proof. Once again, the LA1BSD is solved in 
pure strategies by a ≥ 2 (Theorem 3) and by (63) 
(Theorem 5) and by (87) (Theorem 6). Then, the 
corollary from Theorem 5 and the corollary from 
Theorem 6, ‒ particularly, with membership (94) and 
its inclusions, ‒ is that the LA1BSD does not have 
optimal pure strategy situations by (102).   

It is easy to see that the subset in (102) of 
pure-strategy-solution non-existence expands as the 
duel becomes bigger.

Theorem 10. As the number of possible-shoo- 
ting moments in progressive LA1BSD (6) by (1)‒
(3), (36) for { }\ 1, 2, 3, 4∈N  is increased, the 
last-moment-optimality interval by (87) shortens.

Proof. This assertion means that

2

2 2
2lim 0;

3 2

−

− −→∞

 
= ∅ − 

N

N NN
.        (103)

Consider a function

 ( )
2

2 2
2

3 2

−

− −=
−

N

N Nf N .           (104)

The first derivative of function (104) is
 

 

 

( ) ( ) ( )
( )

2 2
2

22 2

ln 2 3 ln 2 2 ln 32
3 2

N N
N

N N

− −
−

− −

⋅ − ⋅ −
= ⋅ ×

−

                                                  ,

which means that (104) is a decreasing function of 
N. That is,

      ( )
2

2
2

2lim lim 0
23 1
3

−

−→∞ →∞
−

= =
  ⋅ −     

N

NN N
N

f N ,

whence (103) is true.   
Thus, as the duel becomes bigger, the non-con-

stant interval in (102) becomes wider, expanding the 
accuracy subset of pure-strategy-solution non-exis-
tence towards

4 60; ; 2
5 5

   
   
   

                (105)

for LA1BSDs with five and more possible-shooting 
moments.

10. Discussion and conclusion

Compared to the LA1BSDs for patterns (7) 
and (23), the LA1BSD with progressing-by-one-

( )
2 2

22 2

ln 2 ln 32 3 0
3 2

− −

− −

−
= ⋅ ⋅ <

−
N N

N N

( ) ( )
( )

( ) ( )( )
( )

2 2 2 2

22 2

2 2

22 2

ln 2 2 3 2 2

3 2
ln 3 3 ln 2 2

3 2

N N N N

N N

N N

N N

df
dN

− − − −

− −

− −

− −

⋅ ⋅ − −
= ×

−

⋅ − ⋅
× =

−

( ) ( ) ( )
( )

( )
( )

2 2
2

22 2

2 2

22 2

ln 2 3 ln 2 2 ln 32
3 2

3 ln 2 2
3 2

N N
N

N N

N N

N N

− −
−

− −

− −

− −

⋅ − ⋅ −
= ⋅ ×

−
+ ⋅

× =
−
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third shooting moments has a different boundary 
value of the accuracy proportionality factor, which 
separates two major cases of the duel solution. The 
LA1BSD for pattern (36) with four and more pos-
sible-shooting moments by a ≥ 2  has the single op-
timal situation (49), according to which the duelist 
must shoot at the second moment being the first 
third of the duel time span (Theorem 3). When there 
are only three possible-shooting moments, the se
cond moment is single optimal if a > 2, the last mo-
ment is single optimal if ( )0; 2∈a , the second and 
last moments are both optimal if a = 2 (Theorem 2).

When ( )0; 2∈a  and there are three or more 
possible-shooting moments, the second moment 
is never optimal for the duelist (Theorem 4). This 
is the case, where LA1BSD with progressing-by-
one-third shooting moments significantly differs (in 
terms of its solution) from the LA1BSDs for patterns 
(7) and (23). Thus, in LA1BSDs for pattern (36) 
with four and more possible-shooting moments third

moment 3
5
9

=t  is optimal by (63) (Theorem 5), whereas

third moment 3
2
3

=t  is optimal in the LA1BSD for

compactified-moments pattern (23) only if 
1
2

=a
[13]. In the LA1BSD for geometrical-progression

pattern (7) third moment 3
3
4

=t  is particularly opti-

mal if
1 2;
3 3
 ∈   

a ,

although optimality of later possible-shooting mo-
ments is also possible [15].

Just like for patterns (7) and (23), the last mo-
ment can be optimal in LA1BSDs for pattern (36) 
with four and more possible-shooting moments by 
sufficiently low values of the accuracy proportio- 
nality factor. The last moment is optimal if (87) is 
true (Theorems 6 and 7), where the length of the 
interval in (87) exponentially-like shortens as the 
number of possible-shooting moments (the size of 
the duel) is increased (Theorem 10). This last-mo-
ment-optimality interval shortening exists for pat-
terns (7) and (23) as well, whose right endpoints in 
the interval are

                           
2
1

2 1− −N

and
1

2−N
,

respectively. Last-moment-optimality solutions  of 
LA1BSDs for patterns (7), (23), and (36) with exactly 

four possible-shooting moments cannot be seamless-
ly surveyed. The 4×4 LA1BSD for geometrical-pro-
gression pattern (7) is not specifically distinguished 
from bigger LA1BSDs. Unlike LA1BSDs with the 
faster converging possible-shooting moments by (7), 
the duelist in the 4×4 LA1BSD with compactified 

shooting moments by (23) and 
10;
2

 ∈ 
 

a  has the

single optimal strategy to shoot at the duel very end. 

If the accuracy proportionality factor is equal to 
10;
2

 ∈ 
 

a ,

then the duelist in the 4×4 LA1BSD for pattern (23) 

possesses two optimal pure strategies 3
2
3

=t  and t4 = 1. 

This resembles the optimal behavior of the duelist in 
the 4×4 LA1BSD for pattern (36) and (96), where

it is optimal to shoot at either 3
5
9

=t  or t4 = 1. If (95) is

true, the last moment remains single optimal (The-
orem 7).

Unlike the LA1BSD for pattern (23), which is 
not solved in pure strategies if

{ }1 1;1 \
2 2

 ∈ − 
a

N
              (106)

for { }\ 1, 2, 3∈N  and the interval in (106) ap-
proaches to open interval (0;1) as the number of pos-
sible-shooting moments is increased, the LA1BSD 
for pattern (36) does not have a pure strategy solu-
tion by (102) (Theorem 9), i.e. there is a stable in-
finite subset of values of the accuracy proportionali-
ty factor below the boundary value a = 2 such that a 
pure strategy solution exists ‒ see (63) and Theorem 5.

This subset, whose length is 
2
5

 comprising 20 % of

the below-boundary-value interval, changes into interval

	
60;
5

 
  

                       (107)

in a 4×4 LA1BSD for pattern (36) (Theorems 7 
and 8). Interval (107) comprises 60 % of the be-
low-boundary-value interval (0;2).

The proved assertions contribute another speci- 
ficity of the progressing-by-one-third shooting mo-
ments in LA1BSDs to the games of timing. Com-
pared to LA1BSDs for patterns (7) and (23), the 
specificity consists in that the LA1BSD for pattern 
(36) has a constant interval of lower (weaker) shoo-
ting accuracies, at which the duelist possesses an 

optimal pure strategy. This interval is 
4 6;
5 5
 
  

 that

symmetrically breaks the low-accuracy interval (0;2).
LA1BSDs with progressing-by-one-third shoo

ting moments can be further studied for some 
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nonlinearities in the accuracy function. For in-
stance, it can be the quadratic accuracy as a case 
of the low-accurate duelist [10]. For a case of the 
high-accurate duelist, it is the square-root accura-

cy. Besides, the case of a value of the jitter added to 
progressing-by-one-third shooting moments, apart 
from the duel beginning and end time moments, 
can be considered [18].
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В.В. Романюк

БЕЗШУМНА ДУЕЛЬ З ОДНІЄЮ КУЛЕЮ ЛІНІЙНОЇ ВЛУЧНОСТІ ТА ПРОГРЕСУЮЧИМИ НА ОДНУ ТРЕТИНУ МОМЕНТАМИ 
ПОСТРІЛУ

Проблематика. Розглянуто скінченну гру з нульовою сумою, яка моделює конкуруючу взаємодію між двома суб’єктами. 
Суб’єкт, якого ще називають дуелянтом, має виконати якусь дію (або, висловлюючись метафорично, здійснити постріл однією 
кулею) протягом стандартизованого проміжку часу, де куля може бути випущена лише у зазначені моменти часу. Для більш 
реалістичного симулювання взаємодії між дуелянтами кількість таких моментів можливого пострілу приймають скінченною, 
внаслідок чого гра (або ж дуель) стає дискретною. Для дуелянта залишається невідомим до кінця дуелі, чи інший дуелянт здійснив 
постріл і коли він відбувся. Дуелянт може не стріляти аж до самого кінця дуелі, але тоді постріл одначе здійснюється автоматично 
у цей кінцевий момент часу, оскільки дія має бути виконана у будь-якому випадку. Дуелянт виграє від здійснення пострілу якомога 
пізніше, але лише тоді, коли він випередить іншого дуелянта.

Мета дослідження. Мета полягає у тому, щоб для деякої моделі дискретної прогресії дуелі визначити оптимальну поведінку 
дуелянтів, за якої напруга збільшується з наближенням кінця дуелі та з’являється більше можливостей для пострілу.

Методика реалізації. Обидва дуелянти діють за тих самих умов, тому ця безшумна дуель з однією кулею є симетричною. 
Відтак оптимальне значення гри дорівнює 0, і дуелянти мають однакові оптимальні стратегії. Влучність пострілу є лінійною 
і визначається коефіцієнтом пропорційності точності.

Результати дослідження. Усі розв’язки у чистих стратегіях для таких дуелей знайдені залежно від цього коефіцієнта, де 
моменти можливого пострілу складають модель деякої прогресії. Згідно з цією моделлю кожний наступний момент можливого 
пострілу отримують додаванням третини часового проміжку, що залишається до кінця дуелі. Розв’язки для цієї моделі 
порівнюються з відомими розв’язками для моделі геометричної прогресії, а також моделі, в якій моменти можливого пострілу 
прогресують більш помірно.

Висновки. Доведені твердження розкривають ще одну особливість прогресуючих на одну третину моментів пострілу 
у безшумних дуелях з однією кулею лінійної влучності у класі часових ігор. Якщо порівнювати дуелі з іншими моделями дискретної 
прогресії, ця особливість полягає у тому, що дуель із прогресуючими на одну третину моментами пострілу має постійний інтервал

нижніх (слабших) влучностей, за яких дуеліст має оптимальну чисту стратегію. Цим інтервалом є 4 6;
5 5
 
  

, який симетрично

розбиває інтервал (0; 2) слабкої влучності.
Ключові слова: безшумна дуель з однією кулею; лінійна влучність; матрична гра; розв’язок у чистих стратегіях; прогресуючі 

на одну третину моменти пострілу.
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DECISION MAKING IN ANTI-CORONAVIRUS DRUG DISCOVERY:  
MATHEMATICAL MODELLING AND VALUE OF INFORMATION ANALYSIS

Background. The process of preclinical evaluation of antiviral medications typically involves multiple stages, each con-
taining substantial uncertainties. Traditional methods for screening the compounds often lack structured means for op-
timising the decision-making and calculating the feasibility and risks of transitions between all of the stages. Thus, there 
appears to be a problem with the inefficient selection of promising antiviral molecules, which subsequently increases 
the probability of choosing suboptimal research trajectories.
Objective. The paper aims to develop a computational framework for optimising of the transition between stages in 
preclinical antiviral testing. The system focuses on the integration of decision trees and Markov models in order to 
include effectiveness, risks and the value of additional information into assessment, supporting an in-depth planning of 
preclinical research pipelines.
Methods. Experimental data from molecular docking, cytotoxicity CD50, and antiviral activity IC50 were used in a mul-
ti-stage evaluation system with CTI ≥ 4 being the criterion for progression into further stages. Decision trees provided 
the explicit rules for advancement of the compounds, while Markov models added context for building sequential 
strategies under uncertainty and quantified the feasibility of movement to the next stage. Value of information analysis 
added the assessment of the expected benefit of additional data.
Results. The developed framework consistently produced reliable technical results. The decision used in CTI ≥ 4.0 
prediction stage demonstrated a conservative classification pattern, correctly identifying compounds with high thera-
peutic potential while missing some effective candidates. The Markov model showed steadily increasing state values in 
docking, cytotoxicity, and antiviral testing phases that confirmed the growth of expected utility. Based on the findings 
acquired, the most effective solutions were identified for the ongoing investigation into antiviral assays, while the ap-
plication of value of information analysis indicated that the largest gain occurred after antiviral activity testing, whereas 
the initial phases serve as filters.
Conclusions. The study showed that both decision trees and Markov models capture different but complementary as-
pects of the preclinical evaluation process. Decision trees provide an interpretable set of rules that formalise how mo-
lecular docking and cytotoxicity measurement influence the progression of compounds, while their limited sensitivity at 
the CTI threshold highlighted the complexity of predicting the final success of the evaluated compounds. The Markov 
model simulations showed that the full three-stage pipeline is justified and that progression decisions are influenced by 
both uncertainty and experimental cost. The value of information analysis clarifies the importance of each stage, helping 
to emphasise the role of antiviral activity data. These findings support the integration of analytic methods for improving 
the structure, transparency and efficiency of antiviral preclinical research.
Keywords: coronavirus; drug; preclinical evaluation; decision tree; Markov decision process; value of information.

Introduction

The optimisation of sequential decision-making 
in preclinical studies of antiviral compounds remains 
a highly relevant challenge due to the combination 

of uncertainty, high experimental costs, and limited 
predictability of candidate efficacy. At each stage 
of the preclinical pipeline – from in silico scree
ning to cytotoxicity assessment and antiviral activity 
tests – researchers must make a series of decisions, 
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where an inaccurate early-stage choice leads to the 
loss of time, resources, and potentially promising 
compounds. This creates the need for systematic 
approaches capable of increasing the rationality and 
economic efficiency of the preclinical process.

Despite significant progress in artificial intelli-
gence, current research mainly improves individu-
al steps of drug discovery rather than the full de-
cision-making pipeline. Modern machine learning 
techniques demonstrate substantial advances in vir-
tual screening, toxicity prediction, and target selec-
tion [1]. AI-based integration with organ-on-a-chip 
platforms and digital twins enhances the accuracy 
of pharmacokinetic and toxicological modelling 
[2]. Data-driven design of antiviral peptides using 
GANs, deep learning and explainable AI demon-
strates strong potential for optimising candidate 
properties [3]. Studies of DHODH inhibitors high-
light the complexity of translating promising in vitro 
results into clinical effects and emphasise the need 
for step-wise risk assessment [4]. Multi-omics deep 
learning pipelines accelerate early discovery and fa-
cilitate drug repositioning [5]. AI-based prediction of 
viral mutations supports personalised antiviral stra
tegies and shows the sequential, dynamic nature of 
decision-making in virology [6]. AI-driven derepli-
cation and classification of natural products further 
illustrate the need for structured transitions between 
preclinical stages [7].

However, these advances primarily address pre-
dictive accuracy rather than the principled optimi-
sation of decisions across multiple stages. Current 
research lacks integrated mathematical frameworks 
that would: formalise transitions between preclinical 
stages, quantify risks and probabilities of success, in-
corporate the cost and value of information, and de-
termine when experimental continuation is economi
cally justified. Decision trees and Markov processes 
are rarely applied specifically to antiviral preclinical 
pipelines, leaving a methodological gap in modelling 
sequential choices under uncertainty.

The study aims to develop and evaluate for-
malised approaches for optimising sequential deci-
sion-making in preclinical antiviral research using 
decision tree models and Markov decision processes. 
These models are applied to real-world experimental 
datasets to quantify transition probabilities, estimate 
costs, and compare the effectiveness of alternative 
strategies.

The scientific novelty of the work lies in the 
integration of an interpretable set of rules provided 
by the decision trees with globally optimal Markov 
strategies and value of information analysis. Unlike 
prior studies, in the proposed framework, predictive 

patterns, uncertainty quantification, experimental 
costs and utility maximisation are combined into a 
unified scheme that supports planning throughout 
the entire preclinical process.

Problem statement

The object of the study is the process of precli
nical evaluation of antiviral drugs, while the subject 
is mathematical methods for optimising sequential 
decision-making in this process, in particular deci-
sion trees and Markov models. The purpose of the 
work is to develop and test formalised approaches 
to assessing the effectiveness, risks and feasibility of 
transitions between stages of preclinical studies based 
on real experimental data. The end result is the 
construction and comparative analysis of two algo-
rithmic models – the decision tree and the Markov 
process – that demonstrate their ability to support 
rational, data-driven planning for preclinical testing 
of antiviral candidates.

Materials and methods

The study uses three interrelated methods: deci-
sion trees to formalise the process of selecting com-
pounds, Markov models to describe the sequence 
of experimental steps over time and value of infor-
mation analysis metrics to quantify the feasibility of 
doing additional measurements. This combination 
allows for moving from the description of individu-
al experiments to a systematic approach where each 
step is considered to be an element of an optimised 
decision-making process.

Decision trees act as interpreted classification 
models that reflect the relationship between a set 
of input parameters (docking parameters, concen-
tration characteristics, toxicity and antiviral activity 
indicators) and binary output events (e.g., reaching a 
chemotherapy index threshold). The decision tree is 
a hierarchical structure, where each inner node cor-
responds to a condition of the type “sign ≤ thresh-
old”, branches to alternative consequences of this 
condition, and leaf nodes to result classes. The con-
struction of the tree is carried out by sequentially 
dividing the feature space to minimise the degree of 
heterogeneity (for example, the Gini index) in the 
daughter nodes at each stage. As a result, a set of 
simple logical rules is formed that allows for expli
cit interpretation of which combinations of docking, 
CD50, ID50, and exposure.

Markov chains and Markov decision-making 
processes are used to describe the evolution of a sys-
tem in discrete states, taking into account the pro
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babilistic nature of transitions between them. In the 
simplest case, the Markov chain is given by a set of 
states and a matrix of transient probabilities, where 
the probability of moving to the next state depends 
only on the current state, and not on the complete 
history. In the context of planning the sequence of ex-
periments, this allows us to consider individual stages 
(docking, assessment of cytotoxicity, testing of anti-
viral activity, achievement or failure of therapeutic 
success) as states of the Markov process, and possible 
actions of the investigator (“to continue” or “stop” 
the study at a certain stage) as controlling influences 
that change the distribution of probabilities of further 
states. In this formulation, the Markov model of de-
cision-making is used, where each state-action pair 
corresponds not only to the probability of transition, 
but also to a certain instantaneous reward or cost, 
and the optimal strategy is determined by solving the 
Bellman equations for the value function.

Value-of-information analysis metrics are tools 
for evaluating the extent to which the anticipated 
utility of decisions can be enhanced through addi-
tional data. Conceptually, the value of information 
is defined as the difference between the expected 
utility of an optimal policy given the availability of 
additional information and the expected utility at the 
baseline level of uncertainty. The Total Value of Per-
fect Information (EVPI) reflects a hypothetical in-
crement if the results of the experiments were known 
in advance without errors; partial value of perfect 
information (EVPPI) characterizes a similar increase 
for certain groups of parameters (for example, only 
for cytotoxicity indicators or only for antiviral acti
vity); The expected value of the sample information 
(EVSI) assesses how much conducting a realistic in-
cremental experiment with a certain value is able to 
improve decision-making. In combination with the 
Markov model of the experimental process, these 
metrics enable a quantitative comparison of vari-
ous research design variants, determine the stages at 
which new measurements give the greatest increase 
in information about CTI, and justify the optimal 
balance between the costs of the experiment and the 
probability of obtaining therapeutically significant 
candidates.

The study used a multi-level methodology 
combining experimental data on docking, cyto-
toxicity, and antiviral activity with mathematical 
dose-response modelling, decision tree construc-
tion, and Markov experiment sequence modelling. 
The main target characteristic is the CTI chemo-
therapy index, calculated based on CD50 and ID50 
concentrations for each test sample and cell pro-
cessing regimen.

Baseline data included energy parameters of 
molecular docking of a series of candidate com-
pounds to the domains of the spike protein of the vi-
rus and the main protease, results of cytotoxicity tests 
on the cell line at two time points (24 and 48 h) and 
results of tests of antiviral activity in the therapeutic 
(L) and therapeutic-prophylactic (LP) modes. For 
the docking, numerical estimates of binding ener
gy (in conventional units of energy) with individual 
target sites were considered, which are represented as 
SP1 – SP5 for the spike protein and MP1 – MP3 for 
the main protease. For each compound, a docking 
parameter vector was obtained, which was further 
used as an input trait space in decision tree models.

Dose-effect modelling for cytotoxicity and an-
tiviral activity was carried out using a four-parame-
ter sigmoidal model. For each compound, exposure 
time, and treatment regimen, a set of concentrations 
was given x

i
 and the corresponding measured values 

of relative cell viability (for cytotoxicity) or relative 
viral activity (for antiviral action), normalised to 
control in the interval [0; 1]. As a model function, 
the expression

( )( )
1 bx c

af x d
e − += +

+
(1)

where x is the concentration of the compound, f(x) is 
the expected relative value of the indicator (viability 
or activity), a, b, c, d are unknown parameters of 
the curve describing the amplitude of the effect, the 
steepness of the transition, the shift along the con-
centration axis and the baseline, respectively. The 
estimation of the parameters was carried out by the 
method of least squares by minimising the root mean 
square error
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where yi – experimental values of the relative viabi
lity of cells or the relative activity of the virus, N is 
the number of points of the curve. Optimisation was 
carried out by the numerical method of nonlinear 
regression with constraints on parameters to avoid 
unrealistic decisions; in cases where numerical op-
timisation did not match, stable heuristic initial ap-
proximations were used, providing a smooth mono-
tonic curve within the studied concentration range.

Based on the fit of the sigmoidal model, the 
characteristic concentrations of CD50 and ID50 were 
determined. The concentration of CD50 was deter-
mined as the solution of the equation
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( ) 0.5cytof x =                      (3)

that is, the concentration at which the relative via­
bility of cells is 50 % of the control. Similarly, the 
concentration of ID50 was defined as the solution

( ) 0.5virusf x =                      (4)

corresponding to a 50 percent level of residual virus 
activity. For a given four parameters (a, b, c, d), the 
analytical expression for such a concentration was 
obtained from the equation x*
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by algebraic transformation:
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In cases where the expression under the loga­
rithm was incorrect (negative or zero) or the para­
meter b was close to zero, the value of CD50 or ID50 
was considered uncertain (no intersection with the 
level of 50 % in the studied range).

The chemotherapeutic index for each combina­
tion “compound – time – treatment regimen” was 
calculated according to the standard ratio

50

50

CDCTI=
ID                      (8)

which is interpreted as a safety margin: the larger 
the CTI, the wider the therapeutic interval between 
cytotoxic and antiviral concentrations. For further 
classification analysis, CTI was converted to a bi­
nary trait by threshold: the value of θ = 4,0 class 
1 denoted combinations with CTI ≥ 4, and class 
0 – CTI < 4, which made it possible to interpret 
the problem as a two-class problem of “promising / 
unpromising” candidates.

To investigate the relationship between the 
docking profile of compounds, cytotoxicity parame­
ters and the probability of obtaining a high CTI, the 
decision trees method of the CART (Classification 
and Regression Trees) type was used. In the first 

model, the decision tree described the probability 
of obtaining a determined CD50 based on docking 
indicators. The trait vector included energy para­
meters of interaction with different regions of the 
spike protein and the main protease (SP1 – SP5, 
MP1 – MP3), as well as a coded timestamp of cell 
exposure (time_class, where 0 corresponded to 24 
hours, 1 to 48 hours). The target variable class_CD50 
took a value of 1 if CD50 was defined for the cor­
responding compound-time combination, and 0 
in the opposite case. Thus, the first model evalua­
ted which docking profiles are associated with the 
presence of a correct dose-appropriate cytotoxicity 
curve.

In the second model, the decision tree modeled 
the dependence of the “connection-time-mode” 
combination belonging to the CTI class ≥ 4 on the 
combination of docking characteristics, CD50 and 
ID50 parameters, and the treatment regimen. In ad­
dition to SP1 – SP5, MP1 – MP3 and time_class, 
the numerical values of CD50, ID50, CTI itself, as 
well as the encoded trait treatment_type_class (0 for  
mode L and 1 for LP ≥ class_CTI) were added to 
the trait vector. Both models were built as binary 
trees with a Gini index division criterion that mini­
mises class heterogeneity in nodes.

Decision trees were trained according to the 
scheme of dividing the sample into training and test 
subsamples in the ratio of 70 % / 30 % with a fixed 
random number generator to ensure reproducibility. 
In the presence of both classes, a stratified division 
was carried out to preserve the proportions of the 
classes in the training and test parts. The depth of 
the trees was limited to a predetermined maximum 
to avoid overtraining, and the number of leaf nodes 
and the structure of the resulting rules were analy­
sed to control the complexity of the model. The text 
representation of the tree in the form of nested “if” 
rules was obtained by traversing the structure of the 
tree, where each inner node specifies a condition of 
the form “sign ≤ threshold”, and the leaf node – 
belonging to class 0 or 1.

Assessment of the quality of classification mo­
dels was carried out on test subsamples using a set 
of standard metrics. Accuracy was defined as the 
proportion of correctly classified examples:

TP+TN
TP+TN+FP+FN

Accuracy =            (9)

where TP (true positives) is the number of true 
positive classifications, TN (true negatives) is true 
negative, FP (false positives) is false positive, FN 
(false negatives) is false negative. Sensitivity (or re­
call for a positive class) was defined as
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TP
TP+FN

Sensitivity =                (10)

which reflects the model’s ability to detect positive 
cases. Specificity was calculated as

TN
TN+FP

Specificity =                (11)

characterising the ability of the model to correctly 
cut off negative cases. To assess the balance between 
sensitivity and accuracy of positive classifications, 
the F1 measure was used:

TPPrecision= ,
TP+FP

2 PrecisionF1 .
Precision

Sensitivity
Sensitivity

⋅ ⋅
=

+

        (12)

In the case of probabilistic model outputs (pre-
dict_proba), the area under the ROC curve (ROC-
AUC) was additionally calculated, which characteri
ses the trade-off between sensitivity and specificity 
when varying the classification threshold. In cases 
where all observations belonged to the same class 
and the ROC curve was incorrectly determined, the 
ROC-AUC was not interpreted.

Additionally, two complementary procedures 
were used to analyse the contribution of individual 
traits. First, standard estimates of the importance of 
traits in the tree were used based on a decrease in 
the Gini criterion when splitting according to the 
corresponding trait. Secondly, the sensitivity ana
lysis of the “drop-one-feature” sensitivity was per-
formed: for each feature, a new decision tree was 
built without this feature in the feature vector, and 
then the model metrics were compared with the base 
variant. A significant degradation of sensitivity or 
specificity in the exclusion of a certain trait was in-
terpreted as an indicator of its critical importance 
for decision-making.

To formalise the sequence of decision-making 
on the continuation or termination of laboratory 
tests at different stages (docking, assessment of cy-
totoxicity, testing of antiviral activity), the Markov 
Decision Process (MDP) was used. The state space 
described the main stages of the study: post-docking 
baseline (S0), post-doc status (S1), post-antiviral ac-
tivity (S2), post-doctrinal status, and two absorption 
states – success (Ssuccess, candidate acquisition with 
CTI ≥ 4) and completion without success (Sfail). In 
each of the non-absorption states, two actions were 
considered: “stop” – stop further experiments, and 
“continue” – move to the next stage of the study.

Transitions between states were described by 
probabilities that were estimated on the basis of em-
pirical frequencies in the population of the com-
pounds studied. For example, the probability of 
transition from SP(sʹǀs,a)0 to S1 under the action 
“continue” was estimated as the proportion of com-
pounds for which CD50 could be determined; the 
probability of transition from S1 to S2 as the pro-
portion of combinations for which CTI was deter-
mined; the probability of transition from S2 to Ssuccess 
as the proportion of cases with CTI ≥ 4 among those 
who have passed to the stage of antiviral activity 
tests. The reward system R(s, a) included negative 
contributions in the form of docking costs, cytotoxi
city and antiviral activity tests, as well as a positive 
reward for achieving a state of Ssuccess corresponding 
to obtaining a promising candidate. To assess the 
long-term usefulness of action policies, a discount 
factor γ ∈ (0;1)  was used, which takes into account 
the decrease in the “value” of time-distant results.

The optimal policy that maximizes the expec
ted discounted total reward was determined by the 
value iteration method. At each iteration, the value 
of the utility function π*(s)V(s) was updated accor
ding to the rule
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until the changes in V(s) for all states become less 
than the predetermined error. The choice of action 
in state s was carried out as an argument to the 
maximum on the right side of the Bellman equation.

Interpretation of the supplementary experi-
ments as sources of information about the probabi
lity of success and the associated costs allowed us to 
integrate the concept of information value analysis 
into the Markov formulation. The total expected 
value of perfect information (EVPI) is the difference 
between the expected utility from having complete, 
error-free information about the outcome (e.g., CTI 
for each compound before the experiments were 
performed) and the expected utility at the current 
level of uncertainty. The expected value of partial 
perfect information about a subset of parameters 
(EVPPI) marks a similar difference, but only for in-
formation about a particular block of parameters (for 
example, only about CD50 or only about ID50). The 
expected value of sample information (EVSI) deter-
mines the increase in expected utility obtained by 
making additional, but not error-free measurements 
(for example, additional experiments on cytotoxicity 
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or antiviral activity). In mathematical formulation, 
these indicators are calculated as the difference be-
tween the maximum expected utility according to 
the refined probability distribution (after taking into 
account the new data) and the maximum according 
to the original distribution; within the framework of 
MDP, it comes down to comparing the values of 
V(s) under different assumptions about the informa-
tion state of the system.

Formally, let θ denote the vector of uncertain 
parameters (e.g., transition probabilities and success 
rates), d a decision or policy, and U(d, θ) the total 
discounted utility under this decision. The baseline 
expected value at the initial state s0 is

0 0( ) max [ ( , ) | ]base
d D

V s E U d Iθ θ
∈

=          (14)

where I0 denotes the current information set. The 
expected value of perfect information (EVPI) is de-
fined as

0 0EVPI [max [ ( , ) | ] ( )base
d D

E E U d I V sθ θ θ
∈

= − .  (15)

It quantifies the maximum gain in expected 
utility that could be achieved if θ were known with-
out uncertainty before any decision is made.

For a subset of parameters φ ⊂ θ (for example, 
only cytotoxicity or only antiviral activity parame-
ters), the expected value of partial perfect informa-
tion (EVPPI) is given by

0 0
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d D
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Here, only the subset φ is assumed to be known 
perfectly, whereas the remaining parameters θ\φ re-
main uncertain.

The expected value of sample information 
(EVSI) associated with a realistic additional expe
riment y is defined as

0EVSI( ) [max [ ( , ) | ]]y
d D

y E E U d Iθ θ
∈

= −

0( ) ( )baseV s C y− − (17)

where y denotes the possible outcomes of the new 
experiment, and C(y) is the cost of collecting this 
information. Within the MDP formulation used in 
this work, all three quantities can be evaluated as 
differences between optimal state values V(s0) com-
puted under different information scenarios (baseline 
information, perfect information on θ or φ, and pos-
terior distributions updated by sample data y).

This approach provides a holistic methodological 
framework: sigmoidal dose-response modelling allows 
for stable estimates of CD50, ID50, and CTI; decision 
trees formalise the logic of the selection of compounds 
according to the profiles of docking, cytotoxicity and 
antiviral activity; The Markov model with associated 
information value metrics allows you to assess the fea-
sibility of continuing or stopping experiments at dif-
ferent stages, taking into account costs and the likeli-
hood of achieving chemotherapy success.

The study used a holistic experimental dataset 
which covered seven test samples (T1 – T7), each 
having obtained both in silico and in vitro characte
ristics. The generalised structure of this set is provided 
in Table 1.

Results of molecular docking to the spike protein 
and the main protease of the virus are available for each 
sample and presented in the form of binding energy 
ranges. In particular, for the spike protein, the mini-
mum and maximum values of the docking energy for 
a set of domains (SP1 – SP5) were taken into account, 
and for the main protease – the minimum and maxi

Таble 1. Generalised characteristics of the experimental dataset

Test 
Sample

Min. 
Docking 
energy 
(spike 

protein), 
kcal/mol

Max. 
Docking 
energy 
(spike 

protein), 
kcal/mol

Min. 
Docking 
energy 
(basic 

protease), 
kcal/mol

Max. 
Docking 
energy 
(basic 

protease), 
kcal/mol

Sum-
marised 

CTI in 24 
hours

Sum-
marised 

CTI in 48 
hours

Cytotoxi
city data 
(24/48 
hours)

Antiviral 
activity 
data (L, 

LP; 24/48 
hours)

T1 −6.26 −2.26 −5.68 −4.04 24 16 yes yes
T2 −6.32 −3.3 −7.34 −4.07 – 4 yes yes
T3 −5.24 −2.4 −7.12 −4.04 3 2 yes yes
T4 −5.74 −2.26 −7.34 −4.04 – – yes yes
T5 −4.96 −2.37 −7.34 −4.04 4 3 yes yes
T6 −6.26 −2.4 −7.34 −4.04 6 6 yes yes
T7 −5.64 −2.26 −7.34 −4.21 – – yes yes
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mum values of the interaction energy with individual 
functional regions (MP1 – MP3). Table 1 shows two 
aggregate intervals for each test sample: minimum and 
maximum docking energy for the spike protein and ma-
jor protease, reflecting the spectrum of possible binding 
configurations within the docking protocols used.

Results

The results obtained demonstrate a consistent 
chain of transition from in silico characteristics to 
integral assessment of the chemotherapeutic index 
and optimisation of the sequence of experiments. 
First of all, the analysis of the initial CD50, ID50 and 
CTI values for seven test samples showed significant 
inter-sample variability: for some of the sample-
time-mode combinations, CD50 or ID50 could not be 
correctly estimated at all within the studied concen-
tration range (the curve did not cross the 50 % le
vel), while others showed well-defined half-inhibition 
points and high CTI values. It is important to note 
that this variability turned out to be structured – it is 
related to the profile of the docking to the main pro-
tease and to the exposure mode, and is not random 
noise; This is confirmed by the construction of the 
first decision tree and the Markov model.

In the “docking → cytotoxicity” model, the 
decision tree gives a compact but meaningful struc-
ture (Fig. 1).

The root node separates all observations by 
the MP2 parameter, which characterises the binding 
energy of compounds to one of the functional areas 
of the main protease. If MP2 is found to be above 
the threshold value of approximately – 7.0 kcal/mol 
(i.e., binding is weaker), the model, without further 
branching, assigns the corresponding sample-time com-

Fig. 1. Decision tree for the transition “docking → cytotoxicity” 

using the parameters of interaction with the main protease 

(MP1, MP2) and exposure time (24/48 hours) as predictors 

of the presence of correctly determined CD50

bination to a class for which CD50 is not deter-mined: 
all cases where the dose-response of cytotoxicity re-
mains flat or monotonically low are concentrated in 
this leaf node. Instead, for compounds with a more 
favourable MP2 value (≤−7.0 kcal/mol), the tree
moves on to the second critical parameter – MP1. 
For MP1 values ≤−5.97 kcal/mol, all examples fall
into the sheet with the class “has CD50”, i.e. a suf-
ficiently strong interaction with two regions of the 
main protease is a reliable predictor of the presence 
of correctly defined CD50. In the intermediate zone, 
where MP2 still indicates a fairly strong binding, but 
MP1 is already closer to the threshold, the model 
additionally takes into account the incubation time: 
for 24 h, some of the combinations remain in the 
class without a defined CD50, while at 48 h the tree 
leans towards a class with a defined CD50. Thus, ex-
posure time acts as a secondary, modulating factor 
that can compensate for the insufficient “force” of 
docking, but only in a narrow sub-range of MP1 and 
MP2 values. On the test sample, this model demon-
strates classification performance with all metrics 
equal to 1.0, indicating that the hierarchical combi-
nation of MP2, MP1, and incubation time provides 
deterministic rules for predicting CD₅₀ availability. 
Trait weights and analysis of the exclusion of in-
dividual predictors confirm the dominance of MP2 
and MP1 parameters: they provide the main contri-
bution to the reduction of the Gini index, while the 
time factor affects the quality of classification much 
weaker.

The results for the “cytotoxicity → CTI ≥ 4.0” 
model turned out to be fundamentally different and 
highlighted the structural features of the existing 
dataset. Applying the decision tree to an extended 
trait vector that included docking scores, CD50 nu-
merical values, ID50, CTI itself, encoded treatment 
time and regimen, resulted in a moderately complex 
tree structure (Fig. 2).

Fig. 2. Decision tree for the transition “cytotoxicity → CTI ≥ 4.0”
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Unlike the first model, this tree exhibits bran
ching that attempts to separate compounds achieving 
CTI ≥ 4.0 from those with lower therapeutic indices. 
However, the classification performance reflects the 
challenging nature of this prediction task. The model 
achieved an overall accuracy of 0.89, indicating that 
89 % of test cases were correctly classified. Notably, 
sensitivity was substantially lower at 0.50, meaning  
that only half of the compounds that actually 
achieved CTI ≥ 4.0 were correctly identified by the 
model. In contrast, perfect specificity at 1.00 indi-
cates that all compounds predicted to have CTI < 4.0 
were indeed below this threshold – the model made 
no false positive predictions. This imbalance between 
precision and recall is reflected in the F1-score of 
0.67, while the ROC-AUC of 0.75 suggests mode
rate discriminative ability.

This performance pattern reveals an impor
tant characteristic of the current model: it adopts a 
highly conservative strategy and predicts high CTI 
rarely unless multiple favourable conditions are met. 
Although this approach does eliminate false opti-
mism, it often results in missed opportunities, as 
approximately half of promising compounds are not 
identified. The Markov model of the sequence of 
experiments made it possible to quantify how expe-
dient it is to continue the study at each stage, taking 
into account the costs and probability of obtaining 
at least one candidate with a CTI ≥ 4.0. For states S0

(after docking), S1 (after assessment of cytotoxicity), 
and S2 (after assessment of antiviral activity), values 
of the utility function V(s) were calculated, which 
increase from about 9.7 for S0 to 22.5 for S1 and 84.0 
for S2 as shown in Table 2.

Such monotonous growth means that each sub-
sequent block of experiments significantly increases 
the expected “cost” of the candidate portfolio: at 
the docking stage, information about the potential 
of compounds is still very uncertain; obtaining CD50 
adds an important layer of safety assessment and 
cuts off clearly toxic variants; completion of antiviral 
activity tests virtually determines whether a portfolio 
has a chance of containing at least one drug with 
an acceptable CTI. The calculated optimal policy 
of π*(s) turned out to be unambiguous: for all three 
non-absorption states, the action “continue experi

ments” is recommended, while in the absorption 
states of success or failure – “stop”. On the one 
hand, this is consistent with the high CTI values 
among the samples that have passed the previous fil-
ters: the projected benefit from the complete passage 
of all stages exceeds the total costs. On the other 
hand, such a policy indicates that the structure of 
the experimental program does not currently con-
tain “redundant” stages: each of them significantly 
changes the expected utility, and therefore makes 
a non-trivial contribution to reducing uncertainty 
about CTI.

Interpreting these results in terms of informa-
tion value shows that the greatest gain in utility is 
given by the transition from a post-cytotoxicity state 
to a post-antiviral state. This means that it is the 
ID50 results and the associated CTI values that are 
key to the final decision on the feasibility of promo
ting the compound; information about the docking 
profile and CD50 plays mainly the role of a pre-fil-
ter. The tree “docking → cytotoxicity” clearly shows 
that already at the stage of in silico evaluation, a 
combination of MP2 and MP1 parameters can be 
distinguished, which, with a high probability, leads 
to the formation of a correct CD50 curve. Further, 
the Markov model demonstrates that, despite the 
costs, continuing the studies to the stage of antiviral 
activity is economically justified, since the expec
ted gain from the potential detection of at least one 
candidate with a high CTI significantly exceeds the 
alternative of “stopping” in the early stages. At the 
same time, the moderate performance of the tree 
“cytotoxicity → CTI ≥ 4.0” (Table 3) signals that 
in the current dataset, predicting final therapeutic 
success from intermediate parameters remains chal-
lenging. While the model’s high specificity ensures 
that no unpromising compounds are incorrectly ad-
vanced, its lower sensitivity indicates that approxi-
mately half of actually promising candidates are not 
recognised by the current decision rules, suggesting 
that more sophisticated stratification approaches or 
additional predictive features may be needed to im-
prove early identification of therapeutic candidates.

Numerical evaluation of the information-value  
metrics within the MDP formulation yielded an ex-
pected value of perfect information (EVPI) equal 
to zero, as well as a zero partial value of perfect 
information (EVPPI) for the antiviral stage, while 
the expected value of sample information (EVSI) for 
an additional antiviral experiment was negative and 
equal to −10 in the adopted arbitrary utility units. 
This pattern indicates that, under the current esti-
mates of transition probabilities and reward struc-
ture, even hypothetically perfect knowledge of the 

Таble 2. The value of the utility function V(s) for Markov 
model states  and the optimal policy π*(s)

S0 S1 S2 Ssuccess Sfail

V(Si) 9.688 22.5 84 0 0

π(Si) continue continue continue stop stop

ПРИКЛАДНА МАТЕМАТИКА
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antiviral success probability would not change either 
the optimal policy or the expected value at the initial 
state, so that additional information of this type has 
no incremental decision value. At the same time, the 
negative EVSI reflects the fact that, in the simplified 
scenario considered, a realistic extra experiment on 
antiviral activity does not lead to a sufficient increase 
in the expected utility to compensate for its cost, 
implying that resources would be more efficiently al-
located to adjusting earlier-stage selection criteria or 
expanding the candidate set rather than intensifying 
measurements at the final antiviral stage.

The comparative values of classification met-
rics for both decision trees, as well as the utility 
functions of the states of the Markov model, are 
summarised in Table 3, allow you to quantitatively 
compare the accuracy of predictive decisions and 
the expected effectiveness of various strategies for 
conducting experiments.

Collectively, this indicates that further experi-
mental studies should be directed either to expand 
the sample set (to include more examples with inter-
mediate and low CTIs) or to clarify dosing regimens 
and time regimens, where the gap between efficacy 
and toxicity will be less obvious and, accordingly, 
will provide a richer structure for building more 
complex but informative decision trees.

Conclusions

This research shows that decision trees and 
Markov decision processes are used for comple-
mentary aspects in preclinical antiviral research op-
timisation, and their performance is fundamentally 
shaped by the structure of the available data. The 
decision-tree model linking docking parameters to 
the presence of a well-defined CD50 achieved classi-
fication success on the test set, with all metrics equal 
to 1.0. This indicates that strong binding to the main 
protease, in particular, favourable values of MP1 and 
MP2 combined with incubation time provides de-
terministic rules for predicting the formation of a 
stable dose-response curve. While these results imply 
robust predictive ability within the current dataset, 
the limited sample size requires validation on larger, 

more diverse compound libraries in order to confirm 
generalizability.

In contrast, the tree built for the transition from 
cytotoxicity parameters to CTI ≥ 4.0 exhibited sub-
stantially different performance characteristics. The 
model achieved 89 % overall accuracy but demon-
strated an asymmetric error profile: sensitivity of 
only 0.50 (correctly identifying half of compounds 
with CTI ≥ 4.0) combined with specificity of 1.00 
(no false positives). This classification strategy en-
sures that compounds predicted to achieve high CTI 
are indeed therapeutically promising. Still, it results 
in missed opportunities, as approximately half of 
actually promising candidates are not recognised 
by the current decision rules. The F1-score of 0.67 
and ROC-AUC of 0.75 show that the relationship 
between intermediate experimental parameters and 
final therapeutic success is more complex than can 
be captured by simple threshold-based rules with the 
current feature set and sample size.

The Markov decision process provided a glo
bal, quantitatively interpretable view of the same ex-
perimental pipeline, explicitly integrating transition 
probabilities, experimental costs and the probability 
of achieving at least one candidate with CTI ≥ 4.0. 
The estimated state values V(S0), V(S1) and V(S2) 
increased monotonically during the stage “after 
docking → after cytotoxicity → after antiviral test-
ing”, confirming that each successive block of ex-
periments substantially raises the expected utility of 
the candidate portfolio. The optimal policy consis-
tently recommended the continuation of the pre-
clinical program from docking through cytotoxicity 
to antiviral assays, and that the stop is required only 
in the absorbing states of success or failure. Despite 
the second decision tree performing the imperfect 
classification, the Markov model still indicated that, 
under the assumed costs and probabilities of suc-
cess, the full three-stage pipeline is an economically 
justified solution and does not contain redundant 
experimental steps.

The value of information analysis shows how 
much each stage of the pipeline contributes to redu
cing uncertainty and improving decision quality. The 
results suggest that the largest incremental gain in 

Таble 3. Comparative metrics of decision tree models and Markov model

Model Positive class Accuracy
Sensitivity 
(Recall)

Specificity F1-score ROC-AUC

Docking → CD50 (presence of
CD50 defined)

has CD50 1 1 1 1 1

Cytotoxicity → CTI ≥ 4.0 CTI ≥ 4.0 0.89 0.50 1.00 0.67 0.75
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expected utility appears when the compound moves 
from the state after cytotoxicity assessment to the state 
after antiviral activity testing. This highlights the deci-
sive role of ID50 and derived CTI values in confirming 
or rejecting candidates. Information on docking and 
CD50 acts primarily as a preliminary filter that shapes 
the distribution of outcomes that are observed at la
ter stages. Decision trees are most effective as local, 
interpretable tools for formalising the cut-off rules 
based on docking and toxicity profiles at the early 

stages, whereas the Markov model outperforms them 
in terms of providing a globally optimal, cost-aware 
strategy for navigating the entire preclinical pipe-
line. Together, these results show that further deve
lopment should focus on expanding and rebalancing 
the experimental dataset (to enable more informative 
tree-based models at the CTI level) and on refining 
Markov and value of information formulations to in-
corporate richer biological and economic parameters 
in the optimisation of antiviral preclinical programs.
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ПРИЙНЯТТЯ РІШЕНЬ У ПРОЦЕСІ ДОКЛІНІЧНОЇ РОЗРОБКИ ПРОТИВІРУСНИХ ПРЕПАРАТІВ ПРОТИ КОРОНАВІРУСУ: 
МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА АНАЛІЗ ЦІННОСТІ ІНФОРМАЦІЇ

Проблематика. Доклінічне оцінювання кандидатів як противірусних препаратів – це багатоетапний процес, який 
супроводжується значною невизначеністю і потребує формальних інструментів підтримки прийняття рішень. Традиційні підходи 
до скринінгу сполук зазвичай не містять структурованих методів оптимізації для послідовного вибору, а також оцінювання 
доцільності й ризиків переходів між етапами. Це призводить до неефективності під час відбору перспективних молекул і підвищує 
ймовірність вибору субоптимальних дослідницьких траєкторій.

Мета дослідження. Розробити й обґрунтувати формалізований підхід, щоб оптимізувати переходи між етапами доклінічного 
тестування противірусних препаратів. Цей підхід інтегрує дерева рішень і марковську модель для оцінювання ефективності, 
ризиків і цінності додаткової інформації, що забезпечить раціональне планування послідовності доклінічних досліджень.

Методика реалізації. Експериментальні дані з молекулярного докінгу, цитотоксичності CD50 та антивірусної активності 
IC50 були інтегровані в каскадну систему оцінювання із критерієм переходу ХTI ≥ 4. Дерева рішень забезпечили інтерпретовані 
правила просування сполук, а за допомогою марковської моделі було змодельовано послідовні стратегії в умовах невизначеності 
та оцінено доцільність переходів між етапами. За допомогою аналізу цінності інформації було оцінено очікувану користь 
додаткових експериментальних даних.

Результати дослідження. Описаний підхід дав узгоджені технічні результати. Дерево рішень для прогнозування  
CTI ≥ 4,0 показало консервативний шаблон класифікації, правильно визначаючи сполуки з високим терапевтичним потенціалом, 
але пропускаючи частину ефективних кандидатів. Марковська модель допомогла оцінити стан системи на етапах докінгу, 
цитотоксичності й антивірусного тестування, що показало зростання очікуваної корисності. Ґрунтуючись на отриманих результатах, 
було визначено оптимальні рішення щодо продовження досліджень до антивірусних тестів, тоді як за допомогою аналізу цінності 
інформації було встановлено, що найбільший приріст очікуваної корисності досягають після тестування антивірусної активності, 
коли ранні етапи виконують роль фільтрів.

ПРИКЛАДНА МАТЕМАТИКА
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Висновки. Дослідження показує, що дерева рішень і марковські моделі відображають різні, але взаємодоповнювальні 
аспекти доклінічного оцінювання. Дерева рішень допомагають структурувати правила на ранніх етапах дослідження, показуючи, 
як етапи докінгу та цитотоксичності впливають на просування сполук. Водночас їх обмежена чутливість підкреслює складність 
передбачення кінцевого противірусного успіху на основі проміжних показників. Марковський процес дає ширший погляд 
на послідовність експериментів і демонструє виправданість вибору повного трирівневого дослідження та впливу невизначеності 
й витрат на рішення щодо прогресії сполук. Результати аналізу цінності інформації уточнюють важливість кожного етапу, 
підкреслюючи ключову роль даних про антивірусну активність. Разом ці результати показують важливість впровадження методів 
прийняття рішень для підвищення структури, прозорості та ефективності доклінічних досліджень противірусних препаратів.

Ключові слова: коронавірус; препарат; доклінічне оцінювання; дерево рішень; марковський процес прийняття рішень; 
цінність інформації.
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МЕТОД ФРАКТАЛЬНО-КЕРОВАНОЇ РЕГУЛЯРИЗАЦІЇ АВТОЕНКОДЕРІВ  
ДЛЯ НАПІВКЕРОВАНОГО НАВЧАННЯ В ЗАДАЧАХ КЛАСИФІКАЦІЇ  

МЕДИЧНИХ ЗОБРАЖЕНЬ

Проблематика. Класифікація медичних зображень за допомогою глибокого навчання є критично важливою 
задачею, однак її ефективність обмежується дефіцитом розмічених даних, збір яких є дорогим. Методи 
напівкерованого навчання (НН) вирішують цю проблему, залучаючи нерозмічені дані. Поширені підходи, що 
ґрунтуються на автоенкодерах (АЕ), використовують реконструкцію як навчальний сигнал. Утім, стандартна 
мінімізація втрат реконструкції не гарантує, що отриманий латентний простір буде оптимально структурований 
для вирішення завдання класифікації, оскільки модель може фокусуватися на нерелевантних для діагностики 
ознаках.
Мета дослідження. Розробка та експериментальна перевірка нового методу регуляризації латентного простору – 
фрактально-керованої регуляризації (FDR). Мета полягає у покращенні метричних показників класифікації 
медичних зображень в умовах гострого дефіциту розмічених даних (5 %) за допомогою інтеграції фрактальної 
розмірності (ФР) як додаткового, апріорного навчального сигналу.
Методика реалізації. Запропонована модель FDR-AE ґрунтується на архітектурі АЕ, доповненій двома 
повнозв’язними шарами, що приєднані до латентного простору: класифікаційним та регресійним. Регресійний 
шар навчається прогнозувати ФР вхідного зображення, обчислену заздалегідь методом «box-counting». 
Загальна функція втрат є комбінацією трьох компонент: втрат класифікації на 5 % розмічених даних і втрат 
реконструкції та фрактальної регресії на 100 % даних. Ефективність методу перевірено на трьох наборах 
даних різної модальності (ISIC2024, COVID-19 Radiology, Brain Tumor MRI) порівняно з базовою згортковою 
мережею Base-CNN і стандартним напівкерованим АЕ SSL-AE.
Результати дослідження. Експерименти показали стабільну перевагу запропонованого методу. На датасеті 
ISIC2024 модель FDR-AE досягла F1-Score 0.508 для класу «malignant» проти 0.431 у SSL-AE та 0.304 у Base-
CNN. На датасеті COVID-19, F1-Score для класу «covid19» склав 0.722 для FDR-AE проти 0.695 для SSL-AE. 
У 4-класовій задачі Brain Tumor модель FDR-AE продемонструвала покращення F1-Score щодо всіх класів, 
причому найбільший приріст +0.079 та +0.054, відповідно, спостерігався для класів 0 та 3, що мали найбільшу 
взаємну статистичну відмінність у ФР.
Висновки. Фрактально-керована регуляризація доводить, що ФР є цінним апріорним сигналом для навчання 
більш якісних і структурно обґрунтованих представлень у задачах НН. Метод особливо ефективний на простих 
архітектурах в умовах сильного дефіциту даних. Перспективи подальших досліджень включають використання 
FDR як методу попереднього навчання (pre-training) або впровадження динамічного коефіцієнта для 
регресійного компонента функції втрат.
Ключові слова: напівкероване навчання; фрактальна розмірність; автоенкодер; регуляризація латентного 
простору; медичні зображення; класифікація зображень; box-counting.

Вступ

Автоматизований аналіз медичних зобра-
жень на основі глибоких нейронних мереж є 
важливим напрямом досліджень, оскільки може 

допомогти у ранній діагностиці патологій. Од-
нією з основних проблем у впровадженні таких 
систем є дефіцит розмічених даних, отримання 
й розмітка яких вимагає висококваліфікованих 
спеціалістів і суттєвих витрат грошей і часу. 
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Для вирішення цієї проблеми активно розвива-
ються методи НН, що дають можливість вико-
ристовувати одночасно розмічені й нерозмічені 
дані для навчання моделей.

Поширеним підходом у НН є використан-
ня AE, які вивчають корисні ознаки через за-
дачу реконструкції вхідних зображень. Такий 
підхід довів свою ефективність у таких методах, 
як Adversarial Autoencoders та Ladder Networks. 
Утім, стандартна мінімізація втрат реконструк-
ції не гарантує, що латентний простір моделі 
буде оптимально структурованим для вирішення 
завдання класифікації. Наше припущення ґрун-
тується на тому, що його можна покращити, 
використовуючи апріорні знання про структуру 
і складність даних, на яких навчається модель.

Постановка задачі

Метою цієї роботи є розробка та експери-
ментальна перевірка нового методу НН – FDR. 
Ми пропонуємо використовувати ФР як додат-
ковий навчальний сигнал для покращення якості 
латентного простору в задачах НН. Ефективність 
методу продемонстровано на трьох медичних да-
тасетах в умовах гострого дефіциту розмічених 
даних (5 % вибірки), де запропонована модель 
АЕ із фрактальною регуляризацією FDR-AE по-
рівнюється з базовою керованою моделлю Base-
CNN і стандартним напівкерованим АЕ SSL-AE.

Фрактальна розмірність як класифікаційна 
ознака у медичних зображеннях

Виділення інформативних ознак, що опи-
сують складні біологічні структури, є ключовою 
проблемою під час аналізу медичних зображень. 
Фрактальна розмірність – це числовий показник, 
що оцінює структурну складність і нерегуляр-
ність об’єкта. Цей показник широко використо-
вують як ключову ознаку в багатьох медичних 
дослідженнях, оскільки доведено, що ФР коре-
лює з діагностичними станами [1–5]. Наприклад, 
у нейроонкології ФР корелює з показником агре-
сивності гліобластом [3], а в мамографії доведе-
но чітку кореляцію між злоякісністю утворення 
та його ФР [5]. Утім, у більшості досліджень ФР 
використовують як основну ознаку для аналізу. 
Відповідно, якщо статистичні розподіли значень 
ФР суттєво накладаються один на одного, – ви-
користання цього показника як основного сиг-
налу для класифікації є неможливим. У цьому 
дослідженні ми пропонуємо метод використання 
ФР як сигналу для НН (фрактальна регуляри-

зація латентного простору мережі) і покажемо, 
що навіть в разі суттєвого накладання статистич-
них розподілів ця ознака може суттєво покращу-
вати якість моделі.

Вибір та адаптація методу обчислення фрак
тальної розмірності

Є багато методів обчислення ФР зобра-
жень, що адаптовані під різні задачі та структуру 
самих зображень, зокрема основані на базовому 
методі box-counting [6–9], морфології об’єкта 
[10] чи навіть Фур’є-спектра [11–12]. Для цього 
дослідження було обрано один із найбільш по-
ширених методів визначення ФР: box-counting. 
Він полягає у накладанні на зображення сіток 
з різними розмірами комірок r та підрахунку 
кількості комірок Nr, що містять пікселі вимі-
рюваного об’єкта. Фрактальну розмірність Dbox 
вимірюють як нахил прямої графіка залежності 
Nr  від 1/r:

0
log( )lim .1log( )

r
box r

ND

r

→=

На практиці вищезгаданий нахил графіка 
найчастіше вимірюють за допомогою лінійної 
регресії [9]. Вибір цього методу був зумовлений 
простотою обчислення. Також було експери-
ментально визначено, що у розглянутих нами 
наборах даних значення ФР, підраховані цим 
методом, мають найбільшу різницю у середніх 
значеннях для різних класів. Наприклад, для на-
бору даних ISIC2024 (див. «Опис наборів даних») 
box-counting показав ΔMean = 0.149, тоді як най-
ближчий за цим показником метод Minkovsky-
Bouligand [10] показав різницю всього у 0.084.

Стандартний метод підрахунку Nr вимагає 
бінаризованого зображення. Це є проблемою 
для медичних зображень, оскільки діагностич-
но важливою є інформація, що може міститися 
у відтінках сірого. Для вирішення цієї пробле-
ми у нашій роботі ми використовуємо адап-
тивну бінаризацію замість фіксованого порогу. 
Для кожного зображення пороговим значенням 
буде середнє (mean) по зображенню.

Статистичне обґрунтування фрактальної регу
ляризації

Основною гіпотезою запропонованого мето-
ду є те, що обчислена ФР може слугувати ефек-
тивним джерелом «слабкого» сигналу для регу-
ляризації латентного простору мережі. Для цього 
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потрібно, щоб середні значення ФР різнилися 
для різних класів. При цьому перевагою вико-
ристання сигналу саме як регуляризаційного, 
а не як основного сигналу, для класифікації по-
лягає в тому, що накладання розподілів ФР не є 
таким критичним для цієї задачі. Щоб підтвер-
дити вищезгадану гіпотезу, ми провели статис-
тичний аналіз на трьох обраних датасетах, щоб 
перевірити, чи існує статистично значуща різни-
ця між класами. З результатів дослідження, на-
ведених у табл. 1 та 2, можна побачити, що всі 
три набори даних мають статистично значущу 
різницю між класами (детальний опис набо-
рів даних та обґрунтування їх вибору викладено 
у розд. «Матеріали та методологія досліджень»). 
Наявність різниці між середніми значеннями 
вимірів ФР (ΔMean), а також співвідношення  
сигнал/шум (ΔMean/max(σ)), що не близькі до  
нуля, свідчать про релевантність застосування та-
кої ознаки.

Регуляризація за допомогою фрактальної 
регуляризації

Запропонований метод полягає у струк-
турній регуляризації латентного простору. Ми 
вводимо регресійний шар ffd, що приєднується 

до латентного вектора z і навчається прогнозу-
вати ФР зображення, порівнюючи свої прогнози 
ffd (z) із значеннями d , визначеними апріорним 
методом (у нашому випадку box-counting). Фор-
мулу для обчислення втрат регресії Lfd для батчу 
розміру N описують таким чином:
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 та di – прогнозоване та апріорне значення 
ФР для і-го вектора у батчі, а zi – латентне пред-
ставлення і-го вхідного зображення.

Оскільки статистичний аналіз підтвердив, 
що ФР є релевантною ознакою, її явне коду-
вання у латентному просторі може покращувати 
його структуру у наступній класифікації.

Щоб запобігти втраті іншої цінної інфор-
мації під час регресії ФР, ми застосуємо цей 
метод як модифікацію архітектури АЕ. Головне 
завдання АЕ – мінімізація функції втрат рекон-
струкції Lrec. Вона гарантує, що вектор z збері-
гатиме максимум інформації для відновлення 
зображення. Цю регуляризаційну властивість 

Таблиця 2. Статистичний аналіз фрактальної розмірності, підрахованої методом box-counting (датасети з чотирма 
класами) 

Набір даних Mean FD (class 0) Mean FD (class 1) Mean FD (class 2) Mean FD (class 3)

Brain Tumor MRI 
Dataset

1.88 518 1.88 538 1.8851 1.87 125

σ (class 0) σ (class 1) σ (class 2) σ (class 3)

0.0 188 859 0.0 211 904 0.0 318 129 0.0 140 467

Набір даних Клас Клас ΔMean max σ ΔMean/max σ

Brain Tumor MRI 
Dataset

0 1 0.0002 0.0 211 904 0.00 943 824

0 2 0.00 008 0.0 318 129 0.0 025 147

0 3 0.01 393 0.0 188 859 0.7 375 873

1 2 0.00 028 0.0 318 129 0.00 880 146

1 3 0.01 413 0.0 211 904 0.66 681 139

2 3 0.01 385 0.0 318 129 0.43 535 798

Таблиця 1. Статистичний аналіз фрактальної розмірності, підрахованої методом box-counting (датасети із двома 
класами)

Набір даних
Mean FD 
(class 0)

Mean FD 
(class 1)

ΔMean σ (class 0) σ (class 1)
ΔMean/
max σ

ISIC2024 Challenge 1.375 1.524 0.149 0.498 0.389 0.299

COVID-19 Radiology Database 1.851 1.828 0.023 0.024 0.023 0.941

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ
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АЕ широко використовують у НН для навчання 
на нерозмічених даних, наприклад в adversarial 
autoencoders [13] та ladder network архітектурі 
[14]. Таким чином, оптимізація двох вищевка-
заних функцій втрат діє одночасно як регуляри-
зація повноти інформації (Lrec) і як структурна 
регуляризація (Lfd) у латентному просторі.

Для порівняння реконструйованого зобра-
ження з оригінальним ми використали MSE 
(mean squared error). Для навчання на розмічених 
даних було додано класифікаційний шар, що ви-
користовує cross-entropy loss функцію (LCE). За-
гальну функцію втрат можна описати так:

L = LCE + λrec Lrec + λfd Lfd.

Гіперпараметри λrec та λfd контролюють вне-
сок некерованого навчання. Оптимізація цієї 
функції втрат змушує енкодер створювати простір 
z, що є одночасно повним, структурно чутливим 
та оптимізованим для класифікації. На рис. 1 
зображено модель, що реалізує запропонований 
метод. Стрілками позначено звʼязки між компо-
нентами моделі, а пунктирними лініями – умов-
ні звʼязки, які демонструють, як обчислюються 
компоненти функції втрат.

Матеріали і методологія дослідження

Опис наборів даних
Для експериментальної демонстрації ефек-

тивності запропонованого методу було обра-
но три відкриті датасети медичних зображень, 
що різняться за типом діагностичної задачі, ві-
зуальними характеристиками, а також статис-

тичними властивостями значень ФР. У табл. 3 
надано опис кожного датасету із поясненнями 
трансформацій та обґрунтування вибору кожно-
го датасету.

Архітектура моделей для експериментів

Експериментальну частину було виконано 
у середовищі Python за допомогою бібліотеки 
Pytorch. Для практичної демонстрації результа-
тів дослідження було розроблено й реалізовано 
три архітектури нейронних мереж, кожна з яких 
відіграє певну роль у дослідженні.

Базова модель – класична згорткова ней-
ронна мережа Base-CNN, яка слугує еталонною 
моделлю для керованого навчання. Її архітек-
тура складається із чотирьох послідовних шарів 
Conv2d→ReLU. Після згорткових шарів подан-
ня передається послідовно у три повнозв’язні 
шари Linear. Усі інші моделі у цьому експе-
рименті були побудовані на основі цієї моделі 
з мінімальними модифікаціями, потрібними 
для реалізації відповідної архітектури. Цю мо-
дель навчали тільки на розміченій частині даних 
(5 % даних). Порівняння метрик інших моделей 
із базовою моделлю дають можливість відслід-
кувати, наскільки використання нерозмічених 
даних покращує класифікаційні якості моделі 
на тестовій вибірці, тобто наскільки запропоно-
ваний метод НН ефективний.

Для порівняння запропонованого методу 
з уже відомими методами НН було обрано базо-
вий АЕ як найближчу за структурою модель. Авто-
енкодери довели свою ефективність у цьому класі 
задач за рахунок їхньої здатності вивчати зміс-

товні ознакові подання (feature 
representations) з нерозмічених 
даних [19, 14]. У цій роботі модель 
напівкерованого АЕ (SSL-AE) 
включає енкодер, що повністю 
повторює архітектуру енкодера 
базової моделі, а також декодер, 
що дзеркально відтворює його 
структуру, використовуючи шари 
ConvTranspose2d→ReLU для ре-
конструкції зображення. Слід за- 
значити, що у відкритому досту-
пі не було знайдено публікацій, 
присвячених НН на обраних на-
борах даних з ідентичною екс
периментальною  конфігурацією 
(зокрема, 5  % розмічених да-
них). Через це для забезпечення 
коректного і чесного порівняння Рис. 1. Модель автоенкодера з фрактальною регуляризацією
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Набір даних Призначення Характеристики Попередня обробка

ІSIC2024 
Challenge

Бінарна 
класифікація 
уражень 
на шкірі для 
виявлення 
раку

Датасет містить 400 000 зображень 
уражень шкіри, що були отримані 
з 3d-знімків усього тіла (технологія 3d 
TBP) [15]

Цей датасет характеризується 
суттєвим дисбалансом класів. 
Клас «benign» становить більше 
99 % всіх даних, тому для 
ефективного навчання датасет 
був збалансований за рахунок 
видалення із навчальної вибірки 
більшості екземплярів. 
Усі зображення були 
нормалізовані, а також зменшені 
до розміру 96×96 для зниження 
витрат ресурсів в експерименті

Містить 
два класи, 
що познача
ють злоякісні 
та   доброякіс
ні  утворен
ня – «ma-
lignant» 
та «benign»

Класифікація 
і сегментація 
захворювань 
за радіологіч- 
ними 
знімками 
легень пацієн- 
тів

Набір даних, зібраний дослідниками 
з Університету Катару та Дакки [16, 17].
Датасет складається із трьох класів: 
1) 11 956 знімків пацієнтів із COVID-19,
2) 11 263 знімки вірусної пневмонії
(інші інфекції),
3) 10 701 знімок здорових легень.
Цей датасет є важливим ресурсом 
для демонстрації ефективності 
запропонованого методу, оскільки 
візуальні ознаки COVID-19 можуть бути 
менш помітними й вимагати аналізу 
складних текстурних особливостей 
знімку

Для спрощення експериментів 
у межах цьного дослідження 
було використано підмножину, 
що складається із класів 
«COVID-19 positive» та «Normal».  
Таким чином у нашому дослід
женні ми розглядали бінарну 
класифікацію. 
Усі зображення були нормалізо
вані, а також зменшені до розмі
ру 96×96 для зниження витрат 
ресурсів в експерименті

Brain Tumor 
MRI Dataset

Багатокласова 
класифікація 
пухлин мозку 
за МРТ-зобра
женнями

Цей набір даних є поєднанням трьох 
джерел (figshare, SPARTAJ, Br35H) і міс
тить 7023 знімки МРТ людського мозку 
[18]. Набір даних розподілено на чотири 
класи: гліома (glioma), менінгіома (me-
ningioma), гіпофізарна пухлина (pituitary) 
і відсутність пухлини (no tumor).
Класи подані у збалансованих 
пропорціях. 
Датасет було обрано для демонстрації 
застосування запропонованого методу 
на багатокласовому датасеті

Для спрощення експериментів 
у межах цьного дослідження 
було використано підмножину, 
що складається із класів 
«COVID-19 positive» та «Normal».  
Таким чином у нашому дослід
женні ми розглядали бінарну 
класифікацію. 
Усі зображення були нормалізо
вані, а також зменшені до роз
міру 96×96 для зниження витрат 
ресурсів в експерименті

Таблиця 3. Опис наборів даних, використаних для експериментів

базова модель SSL-AE була реалізована нами са-
мостійно з тією ж базовою архітектурою, що й за-
пропонована модель FDR-AE.

Третьою є запропонована модель АЕ із фрак
тальною регуляризацією FDR-AE. Вона роз
ширює архітектуру SSL-AE і включає регресій-
ну частину, що намагається на основі вихідного 
шару енкодера визначити фрактальну розмір-

ність початкового зображення. Регресор склада-
ється із двох послідовних повнозвʼязних шарів 
Linear→ReLU. Таким чином функція втрат фор-
мується як комбінація втрат класифікації, рекон-
струкції та втрат регресійної частини. На рис. 2 
зображено внутрішню структуру компонентів 
моделі, а також яким чином обчислюють різ-
ні компоненти функції втрат під час навчання 
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Рис. 2. Модель автоенкодера із фрактальною регуляризацією. 

Внутрішня структура компонентів моделі

(компоненти функції втрат на рис. 2 обведено 
еліпсами).

У табл. 4, 5 та 6 наведено метричні показ-
ники запропонованих моделей для трьох вище-
згаданих датасетів.

Результати експериментів (табл. 4–6) де-
монструють перевагу запропонованого мето
ду на всіх трьох наборах даних. На датасе-
ті ISIC2024 (табл. 4) FDR-AE модель досягла 
F1-Score 0.508 для малорепрезентованого класу 
«malignant», значно перевершивши як Base-
CNN (0.304), так і SSL-AE (0.431). Аналогіч-
на ситуація спостерігається також і в датасе-
ті COVID-19 (табл. 5), де FDR-AE покращив 
якість F1-Score для класу «covid-19» на 0.027 
та на 0.112 відносно моделей SSL-AE та Base-
CNN. Особливо показовими є результати на ба-
гатокласовому датасеті Brain Tumor (табл. 6), 
де метод суттєво покращив F1-score для всіх 
класів, причому найбільший приріст відносно 
SSL-AE отримали класи 0 (0.079) та 3 (0.054), 
які мали найбільшу взаємну статистичну від-
мінність у ФР (ΔMean/max(σ) = 0.738). Таким 
чином, у всіх трьох сценаріях фрактальна ре-
гуляризація виявилася ефективнішою за стан-
дартну реконструкцію (SSL-AE), підтверджую-
чи, що ФР є цінним сигналом для навчання 
більш якісних представлень у задачах НН.

Висновки

Наявні рішення для класифікації медичних 
зображень в умовах дефіциту даних ґрунтуються 
на НН (SSL), зокрема на АЕ. Утім, стандартна 
реконструкція не гарантує створення латентного 
простору, оптимального для класифікації. У цій 
статті запропоновано новий метод – фракталь-
но-керовану регуляризацію (FDR-AE) – для 
вирішення цієї проблеми. На відміну від ві-
домих AE, наш метод вводить додатковий на-
вчальний сигнал – регресійний шар, який 
навчається прогнозувати фрактальну розмір-

Таблиця 4. Метричні показники моделей, навчених на 5 % розмічених даних ISIC2024 

Модель
Precision 
(benign)

Precision 
(malignant)

Recall  
(benign)

Recall  
(malignant)

F1 Score 
(benign)

F1 Score 
(malignant)

Base-CNN 0.951 0.240 0.897 0.414 0.923 0.304

SSL-AE 0.596 0.524 0.737 0.367 0.659 0.431

FDR-AE 0.615 0.517 0.632 0.500 0.623 0.508

Таблиця 5. Метричні показники моделей, навчених на 5 % розмічених даних COVID-19 Radiology Database

Модель
Precision 
(normal)

Precision 
(covid19)

Recall  
(normal)

Recall 
(covid19)

F1 Score 
(normal)

F1 Score 
(covid19)

Base-CNN 0.799 0.682 0.873 0.552 0.834 0.610

SSL-AE 0.684 0.878 0.920 0.575 0.785 0.695

FDR-AE 0.702 0.896 0.930 0.605 0.800 0.722
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ність зображення з його латентного вектора. 
Перевага цього методу полягає у примусовому 
збереженні структурно важливої інформації.

Експерименти з трьома наборами даних 
(ISIC2024, COVID-19, Brain Tumor) за умови 
5  % маркованих даних показали, що FDR-AE 
стабільно перевершує як базову повністю ке-
ровану модель (Base-CNN), так і стандартний 
АЕ (SSL-AE). Наприклад, у завданні з чотирма 
класами Brain Tumor (табл. 6) FDR-AE поліп-
шив показник F1-Score для всіх класів, причо-
му найбільше зростання (+0,079 і +0,054) було 
для класів 0 і 3. Сферою застосування методу 
є системи комп’ютерної діагностики на основі 
нейронних мереж. Конкретно цей метод може 
бути застосований як для НН, так і для перед
навчання моделей.

Також у процесі дослідження було виявлено 
суттєве обмеження – метод найбільш ефектив-
ний на відносно простих архітектурах та в разі 
сильного дефіциту даних. На складних моделях 
з великою кількістю даних ФР може погіршува-
ти кінцеві показники. Це відкриває шляхи для 
покращення, які стануть предметом наших на-
ступних робіт: використання FDR-AE як методу 
попереднього навчання (pre-training) і впровад
ження динамічного коефіцієнта, що автоматич-
но зменшуватиме вплив регуляризації зі зрос-
танням точності моделі. Практична реалізація 
цих підходів дозволить створити більш стабільні 
та ефективні моделі НН для підвищення точ-
ності автоматизованої діагностики в реальних 
клінічних умовах.

Таблиця 6. Метричні показники моделей, навчених на 5 % розмічених даних Brain Tumor MRI Dataset 

Модель Precision (class 0) Precision (class 1) Precision (class 2) Precision (class 3)

Base-CNN 0.683 0.447 0.703 0.598

SSL-AE 0.720 0.500 0.848 0.716

FDR-AE 0.704 0.560 0.848 0.797

Модель Recall (class 0) Recall (class 1) Recall (class 2) Recall (class 3)

Base-CNN 0.460 0.359 0.773 0.833

SSL-AE 0.447 0.572 0.810 0.927

FDR-AE 0.570 0.549 0.867 0.940

Модель F1 Score (class 0) F1 Score (class 1) F1 Score (class 2) F1 Score (class 3)

Base-CNN 0.550 0.399 0.736 0.696

SSL-AE 0.551 0.534 0.828 0.808

FDR-AE 0.630 0.554 0.857 0.862
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V.Y. Danilov, O.O. Zarytskyi

METHOD FOR FRACTAL-DRIVEN REGULARIZATION OF AUTOENCODERS FOR SEMI-SUPERVISED LEARNING IN 
MEDICAL IMAGE CLASSIFICATION TASKS

Background. Medical image classification using deep learning is a critical task, yet its effectiveness is constrained by the scarcity of 
labelled data, which is expensive to acquire. Semi-supervised learning (SSL) methods address this by leveraging unlabelled data. Common 
autoencoder (AE)-based approaches use reconstruction as a training signal. However, standard reconstruction loss minimisation does not 
guarantee that the resulting latent space will be optimally structured for the classification task, as the model may focus on diagnostically 
irrelevant features.

Objective. The paper aims to develop and experimentally validate a novel latent space regularisation method: fractal-driven 
regularisation (FDR). The goal is to improve classification metrics for medical images under conditions of severe labelled data scarcity 
(5 %) by integrating fractal dimension (FD) as an additional, a priori training signal.

Methods. The proposed model (FDR-AE) is based on an autoencoder architecture, augmented with two heads attached to the 
latent space: a classification head and a regression head. The regression head is trained to predict the input image’s FD, which is pre-
calculated using the “box-counting” method. The total loss function is a combination of three components: classification loss (on 5 % 
labelled data) and both reconstruction and fractal regression losses (on 100 % of data). The method’s efficac was validated on three 
datasets of different modalities (ISIC2024, COVID-19 Radiology, Brain Tumor MRI), comparing it against a baseline convolutional network 
(Base-CNN) and a standard semi-supervised autoencoder (SSL-AE).

Results. The experiments demonstrated a consistent advantage for the proposed method. On the ISIC2024 dataset, FDR-AE 
achieved an F1-Score of 0.508 for the “malignant” class, compared to 0.431 for SSL-AE and 0.304 for Base-CNN. On the COVID-19 
dataset, the F1-Score for the “covid19” class was 0.722 for FDR-AE versus 0.695 for SSL-AE. In the 4-class Brain Tumor task, FDR-AE 
showed improved F1-Scores across all classes, with the most significan  gains (+0.079 and +0.054) observed for classes 0 and 3, which 
also had the greatest mutual statistical difference in their FD values
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Conclusions. Fractal-driven regularisation demonstrates that FD is a valuable a priori signal for learning higher-quality, 
structurally grounded representations in SSL tasks. The method is particularly effective on simple architectures under severe data 
scarcity. Prospects for future research include utilising FDR as a pre-training method or implementing a dynamic coefficien for the 
regression component of the loss function.

Keywords: semi-supervised learning; fractal dimension; autoencoder; latent space regularisation; medical images; image 
classification; box-counting
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Introduction

Malignant skin lesions, such as squamous cell 
carcinoma and melanoma, can metastasise at ad-
vanced stages, significantly reducing the chances 
of successful treatment. Among those, melanoma 
is considered the most aggressive skin cancer type. 
Late-stage melanoma has a low likelihood of a posi- 
tive outcome. In contrast, early-stage lesions can of-
ten be surgically removed with just minimal or no 
scarring [1]. However, the availability of compe-
tent diagnostics is often limited due to a shortage of 
healthcare specialists and technologies. Consequent-
ly, there is ongoing research focused on developing 

robust computer-aided diagnostic (CAD) systems le-
veraging deep learning (DL) techniques, which is be-
ing undertaken by various teams, including ISIC [2].

Data feature engineering is a significant part of 
any machine learning (ML) pipeline. Since human 
skin exhibits fractal-like characteristics, it is hy-
pothesized that Fractal Dimension (FD) may serve 
as a valuable feature for enhancing DL-based skin 
lesion classification models [3]. FD is a metric that 
quantifies the complexity of fractal-like structures.

To investigate this hypothesis, we employed 
the Vision Transformer (ViT) [4] model as a fea-
ture extractor, as it has demonstrated strong perfor-
mance in skin cancer classification tasks [5].
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DEEP LEARNING-BASED MELANOMA CLASSIFICATION ENHANCED  
BY FRACTAL DIMENSION ANALYSIS

Background. Melanoma is a malignant skin lesion that is prone to metastasise aggressively, leading to an almost 
guaranteed lethal outcome if left unchecked. In contrast, early-stage detection allows for the tumour to be removed 
via a harmless surgical procedure that may not even leave a scar. However, the availability of competent diagnos-
tics are often limited due to a shortage of healthcare specialists and technologies. Deep Learning models such as 
Visual Transformer (ViT) have demonstrated strong performance, but researchers continuously seek to improve 
the results by incorporating new features. Since human skin exhibits fractal-like characteristics, it is theorised that 
metrics quantifying this complexity can act as valuable supplementary features for DL models, leading to increased 
classification accuracy.
Objective. We investigated the impact of the integration of fractal dimension (FD) on a Vision Transformer deep 
learning model used for melanoma classification. A comparison was conducted between the model that was ex-
posed to random noise and the models that were provided with computed FD values.
Methods. Vision Transformer was used as a feature-extracting backbone pre-trained on the ImageNet dataset. Fine-tuning  
was done on this backbone in combination with a classification head targeted to distinguish melanoma vs. nevus classes. 
Along with extracted features, the classification head received FD value. An identical model received random noise 
instead of FD. Statistical testing and FD impact analysis were conducted to validate the significance of the new feature.
Results. Integrating FD into ViT showed noticeable improvement in test metrics. SHAP analysis confirmed the 
meaningfulness of the new feature. McNemarʼs test validated that the difference in model predictions was statisti-
cally significant.
Conclusions. The results suggest that FD can serve as a valuable supplementary feature for DL models, and the 
integration of biomarkers such as FD provides a basis for more robust melanoma classification.
Keywords: deep learning; vision transformer; melanoma; fractal dimension; XAI; skin cancer.
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Contributions

We hypothesise that integrating FD as a feature 
to DNN Skin Cancer Classifier can improve the re-
sults. The main contributions of this study are as fol-
lows: We developed a deep neural network (DNN) 
classifier that combines ViT-extracted features with 
FD as an additional input. We conducted statistical 
analysis, including McNemar’s test, to confirm the 
significance of the observed performance improve-
ments after incorporating FD. Evaluation of the FD 
impact was performed using SHAP (SHapley Addi-
tive exPlanations).

Related Work

Fractal Dimension in Skin Lesion Analysis. Frac-
tal Dimension has been explored as a quantitative 
metric to capture the complexity and irregularity of 
skin lesion boundaries. Studies have demonstrated 
that FD can potentially serve as a discriminative 
feature in differentiating between benign and malig-
nant lesions [3]. For instance, research utilising the 
Higuchiʼs method for computing surface FD, com-
bined with colour features, achieved classification 
accuracy of approximately 80 % [6]. Despite these 
promising results, the integration of FD into DL 
architectures for skin lesion classification remains 
fairly underexplored. We previously made efforts on 
the integration of FD to DL models such as Vision 
Transformer. The study showed that FD can posi-
tively impact a modelʼs output [7]. Another of our 
studies explored approximating FD for skin lesions. 
In this study, the box counting dimension and its 
modification were compared against the Hausdorff 
dimension of real fractals [8].

Vision Transformers in Skin Cancer Classi-
fication. ViTs leverage self-attention mechanisms 
to capture global contextual information, which is 
particularly beneficial in analysing complex skin le-
sion patterns. Recent studies have demonstrated the 
efficacy of ViTs in skin cancer classification tasks, 
achieving high accuracy rates [5]. For example, a 
study employing a ViT model on the HAM10000 
dataset reported an accuracy of 96.15 % [9].

Explainable AI in Medical Image Classifica-
tion. The integration of explainable AI (XAI) tech-
niques in medical image classification has become 
increasingly important to enhance model trans-
parency and trustworthiness. SHapley Additive 
exPlanations (SHAP) is one such technique that 
provides insights into feature contributions towards 
model predictions. In the context of skin lesion 
classification, SHAP has been utilised to interpret 

model decisions, thereby aiding in the validation 
and acceptance of AI systems in clinical settings 
[10].

Methods

Model Selection and Study Design. The Vision 
Transformer architecture was selected as the base 
model, building upon our previous investigation into 
integrating FD in [7], where preliminary results in-
dicated potential benefits. In this study, the metho- 
dology was improved through more rigorous data 
selection and splitting, while hyperparameters were 
set based on prior research. We also reduced the 
problem to binary classification, leaving only ma-
lignant (melanoma) and benign (nevus) classes. We 
compared models that receive random noise as an 
additional feature vs. fractal dimension. The aim was 
to identify if FD is useful to a DL classifier.

Data. We utilised ISIC 2019 dataset [2]. It is 
composed of HAM10000 (ViDIR Group, Depart-
ment of Dermatology, Medical University of Vienna)  
[11], BCN20000 (Department of Dermatology, 
Hospital Clínic de Barcelona) [12], and MSK Data- 
set (anonymous).

The data was reduced to only two classes: mela- 
noma and nevus. Class imbalance was addressed 
by taking a number of nevi samples equal to the 
amount of melanoma samples. All the data was re-
sized to 224×224 pixels. In order to achieve more 
robust training, augmentation was applied: random 
flipping (horizontal and vertical), random sharp-
ness adjustment, random rotations (0°, 90°, 180°, or 
270°), color jitter (brightness, contrast, and satura-
tion varied within [0.9, 1.1]), and random resized 
cropping (scale: 0.9, 0.9). Training split represents 
the one from the ISIC 2019 Challenge [2]. Test and 
validation datasets were taken from ISIC 2019 Test 
data in a ratio of 4:1.

Fractal Dimension Calculation. We defined two 
approaches for calculating the fractal dimension 
(FD) of a lesion.

In the first approach, the FD is calculated from 
the curve representing the lesionʼs border, for which 
we used the box-counting dimension [13]. The le-
sion was preprocessed as follows (results can be seen 
on Fig. 1):

1. Hair was removed using the Dull Razor al-
gorithm [14].

2. The image was converted to grayscale.
3. The image was cropped, assuming the le-

sions are centered.
4. The Canny edge detection algorithm [15]

was applied.
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5. To remove small artefacts picked up by
Canny, we used openCV.findContours [16] selected 
the largest contour, eroded it, and applied it as a 
mask to Canny results.

Fig. 1. Borders of a lesion

The second approach assumes the lesion is a 
2D plane. We used two methods to assess the FD 
for this lesion representation here: a modified in-
tensity-based dimension presented in [3], and a 2D 
version of the Higuchi fractal dimension [17]. Pre-
processing for this approach included only cropping 
and grayscaling.

Model Architecture and Training. The ViT vari-
ant vit_b_32 was employed with ImageNet weights. 
The models were trained using the categorical 
cross-entropy loss function and optimised with the 
Adam optimiser, initialised with a learning rate of 
1e-5 for classification layers and 1e-6 for fine-tuning  
pre-trained ViT layers. torch.optim.lr_scheduler.
CosineAnnealingLR(eta_min=1e-7) was applied to 
mitigate overfitting. Each model was trained for a 
maximum of 30 epochs, with early stopping ap-
plied if the validation loss failed to improve for 
five consecutive epochs. FD was integrated into the 
model by concatenating it as an additional input to 
the classifier head. Prior to integration, the FD va- 
lues underwent a preprocessing pipeline consisting 
of a linear layer (torch.nn.Linear(1, 16)). The final 
classifier head was structured as follows: Normali- 
sation, Linear, GELU, Dropout, Normalisation, 
Linear.

Evaluation Metrics and Statistical Analysis. 
Model performance was assessed using accura-
cy, precision, recall, and F1-score. Given that the 
dataset, after modifications, was balanced, these 

metrics provided a meaningful basis for compari-
son. Performance was evaluated across all 3 datasets 
(train, validation and test). To test the significance 
of performance differences between the baseline and 
FD-enhanced models, McNemar’s test – a paired 
chi-square test frequently employed in machine 
learning studies – was applied to the predictions on 
the test set. Finally, SHAP values were computed to 
quantify the contribution of FD to individual model 
predictions, providing insight into the actual impact 
of FD as an auxiliary feature.

Experiments and results

The experiment results are presented in Table 1. 
RN represents a model that received random noise 
(our control model), BC FD – box counting dimen-
sion, IFD – intensity-based box counting dimen-
sion and HFD – Higuchi dimension.

Statistical Analysis. To assess whether the per-
formance differences between the baseline model 
(without FD) and the FD-enhanced model were 
statistically significant, McNemar’s test was applied. 
We specifically tested BC FD as it showed the best 
test results. Predictions from both models were com-
pared using predictions on the test dataset. A 2×2 
contingency table was constructed, recording the 
number of samples where both models were correct, 
both were incorrect, or where one model outper-
formed the other. McNemar’s test was performed 
using the standard χ² approximation with continuity 
correction applied. A significance level of 0.05 was 
used to determine whether the performance diffe
rences were statistically significant.

McNemar’s test revealed a statistically sig-
nificant difference in the performance of the two 
models (χ² > 3.841, p < 0.05). Specifically, the 
FD-enhanced model made significantly different 
predictions compared to the baseline model. Given 
that the FD-enhanced models also achieved higher 
accuracy, F1-score, recall, and precision, the results 
support the positive contribution of the FD feature 
to improved classification performance.

SHAP Analysis. SHAP (SHapley Additive exPla- 
nations) values were computed using GradientEx-
plainer for all samples in the test set. The plots be-
low summarise the impact of random noise and FD 
in predicting malignant classes (Fig. 2).

As expected, SHAP analysis revealed that the 
FD feature has a monotonic relationship between 
the feature value and its impact on the “Malig-
nant” class prediction. This finding is significant as 
it aligns with the clinical hypothesis that malignant 
lesions exhibit more complex, irregular boundaries, 
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Table 1. Performance comparison of the control model (RN) and FD-enhanced models (BC FD, IFD, HFD) across train, 
validation, and test sets

Dataset Metric RN BC FD IFD HFD

Train Precision 0.901988 0.942235 0.923132 0.876098

Train Recall 0.859372 0.828839 0.867172 0.844662

Train Accuracy 0.882995 0.889013 0.897482 0.862603

Train F1-Score 0.880164 0.881907 0.894277 0.860093

Validation Precision 0.771875 0.800000 0.810559 0.795597

Validation Recall 0.953668 0.908367 0.970260 0.958333

Validation Accuracy 0.838095 0.847619 0.868571 0.855238

Validation F1-Score 0.853195 0.850746 0.883249 0.869416

Test Precision 0.772270 0.801292 0.773220 0.768995

Test Recall 0.947719 0.935849 0.958733 0.957020

Test Accuracy 0.833572 0.850262 0.839771 0.835002

Test F1-Score 0.851046 0.863359 0.856041 0.852766

which are captured by a higher fractal dimension. 
At the same time, analysis from the control model 
trained on a random noise feature demonstrates a 
near null impact with SHAP values randomly scat-
tered around zero.

Results of SHAP analysis suggest that the FD 
feature provides a genuine and interpretable predic-
tive signal, which the model successfully learned to 
exploit, whereas it correctly ignored the irrelevant 
control feature.

Discussion

The results of this study demonstrate that in-
corporating FD into a DL pipeline for skin cancer 
classification yields consistent improvements across 

key performance metrics, including accuracy, preci-
sion, recall, and F1-score. The FD-enhanced mo
dels outperformed the baseline ViT model across all 
evaluation datasets (train, validation, and test). These 
findings support the initial hypothesis that FD can 
serve as a valuable auxiliary feature by capturing the 
inherent fractal characteristics present in skin lesion 
morphology.

The application of McNemar’s test con-
firmed that the observed performance improve-
ments were statistically significant, reducing the 
likelihood that these gains were due to random 
variation. Furthermore, SHAP analysis provided 
insight into the role of FD within the model’s 
decision-making process. SHAP values indicated 
that FD had a direct contribution to individual 

Fig. 2. SHAP Dependence plot for FD and Random Noise
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predictions. This effect may promote better model 
generalisation.

However, limitations must be acknowledged. 
The study focused exclusively on the ISIC 2019data-
set, which, while comprehensive, consists primarily 
of dermoscopic images. This reliance does not gua- 
rantee generalizability to real-world clinical settings, 
where images may be captured by non-dermoscopic 
tools. Furthermore, the task was simplified to a bi-
nary classification between melanoma and nevus, 
which are often visually distinct. The contribution of 
FD may differ in a more complex, multi-class sce-
nario involving other, more similar-looking lesion 
types, especially ones in intermediate stages between 
benign and malignant.

Regarding the feature itself, the SHAP analy-
sis revealed that though the absolute magnitude of 
the FDʼs contribution is often subtle, it confirmed a 
clear correlation. This suggests its impact could be se
condary to the primary features extracted by the ViT. 
Our approach to calculating 2D FD on a simple crop 
instead of a lesion bounding box or segmentation 
mask impacted the accuracy of the value. It would 
be valuable to investigate the fusion of FD with other 
state-of-the-art architectures, such as traditional 
CNNs or Hybrid Attention CNN models. It would 
potentially depend on whether the received results are 
specific to Transformers or a more universal feature.

Nevertheless, this contribution remains signifi- 
cant, as we not only improved the ViTʼs classifi
cation metrics but also used SHAP to confirm that 
the fractal dimension feature was responsible for this 
improvement in a clinically coherent manner.

Conclusions

This study introduced and evaluated the in-
tegration of FD as an auxiliary feature in a ViT-
based skin cancer classification model. Empirical 
results demonstrated that FD-enhanced models 
consistently outperformed baseline models across 
multiple performance metrics. Statistical testing 
confirmed the significance of these improvements, 
while explainable AI techniques (SHAP) provided 
additional interpretability regarding FD’s role in 
model predictions.

The findings underscore the potential of in-
corporating geometric complexity measures, such 
as FD, to enhance DL models in medical image 
analysis. This approach contributes to the growing 
body of research on explainable and reliable AI for 
healthcare applications. Future work will focus on 
expanding the methodology to diverse datasets, ex-
ploring alternative fractal metrics, and investigating 
the potential of FD in other medical imaging tasks 
beyond skin cancer classification.
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В.О. Нікітін, В.Я. Данилов

МОДЕЛЬ ГЛИБОКОГО НАВЧАННЯ ДЛЯ КЛАСИФІКАЦІЇ МЕЛАНОМИ, ПОКРАЩЕНА ЗА ДОПОМОГОЮ ФРАКТАЛЬНОЇ 
РОЗМІРНОСТІ

Проблематика.  Меланома – це злоякісне ураження шкіри, схильне до агресивного метастазування, що призводить до майже 
гарантованого летального наслідку, якщо його не лікувати. На противагу цьому, виявлення на ранній стадії дозволяє видалити 
пухлину, застосувавши безпечну хірургічну процедуру, яка може навіть не залишити шраму. Утім, доступність компетентної 
діагностики часто обмежена через нестачу медичних фахівців і технологій. Моделі глибокого навчання (ГН), такі як Visual Trans-
former (ViT), продемонстрували високу ефективність, але дослідники постійно прагнуть покращити результати, включаючи нові 
ознаки. Оскільки шкіра людини має фракталоподібні характеристики є гіпотеза, що метрики, які кількісно оцінюють цю складність, 
можуть слугувати цінними додатковими ознаками для моделей ГН, що підвищує точність класифікації.

Мета дослідження. Ми дослідили вплив інтеграції фрактальної розмірності (ФР) у модель глибокого навчання ViT, 
яку використовують для класифікації меланоми. Було проведено порівняння між моделлю, які отримувала випадковий шум, 
і моделями, що отримували розраховані значення ФР.

Методика реалізації. Модель ViT використовували як основу для визначення ознак для класифікації, наперед навчивши 
на наборі даних ImageNet. Цю основу доналаштовували (fine-tuning) в поєднанні із класифікатором (head), призначеним для 
розрізнення класів меланоми та невуса. Разом із вилученими ознаками класифікаційний модуль отримував значення ФР. 
Ідентична модель отримувала випадковий шум замість ФР. Для підтвердження значущості нової ознаки було проведено 
статистичне тестування та аналіз впливу ФР.

Результати дослідження. Інтеграція ФР у ViT показала помітне покращення тестових метрик. Аналіз SHAP підтвердив 
змістовність нової ознаки. Тест МакНемара підтвердив, що різниця у прогнозах моделі була статистично значущою.

Висновки. Результати свідчать, що ФР може слугувати цінною додатковою ознакою для моделей ГН, а інтеграція 
біомаркерів, таких як ФР, забезпечує основу для більш надійної класифікації меланоми.

Ключові слова:  глибоке навчання; візуальний трансформер; меланома; фрактальна розмірність; пояснювальний штучний 
інтелект; рак шкіри.
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SYSTEM APPROACH TO MULTICRITERIA EVALUATION OF SESSION-BASED 
AND SEQUENTIAL RECOMMENDATION SYSTEMS

Background. Recommendation systems have become indispensable components of modern digital platforms, 
enabling personalised content delivery across diverse domains. Traditional collaborative filtering and content-based 
approaches often fail to capture temporal dynamics and contextual dependencies inherent in user behaviour patterns. 
Sequential recommendation systems (SRSs) and session-based recommendation systems (SBRSs) have emerged as 
new paradigms to capture users’ short-term but dynamic preferences for enabling more timely and accurate recom-
mendations.
Objective. The paper aims to propose a system approach for multicriteria evaluation of various SRS and SBRS 
models – a unified framework for understanding these models, selecting the best recommendation model, and 
guiding future research directions in temporal-aware recommendation systems, as well as to provide a systematic 
overview and comprehensive analysis of session-based and sequential recommendation systems, to examine their 
theoretical foundations, evolution, empirical performance characteristics, and practical deployment considerations.
Methods. A comprehensive analysis of foundational approaches from Markov chain models to modern neural archi-
tectures, including attention-based methods, graph neural networks, and state-space models, is conducted. The ap-
proaches are systematically categorised based on architectural principles, temporal modelling strategies, and knowledge 
integration methods. The Analytic Hierarchy Process is applied for the calculation of relative importance of benefits, 
costs, opportunities and risks in a problem of session-based and sequential recommendation systems synthesis. An ex-
perimental study of various SRS and SBRS models was performed on benchmark datasets.
Results. Empirical studies on the temporal benchmark dataset show that combining SASRec and ReCODE improves 
the Recall@K metric by 9 % over the baseline SASRec model, and combining GRU4Rec with ReCODE improves 
the metric by 17 % over the baseline GRU4Rec. The SASRec model, which adapts transformer architectures to the 
sequential recommendation problem, achieved the highest baseline performance in terms of Recall@K and NDC-
G@K criteria on the benchmark dataset compared to the other examined models, demonstrating the effectiveness 
of self-attention mechanisms for sequence modelling. ReCODE is a model-independent neural ordinary differential 
equation framework for recommender systems and an effective framework for studying consumer demand dynamics, 
has improved the metrics of existing baseline approaches, and has acceptable computational complexity for practical 
recommender system deployment scenarios.
Conclusions. Session-based and sequential recommendation systems have evolved through several paradigmatic 
shifts with significant scientific achievements, including establishment of session-based recommendation model 
as distinct from traditional collaborative filtering, development of attention mechanisms for sequence modelling, and 
introduction of continuous-time formulations. Future research directions include unified architectures, scalability solu-
tions, improved evaluation methodologies, and extensions to multi-stakeholder scenarios.
Keywords: sequential recommendation; session-based recommendation; temporal modelling; attention mechanisms; 
graph neural networks; state-space models; deep learning; system analysis; decision making.

© The Autor(s).
The article is distributed under the terms of the license CC BY 4.0



47

Introduction

Recommendation systems have revolutionised 
digital content consumption by enabling perso
nalised experiences across e-commerce platforms, 
streaming services, social media, and news aggre-
gators [1–3]. These systems address the fundamen-
tal challenge of information overload by filtering 
vast content catalogs to present users with relevant 
items tailored to their preferences and contextual 
needs.

Traditional recommendation approaches, pri-
marily collaborative filtering and content-based 
methods, treat user-item interactions as static 
snapshots, failing to account for the temporal dy-
namics that characterise real-world user behaviour 
[2]. However, user preferences evolve continuously 
over time, influenced by seasonal patterns, tren- 
ding topics, life events and changing interests. 
Static models cannot capture preference drift, limi- 
ting their ability to provide timely and relevant rec-
ommendations [4, 5].

User interactions demonstrate complex se-
quential patterns where the order, timing and con-
text of actions significantly influence future pref-
erences. For instance, purchasing a camera may 
increase the likelihood of buying related accesso-
ries, but this dependency weakens over time [6, 7].

Also, many modern applications operate with 
anonymous users or scenarios where long-term user 
profiles are unavailable due to privacy constraints, 
cookie limitations or new user cold-start problems. 
These situations require systems to make accurate 
recommendations based solely on current session 
interactions without historical context [4–7].

These challenges have motivated the develop-
ment of sequential recommendation systems and 
session-based recommendation systems, represen- 
ting a paradigmatic shift toward temporal-aware 
personalisation that adapts to dynamic user contexts 
and behavioural patterns [8, 9].

The evolution of sequential recommendation 
systems has been marked by several technological 
breakthroughs that have progressively addressed the 
limitations of static approaches:

1. Foundational period (2001–2014). Early
work established theoretical foundations through 
Markov chain models [9, 10] and matrix factorisa-
tion extensions [4, 6]. The factorised personalised 
Markov chain [6] represented a crucial advance-
ment by combining collaborative filtering with 
Markovian temporal modelling.

2. Deep learning emergence (2015–2017).
The introduction of deep learning marked a trans-

formative period. GRU4Rec [11] pioneered neu-
ral session-based recommendation, demonstrating 
superior performance over traditional methods.

3. Attention era (2018–2020). Transformer
architectures revolutionised sequential recommen-
dation through SASRec [12], which adapted self-at-
tention for next-item prediction, and BERT4Rec 
[13], which employed bidirectional attention with 
masked language modelling training.

4. Post-attention period (2019-present). Graph
neural networks enhanced recommendation through 
SR-GNN [14], which modelled sessions as direc- 
ted graphs, and knowledge-aware approaches like 
KGAT [15] that integrated external knowledge 
graphs. The recent advances in modelling ordinary 
differential equations as hidden layers functions 
within deep neural networks enabled the sensitivity 
of these models to irregularly-sampled data, which 
became suitable for estimating the consumption 
trends of goods [16, 17].

However, comprehensive empirical studies [18] 
have revealed significant methodological concerns 
and demonstrated that many sophisticated neural 
approaches fail to consistently outperform simple 
baselines when evaluated under rigorous conditions 
with standardised datasets and fair comparison pro-
tocols.

Problem Statement

The primary objective is to establish a compre-
hensive understanding of session-based and sequen-
tial recommendation systems through a systematic 
overview of their theoretical foundations, architec-
tural innovations, empirical performance character-
istics, and practical deployment considerations. 

The system analysis aims to provide a unified 
conceptual framework that enables researchers and 
practitioners to navigate the complex landscape of 
temporal-aware recommendation approaches and 
make informed decisions about methodology selec-
tion and future research directions.

A system approach

We propose a system approach (Fig. 1) aimed 
at the evaluation of scenarios for practical deploy-
ment of session-based and sequential recommenda-
tion systems using the following decision criteria: 

1. Performance metrics such as Recall@K –
the proportion of model outcomes marked as rele- 
vant in the set of ground-truth relevant items; Pre-
cision@K – the proportion of relevant elements 
(items) for user in the set of items, generated by the 
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Fig. 1. Scheme of a system approach

model; MAP@K, NDCG@K, MRR@K, which are 
aimed at assessing the quality of recommendation 
system to rank items based on their relevance for 
user.

2. Computational efficiency criteria and met-
rics, which include:

• model training time;
• computational scalability;
• average time per K inferences (ATI@K) –

average computation time for generating top-K item 
recommendations across user session batches;

• memory usage – peak memory consumption
during model inference to assess scalability for pro-
duction deployment scenarios.

The following opportunities and risks are also 
taken into account in the process of evaluation 
of scenarios for the practical deployment of ses-
sion-based and sequential recommendation systems:

• temporal modelling;
• long-range dependencies;
• knowledge integration complexity;
• discovery of user behavioural patterns (col-

laborative signals);
• usability of the model that expresses the com-

plexity of the model for the developer, reflecting the 
number of “change axes” of the algorithm;

• theoretical foundations.
These decision criteria, metrics, opportunities and 
risks enable comprehensive evaluation of both rec-
ommendation quality and computational efficiency, 

crucial factors for practical deployment of sequential 
recommendation systems in large-scale e-commerce 
environments.

Scenarios could, for example, be formed based 
on hybrid technologies: recurrent neural networks 
or attention-based models equipped with neural or-
dinary differential equations framework and other. 

Let us consider traditional and modern models 
and methods for session-based and sequential rec-
ommendation systems synthesis.

Markov chain models for sequential recommen-
dations

The theoretical foundations of sequential re
commendation were established through probabilis-
tic modelling using Markov chains, which represent 
user behaviour as stochastic processes over discrete 
state spaces [9, 10].

The basic first-order Markov assumption posits 
that the probability of the next interaction depends 
solely on the current state:

( ) ( )1 1 2 1| , ,..., |t t t tP s s s s P s s+ +=

While conceptually appealing for modelling se-
quential dependencies, these models suffered from se-
vere data sparsity issues due to the exponential growth 
of transition parameters with vocabulary size, limiting 
their practical applicability to large-scale systems.
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The factorized personalized Markov chain ad-
dressed sparsity through low-rank matrix factori-
sation, decomposing the three-way user-item-item 
tensor into personalised transition matrices [6]:

ˆ , ,uij u i j i jx u u v l r= + + ,

where ии, иі represent user and current item factors, 
vj represents the target item factor, and li, rj encom-
pass model item-to-item transitions.

Recurrent neural networks for sequential recom- 
mendations

The introduction of recurrent neural networks 
marked a paradigmatic shift toward end-to-end lear-
ning of sequential patterns without explicit state 
space assumptions.

GRU4Rec model pioneered neural session- 
based recommendation through gated recurrent units, 
demonstrating superior performance over traditional 
collaborative filtering methods [11]:

( )1 ;t r t r tr W x U h −= σ +

( )1 ;t z t z tz W x U h −= σ +

( )1tanh ( ) ;t h t h t th W x U r h −= + ⊗

( ) 11 .t t t t th z h z h−= − ⊗ + ⊗ 

Attention-based models for sequential and  
session-based recommendations

The transformer revolution in natural language 
processing motivated its adaptation to sequential 
recommendation systems through self-attention 
mechanisms that enable parallel computation and 
direct modelling of arbitrary-length dependencies.

SASRec model adapted transformer architec-
tures for sequential recommendation through uni-
directional self-attention with causal masking [12]:

( )Attention , ,

softmax ,
T

k

Q K V

QK M V
d

=

 
= ⊗  

 
where Q, K, V are linear projections of input embed-

dings, and { }0,1 n nM ×∈  is a lower triangular mask
also known as casual mask preventing future infor-
mation leakage.

BERT4Rec model extended this approach 
through bidirectional attention with masked lan-
guage modelling training [13]:

( )*log | ,MLM i i
i M

L P s s
∈

= −∑
where M denotes masked positions and si represents 
the sequence with position i masked.

Recent developments address attention mecha- 
nism limitations through computational efficiency 
improvements and temporal awareness enhance-
ments.

LightSANs reduces computational require-
ments through simplified attention mechanisms, 
while TiSASRec incorporates temporal information 
through time-aware positional encodings:

( )

( ) ( )

timeAttention , , ,

softmax ,
T

K
V

k

Q K V T

Q K T
V T

d

=

 +
 = +
 
 

where TV , TK encode temporal intervals between in-
teractions.

Graph neural network models

Graph neural networks (GNNs) provide a natu-
ral framework for modelling structural relationships 
within user sessions and between items in recom-
mendation scenarios.

SR-GNN [14] represents sessions as directed 
graphs where nodes correspond to items and edges 
capture transition relationships. The gated graph neu- 
ral network updates node representations through 
iterative message passing:

( ) ( 1) ( 1)
1 ,..., ;

Tt t t
v v na A h h W b− − = + 

( )( ) ( ) ( 1) ;t t t
v z v z vz W a U h −= σ +

( )( ) ( ) ( 1) ( ) ( )1 ,t t t t t
v v v v vh z h z h−= − ⊗ + ⊗ 

where A is the adjacency matrix encoding session 
graph structure.

Knowledge graph integration enhances recom-
mendation through external structured information 
incorporation.

KGAT model employs attention-based infor-
mation propagation over collaborative knowledge 
graphs [15]:

( )

( 1)

( ) ( )
, ,

( , , )

LeakyReLU

, , ,
u

l
u

l l
h r t

h r t N

e

W h r t m

+

∈

= ×

 
× π 

 
 

∑
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where π(h, r, t) represents attention weights for rela-
tion-specific message aggregation.

State-space and continuous-time models

Neural ordinary differential equations (Neural 
ODEs) formulate hidden state evolution as a conti- 
nuous-time dynamical system rather than a discrete 
layer-wise transformation [16]:

( )( ) ( ), ;dh t f h t t
dt θ=

( )1

0
1 0( ) ( ) ( ), ,

t

t
h t h t f h t t dtθ= + ∫

where fθ is a neural network parameterisation. So- 
lutions are computed with numerical ODE sol-
vers; gradients are obtained via the adjoint method. 
Core advantages for recommendation systems 
based on Neural ODEs include natural handling of 
irregular time intervals between interactions, con-
tinuous preference evolution, principled temporal 
modelling, and interpretability through explicit dy-
namics. 

Among the applications of Neural ODEs for 
recommendation systems, ReCODE model stands 
out and proves to be an efficient framework for stu
dying users’ consumption dynamics [17]. ReCODE 
is a model-agnostic framework that decomposes 
recommendation into:

Score(u, i, t) = α × 

× Static (u, i) + (1 – α) · Dynamic (u, i, t ),

where the dynamic component is a Neural ODE 
capturing repeat-intent over time. 

The initial state h(t0) is encoded from user-item 
interaction history; the ODE

( )( ) ( ), ,dh t f h t t c
dt θ=

evolves the latent state given context c; a decod-
er yields the repeat probability p(u, i, t). ReCODE 
model integrates with matrix factorisation, neu-
ral collaborative filtering, GRU4Rec and SASRec 
models as the static branch.

Recent work applies Neural ODEs to recom-
mendation by modelling repeat consumption and 
time-aware intensities with continuous dynamics.

A decision support tool in a problem of making 
session-based and sequential recommendations

The Analytic Hierarchy Process (AHP) is a de-
cision-making method based on a system approach 
of structuring a complex problem in the form of a 
hierarchy creating pairwise comparison matrices of 
decision criteria, checking and increasing the con-
sistency of judgments. AHP includes calculation 
of local priorities (weights), aggregation of priori
ties, and sensitive analysis of results. AHP com-
bines mathematical and psychological principles for 
multi-criteria decision-making involving both quan-
titative and qualitative factors.

We propose to apply AHP for calculation of 
relative importance of benefits, costs, opportunities 
and risks (hereinafter decision criteria) in a problem 
of evaluation of scenarios for practical deployment 
of session-based and sequential recommendation sys-
tems. 

Hierarchy of decision criteria is presented on 
Fig. 2. Let us consider the criteria in more detail. 
Recommendation system quality is assessed by using 
a special class of metrics − ranking quality metrics. 
Let Ru@K denote the top-K recommendations for 
user/session u; Gu is the set or graded vector of rele- 
vant items.

1. Recall@K or HitRatio@K metric reflects the
coverage of relevant items found in the first K posi-
tions (not rank-aware) and is defined as follows: 

The metric is good for measuring how many of 
the truly relevant items are retrieved when Gu is known.

2. Precision@K metric denotes how many of
the top-K are relevant:

3. MRR@K (mean reciprocal rank) metric
emphasizes placing the first relevant item as high as 
possible and is defined as:

( )

1MRR@
| |

1 .
min | item at rank uu

K
U

r K r G

= ×

×
≤ ∈∑

| @ |1Recall@ .
| | | |

u u

uu

R K GK
U G

∩
= ∑

( )
| @ |1Precision@ .

| | min ,| |
u u

uu

R K GK
U K G

∩
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4. MAP@K (mean average precision) averages
precision at every relevant hit, rewarding both fin-
ding many relevant items and ranking them early: 

1MAP@ AP@ ( ),
| | u

K K u
U

= ∑
where

( )
( )

1AP@
min ,| |

Precision@ ( ) 1 | item at rank .
u

u
r K

K
K G

r u r K r G
≤

= ×

× ⋅ ≤ ∈∑

5. NDCG@K (normalised discounted cumula-
tive gain) is a rank-aware metric, it penalties putting 
elements lower or higher their true relevance score 
(rating):

1 DCG@ ( )NDCG@ ( ) ,
| | IDCG@ ( )u

K uK u
U K u

= ∑

where ,

2
DCG@ ( ) ;

log ( 1)
u r

r K

g
K u

r≤
=

+∑  gu,r is graded rele-

vance at rank r, and IDCG is the maximum achiev-
able DCG for u. 

Pairwise comparisons between decision crite-
ria and sub-criteria are usually performed by an 
expert (Fig. 3) in a special fundamental scale. Prio
rities (weights) of decision criteria and sub-crite-

ria are than calculated based on pairwise compari 
son matrices using the eigenvector method and other  
[19]. In a case of strong inconsistency of expert 
judgements, the most inconsistent elements of pair-
wise comparison matrices are found automatically 
[20] without participation of an expert (Fig. 4).

Fig. 3. Pairwise comparisons between criteria (left) and resulting 

local priorities (right)

Experimental evaluation and benchmarking 
analysis

Sequential recommendation systems, presented 
in this research, were evaluated on Million Musical 
Tweets Dataset (MMTD) – an established bench-

Fig. 2. Hierarchy of the criteria in a problem of evaluation of scenarios 

for practical deployment of session-based and sequential recommendation models

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ
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Fig. 4. The most inconsistent elements of a pairwise comparison matrix (left) and suggested automatic adjustment (right)

mark dataset. Million Musical Tweets Dataset [21] is 
a music listening history dataset with high-frequency 
interactions suitable for evaluating fine-grained tem-
poral modelling approaches.

Results of evaluation of KGAT, GRU4Rec  
and SASRec models, as well as the proposed  
GRU4Rec&ReCODE and SASRec&ReCODE, equip- 
ped with ReCODE framework are displayed in Table 1 
for K = 50.

The experimental results demonstrate that 
SASRec model achieves the strongest baseline per-
formance, showing the effectiveness of self-attention 
mechanisms for sequential modelling, while Neu-
ral ODE-based ReCODE framework demonstrates 
consistent improvements when integrated with se-
quential baseline model. However, the impact of 
knowledge graph modelling on NDCG metric sug-
gests the hypothesis that models equipped with this 
data structure learns to rank relevant models more 
efficiently.

The overall evidence supports the value of 
Neural ODE-based continuous-time modelling for 
sequential recommendation, with ReCODE provi
ding meaningful enhancements to established base-
line approaches while maintaining computational 
feasibility for practical deployment scenarios.

Conclusions

A comprehensive system analysis of ses-
sion-based and sequential recommendation systems 
has been provided, examining their evolution from 
foundational probabilistic approaches to modern neu-
ral architectures, with particular emphasis on emer- 
ging Neural ODE-based continuous-time modelling 
approaches. Our analysis reveals several fundamen-
tal achievements in sequential recommendation  
research. The field has progressed through distinct 
paradigmatic phases from Markov chain foundations 
establishing probabilistic frameworks, through neural 
recurrent approaches, which demonstrate deep lear- 
ning effectiveness, to attention-based methods, which 
achieve state-of-the-art performance, and finally to 
emerging continuous-time formulations, which offer 
both theoretical rigor and computational efficiency.

The experimental evidence demonstrates that 
Neural Ordinary Differential Equations provide prin-
cipled continuous-time modelling capabilities for se-
quential recommendation. The ReCODE framework 
achieves consistent performance improvements with 
respect to Recall@K metric across the considered base 
models GRU4Rec and SASRec, and validates the 
model-agnostic effectiveness of continuous-time ap-

proaches for capturing temporal dyna- 
mics in user behaviour.

The empirical analysis of bench-
mark datasets LastFM and Nowplay-
ing-RS in terms of evaluation metrics 
reveals critical methodological conside
rations. The rich contextual features 
and temporal precision of datasets like 
Nowplaying-RS prove particularly valu-
able for evaluating sophisticated conti
nuous-time models, while standardized 
evaluation protocols remain essential for 
reliable comparison across approaches.

Table 1. Models’ evaluation results on MMTD dataset

Model 
Metric

Recall@K NDCG@K

KGAT 0.1489 0.1006

GRU4Rec 0.1974 0.0841

SASRec 0.2274 0.1043

Proposed GRU4Rec&ReCODE 0.2307 0.0926

Proposed SASRec&ReCODE 0.2486 0.0994
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Neural ODE-based approaches excel in sce-
narios with irregular temporal intervals and signif-
icant repeat consumption patterns, making them 
particularly suitable for music streaming, e-com-
merce, and content platforms where temporal 
dynamics significantly influence user preferenc-

es. While Neural ODEs introduce computational 
overhead through ODE solvers and adjoint gra-
dient computation, the consistent performance 
gains and linear complexity advantages for long 
sequences justify their deployment in scena- 
rios requiring sophisticated temporal modelling.
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Д.В. Андросов, Н.І. Недашківська

СИСТЕМНИЙ ПІДХІД ДО БАГАТОКРИТЕРІАЛЬНОГО ОЦІНЮВАННЯ СЕАНСОВИХ І ПОСЛІДОВНИХ РЕКОМЕНДА-
ЦІЙНИХ СИСТЕМ

Проблематика. Рекомендаційні системи стали незамінними компонентами сучасних цифрових платформ, забезпечуючи 
персоналізацію контенту в різних сферах. Традиційна колаборативна фільтрація та підходи на основі вмісту часто не в змозі 
охопити часову динаміку та контекстні залежності властиві моделям поведінки користувачів. Системи послідовних рекомендацій 
(sequential recommendation systems, SRSs) і системи рекомендацій на основі сеансів (session-based recommendation systems, 
SBRSs) з’явилися як нові парадигми для охоплення короткострокових динамічних уподобань користувачів для надання більш 
своєчасних і точних рекомендацій.

Мета дослідження. Запропонувати системний підхід до багатокритеріального оцінювання різних моделей SRS і SBRS – 
уніфіковану структуру для розуміння цих моделей, вибору найкращої моделі та спрямування майбутніх напрямів досліджень 
у системах рекомендацій з урахуванням часу. Виконати систематичний огляд і всебічний аналіз сеансових і послідовних систем 
рекомендацій, їх теоретичних основ, еволюції, емпіричних характеристик продуктивності й аспектів практичного розгортання.

Методика реалізації. Проаналізовано фундаментальні підходи від моделей ланцюгів Маркова до сучасних нейронних 
архітектур, включаючи методи на основі уваги, графові нейронні мережі і моделі простору станів. Систематично класифіковано 
підходи, ґрунтуючись на архітектурних принципах, стратегіях часового моделювання та методах інтеграції знань. Метод аналізу 
ієрархій застосовано для розрахунку відносної важливості доходів, витрат, можливостей і ризиків у задачі синтезу сеансових 
і послідовних систем рекомендацій. Проведено експериментальне дослідження різних моделей SRS і SBRS на контрольних 
наборах даних.

Результати дослідження. Емпіричні дослідження на еталонному для часового моделювання наборі даних 
показали, що поєднання SASRec та ReCODE покращило значення метрики Recall@K на 9 % порівняно з базовою моделлю  
SASRec, а поєднання GRU4Rec з ReCODE покращило цю метрику на 17 % порівняно з базовою GRU4Rec. Модель SASRec, 
яка адаптує архітектуру трансформера до задачі надання послідовних рекомендацій, досягла найвищої базової продуктивності 
за критеріями Recall@K і NDCG@K на еталонному наборі даних порівняно з іншими розглянутими моделями, демонструючи 
ефективність механізмів самоуваги для моделювання послідовностей. Незалежна від моделі структура ReCODE нейронних 
звичайних диференціальних рівнянь для рекомендаційних систем – ефективна основа для вивчення динаміки споживчого попиту, 
покращила метрики наявних базових підходів і має прийнятну обчислювальну складність для практичних сценаріїв розгортання 
рекомендаційних систем.

Висновки. Рекомендаційні системи на основі сеансів і послідовностей еволюціонували через зміну кількох парадигм 
із значними науковими досягненнями, включаючи становлення рекомендаційних моделей на основі сеансів відмінних від 
традиційної колаборативної фільтрації, розробку механізмів уваги для моделювання послідовностей і впровадження моделей 
неперервного часу. Майбутні напрями досліджень включають уніфіковані архітектури, рішення для масштабування, вдосконалені 
методології оцінювання та розширення для сценаріїв з багатьма зацікавленими сторонами.

Ключові слова: послідовна рекомендація; сеансова рекомендація; часове моделювання; механізми уваги; графові 
нейронні мережі; моделі простору станів; глибоке навчання; системний аналіз; прийняття рішень.

Рекомендована Радою Надійшла до редакції
Навчально-наукового інституту 						 21 жовтня 2025 року 
прикладного системного аналізу 
КПІ ім. Ігоря Сікорського

Прийнята до публікації
15 грудня 2025 року



55

DOI: https://doi.org/10.20535/kpisn.2025.4.344357
UDC 004.032.26:004.93

M.P. Havrylovych

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
*Corresponding author: mariia.havrylovych@gmail.com

ARCHITECTURE OF HYBRID CNN-TRANSFORMER WITH MASKED TIME  
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Background. Continuous behavioural authentication (keystroke dynamics, touch/swipe, motion sensors) verifies identity 
without extra actions. However, models degrade under device, session and activity shifts, are sensitive to noise and often 
require significant labelling. As passwordless logins spread, demand rises for post-login risk control and for models that 
are robust, compute-efficient and stable in real-world conditions.
Objective. The paper aims to develop and empirically study a compact CNN-Transformer hybrid with lightweight 
self-supervised masked time-series autoencoding (MAE-style) for mobile behavioural biometrics on the HMOG and 
WISDM datasets.
Methods. A 1D-CNN front end extracts local cues from smartphone motion signals, while a Transformer encoder 
captures longer-range dependencies. We use masked reconstruction on unlabelled HMOG sessions for self-supervised 
pretraining under a limited computational budget and then fine-tune the same hybrid architecture for user identifica-
tion. We evaluate three hybrid variants on HMOG (trained from scratch, with masked pretraining, and with masked 
pretraining plus CORAL domain adaptation) and three models on WISDM (a Transformer baseline, a hybrid trained 
from scratch and a hybrid initialised from the HMOG-pretrained weights). Performance is measured using user-level 
mean and median Equal Error Rate (EER) and AUC at the individual user level.
Results. On HMOG, the hybrid model trained from scratch achieves the best user-level metrics (EER 21.51 % mean, 
18.63 % median; AUC 0.854 mean, 0.905 median), while the lightweight MAE and CORAL variants do not yet surpass 
this baseline. On WISDM, the hybrid model substantially outperforms a pure Transformer baseline (EER 9.41 % vs 
51.25 % mean; AUC 0.902 vs 0.488 mean), and cross-dataset initialisation from the HMOG MAE-pretrained weights 
provides an additional improvement (EER 8.42 % mean, 2.07 % median; AUC 0.907 mean, 0.959 median).
Conclusions. The results indicate that a compact CNN-Transformer hybrid is effective for sensor-based mobile be-
havioural biometrics and that even lightweight masked pretraining can be helpful for cross-dataset transfer. At the same 
time, the benefits of MAE and CORAL on HMOG depend strongly on the pretraining budget and masking configura-
tion, suggesting that further tuning is needed to fully exploit self-supervised pretraining in this setting.
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Introduction

The widespread use of smartphones and wear-
ables has turned them into primary access points 
for services, including systems that explicitly explore 
behavioural biometrics on everyday activities [1] and 
continuous sensing on smartphones [2, 3], which in 
turn creates stricter requirements for the underlying 
information security mechanisms. Traditional one-
shot authentication methods such as passwords, PIN 
codes and fingerprint scans verify the user only at 

login time. Once a device is unlocked, anyone who 
physically gains access to it can continue to work 
under the legitimate user’s identity. This is parti
cularly critical when smartphones are used to access 
financial services, corporate resources and personal 
communications, as demonstrated both in general-
purpose smartphone biometrics [1, 2, 3] and in our 
earlier work on continuous authentication for secu-
rity‑critical services [4].

Continuous behavioural authentication offers 
an alternative paradigm: the user’s identity is verified 
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in the background throughout device usage, based on 
behavioural signals [1, 2, 3]. These signals include 
keystroke dynamics on the virtual keyboard, which 
have been extensively reviewed for both fixed‑text 
and free‑text scenarios [8, 9], deep keystroke models 
on desktop and mobile platforms [10, 11], as well 
as touch/swipe patterns and inertial sensor data such 
as accelerometer and gyroscope signals that under-
pin smartphone and smartwatch biometrics [1, 2, 3]. 
Together, they form a behavioural “fingerprint” that 
can be used to distinguish one user from others with-
out requiring explicit re-authentication. This class of 
methods is closely related to behavioural biometrics 
and continuous authentication frameworks used for 
post-login risk control in high-stakes applications 
[1, 4].

However, building robust behavioural biomet-
ric models is challenging. Unlike static biometrics, 
behavioural patterns are highly context-dependent. 
They vary with posture (sitting, standing, walking), 
activity, device model and UI layout, and can also 
drift over time. Sensor data is noisy and often con-
tains missing values. Changes in hardware, operating 
system version or user habits can cause domain shifts 
that degrade the performance of models trained on 
earlier data. Collecting large labelled datasets per 
user is expensive and often impractical, especially at 
scale, a limitation repeatedly highlighted in smart-
phone and sensor-based continuous authentication 
studies [1, 2, 3] and confirmed in our own experi
ments on motion‑based verification and wearable 
sensing [4].

Recent advances in deep learning, particularly 
convolutional and recurrent architectures in conti
nuous authentication [4, 6] and Transformer-based 
models for keystroke and time-series data [10, 11, 
13, 14], have significantly improved the state of the 
art in signal and sequence modelling. CNNs are 
effective at capturing local patterns and invarian
ces, while Transformers use self-attention to model 
long-range dependencies. In parallel, self-supervised 
learning methods such as masked autoencoders 
(MAE) have demonstrated that useful representa-
tions can be learned from large unlabelled datasets 
by reconstructing masked parts of the input [13, 14].

Despite these advances, many mobile be-
havioural biometric systems still rely on purely con-
volutional or recurrent architectures [1, 2, 11] or 
on traditional keystroke pipelines surveyed in [8, 9], 
are trained from scratch on relatively small labelled 
datasets and only partially address domain shifts be-
tween sessions and conditions. There is still a need 
for models that can exploit unlabelled behavioural 
data, maintain robustness under cross-session and 

cross-condition scenarios and remain efficient 
enough for deployment on mobile devices.

This work addresses these challenges by ex-
ploring a hybrid CNN-Transformer architecture 
with masked time-series autoencoding for mobile 
behavioural biometrics. The proposed model targets 
continuous authentication scenarios, where deci-
sions about user identity must be made based on 
short sliding windows of behavioural data, similar 
to the window-based protocols used in HMOG, 
WISDM and related continuous authentication work 
[2, 3, 12]. The architecture is designed to leverage 
unlabelled sessions for lightweight self-supervised 
pretraining and to support efficient inference on 
mobile devices while remaining robust to domain 
shifts, building on ideas from prior deep continuous 
authentication systems [4, 6], Transformer-based 
keystroke and time-series models [10, 11, 14] and 
masked autoencoding for temporal data [13].

Problem Statement

Let U = {u_1, ..., u_K} be a set of users. For 
each user u_k, we have a collection of interaction 
sessions recorded from a smartphone. Each session 
consists of one or more time-series channels derived 
from sensors (e.g., accelerometer, gyroscope) and/
or interaction events (such as touch coordinates).  
A session can be represented as a sequence x^(i) =  
= {x_t^(i)}_t, where x_t^(i) ∈ R^C, is the feature vec-
tor at time t and C is the number of channels.

For continuous authentication, the data stream 
is segmented into overlapping windows of fixed 
length T, producing fragments X_j ∈ R^(T×C), 
each labelled with the corresponding user ID y_j in  
{1, ..., K}. The primary task considered in this work 
is user identification: given a window X, predict the 
user label y. Formally, we seek a model f_θ: R^(T×C) 
to {1, ..., K} that maps each window to a distribution 
over user classes and minimises identification and 
verification errors under realistic cross-session and 
cross-condition settings.

In this work, we focus on Equal Error Rate 
(EER) and the area under the ROC curve (AUC), 
computed at the user level, as the primary evaluation 
metrics for continuous authentication. For each user, 
we compute individual EER and AUC values and 
then aggregate them across users by taking the mean 
and median. Beyond these verification metrics, the 
model should also satisfy practical constraints such 
as robustness to domain shifts and efficient infe
rence on resource-constrained mobile hardware, 
and remain compatible with model compression and 
quantisation in future deployments.
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Presentation of the Main Research Results

1. Related Work
Research on behavioural biometrics for mo-

bile devices can be broadly divided into three di-
rections: keystroke dynamics on virtual keyboards, 
sensor-based activity and movement analysis, and 
multimodal fusion of interaction and sensor signals 
[1, 2, 3].

Keystroke-based authentication methods ana
lyse timing information associated with keypress 
events: inter-keystroke intervals, key hold times and 
editing patterns. Early works focused on fixed-text 
scenarios, whereas more recent approaches consider 
free-text typing where the user enters arbitrary con-
tent [8, 9]. It has been shown that even in free-text 
conditions, typing patterns remain sufficiently stable 
to support user identification and verification when 
combined with appropriate sequence models, inclu
ding modern deep learning architectures [9, 10, 11].

In sensor-based continuous authentication, data- 
sets such as HMOG and WISDM have become 
standard benchmarks. HMOG provides inertial sen-
sor readings, device orientation and touch events 
from smartphones in sitting and walking scenarios, 
enabling evaluation under motion-induced variabi
lity and fine-grained hand movement patterns [2]. 
WISDM includes accelerometer and gyroscope time 
series from smartphones and smartwatches collected 
during daily activities and has been used both for ac-
tivity recognition [1] and for biometric identification 
when users are treated as classes, including in our 
earlier work on motion-based verification [4]. Deep 
learning models for these datasets range from con-
volutional and recurrent networks to architectures 
specifically designed for continuous smartphone 
authentication [1, 3], with our previous studies ex-
ploring autoencoder-based and hybrid transformer 
architectures for user verification on motion and 
wearable signals [4, 6].

Transformer-based models have recently been 
proposed in mobile behavioural biometrics to ope
rate directly on sequences of interaction and sensor 
events [10, 11, 14]. On large-scale typing datasets, 
Transformer architectures have been shown to out-
perform classical recurrent networks by effectively 
modelling long sequences of interactions and their 
contextual dependencies; TypeFormer is one example 
of a mobile keystroke Transformer achieving state-
of-the-art results [10]. Hybrid CNN-Transformer 
architectures and attention-based sequence models 
more generally have also been explored in time-se-
ries processing, where convolutional layers serve as 
a front end for local pattern extraction and sequence 

length reduction, while Transformer encoders model 
global dependencies [11, 14].

Self-supervised methods, in particular masked 
autoencoders, allow learning robust representations 
from unlabelled data by reconstructing masked parts 
of the input. For time series, TS-MAE demonstrates 
that masked reconstruction can significantly im-
prove representation quality under limited labels and 
domain shifts [13], while broader surveys of Trans-
formers in time series highlight both the strengths 
and open issues of such models for temporal data 
[14]. Domain adaptation techniques such as Deep 
CORAL achieve additional robustness by aligning 
feature distributions across domains [15]. In our pre-
vious work we have investigated autoencoder-based 
and recurrent models for biometric verification using 
motion and sensor signals, as well as hybrid Trans-
former-autoencoder architectures for continuous 
authentication on wearable devices, demonstrating 
competitive Equal Error Rates and flexibility across 
signal types [5, 6, 7]. The present work extends these 
ideas to a CNN-Transformer hybrid with self-super-
vised pretraining and domain adaptation tailored to 
mobile behavioural biometrics.

2. Proposed CNN-Transformer Architecture
with Masked Autoencoding

2.1. Input Preprocessing
Raw time-series data from sensors and, where 

available, interaction logs are first normalised per 
channel by subtracting the mean and dividing by 
the standard deviation computed on the training 
set. Each session is then segmented into overlap-
ping windows of fixed length T with a chosen stride. 
Windows with insufficient valid samples are dis-
carded. Each window X ∈ R^(C × T) is treated as 
a multi-channel time-series fragment. For imple-
mentation convenience, tensors can be rearranged 
to shape (C, T) for compatibility with one-dimen-
sional convolutions. In the experiments reported in 
this paper, we focus on inertial sensor channels from 
HMOG and WISDM.

2.2. Convolutional Front End
The convolutional front end is a stack of 1D 

convolutional layers applied along the temporal di-
mension. Each layer consists of a convolution with a 
small kernel, batch normalisation and a non-linear 
activation such as GELU. Channel dimensionality 
is gradually increased across layers, allowing the 
network to capture increasingly complex local pat-
terns while suppressing noise. A multi-scale design 
can be achieved by combining kernels of different 
sizes or using dilated convolutions. The result is 
a sequence of feature vectors of shape T × C_out 
that summarise local behavioural patterns such as 
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micro-movements and short-term dynamics in the 
motion signals.

2.3. Transformer Encoder
The CNN features are linearly projected into a 

d-dimensional space to form a sequence of embed-
dings. Positional encodings, such as sinusoidal or 
relative positional encodings, are added to represent 
temporal order. The resulting sequence is processed 
by a stack of Transformer encoder layers, each com-
prising multi-head self-attention and position-wise 
feed-forward networks with residual connections and 
layer normalisation. Self-attention allows the model 
to focus on the most informative events within the 
window and to capture long-range dependencies 
and interactions between channels. This is particu
larly important for behavioural biometrics, where 
discriminative patterns may be scattered across the 
window rather than localised.

2.4. Masked Time-Series Autoencoding
To exploit unlabelled sessions, a masked 

time-series autoencoding task is used for self-super-
vised pretraining. For each window, a binary mask 
over time steps is sampled, masking a fixed fraction 
of positions. The corresponding inputs are zeroed 
out, and the masked sequence is fed through the 
CNN front end and Transformer encoder. A recon-
struction head maps the hidden representations back 
to the CNN feature space, and the mean squared error 
is computed between the reconstructed and original 
CNN features, but only on masked time steps.

This masked reconstruction objective encou
rages the model to infer missing local patterns from 
temporal context and to build representations that 
are robust to noise and missing data. Because no 
user labels are required, large volumes of unlabelled 
behavioural data can be used for pretraining. In 
practice, a lightweight pretraining regime is adopted: 
a compact model with modest dimensionality and a 
short window length is trained for a limited number 
of epochs and gradient steps, which is sufficient to 
provide a useful initialisation for subsequent super-
vised training.

2.5. Classification and Loss Functions
After the Transformer encoder, the sequence 

of hidden vectors is aggregated into a fixed-dimen-
sional representation via global average pooling over 
time. The pooled vector is passed through a small 
multi-layer classification head consisting of layer 
normalisation, a hidden linear layer with non-li
nearity and an output linear layer mapping to K user 
classes.

In this work, the supervised loss is the standard 
cross-entropy loss. The architecture is compatible 
with angular-margin softmax losses and additional 

metric-learning losses such as triplet loss or center 
loss, as well as with domain adaptation regularizers 
such as CORAL, which we explicitly use in one of 
the HMOG variants. A more extensive exploration 
of alternative loss functions is left for future work.

3. Experimental Setup
3.1. Datasets
We consider two public datasets that are widely 

used in mobile behavioural biometrics and activity 
recognition.

The HMOG dataset provides multimodal 
recordings for continuous authentication, including  
accelerometer, gyroscope, magnetometer, device ori- 
entation and touch events from smartphones [2]. 
Users perform text-entry and other tasks in sitting 
and walking conditions, which enables evaluation 
under motion-induced variability. From HMOG 
we derive multimodal windows that may include 
multiple inertial sensor channels.

The WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics dataset contains accelerometer 
and gyroscope time series collected from multiple 
subjects during daily activities [1, 12]. While it is 
often used for activity recognition, we treat users as 
classes and extract fixed-length windows of motion 
data for biometric identification.

For both datasets, raw recordings are converted 
into fixed-length windows X in R^(T×C) with user 
labels. We keep the same windowing strategy across 
baselines and our model.

3.2. Evaluation Protocols
We use cross-session protocols in which trai

ning and testing data for each user come from diffe
rent recording sessions. Where the dataset structure 
allows it, we additionally simulate cross-condition 
or cross-device scenarios by training and testing on 
disjoint subsets corresponding to different recording 
conditions or device types (for example, sitting ver-
sus walking conditions in HMOG).

Performance is reported in terms of user-level 
mean and median Equal Error Rate (EER) and the 
area under the ROC curve (AUC). For each user, 
we compute individual EER and AUC values and 
then aggregate them across users by taking the mean 
and median.

3.3. Model Variants and Baselines
To quantify the benefits of the proposed 

CNN-Transformer architecture, masked pretrai
ning and domain adaptation, we evaluate a family 
of models on both datasets. Each model variant cor-
responds to a specific configuration in the codebase 
and is identified by a short experiment name.

On the HMOG dataset, we consider three va
riants:
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‒	 HMOG_HYBRID_NO_MAE – the propo
sed CNN-Transformer hybrid architecture trained 
from scratch in a purely supervised way, without 
masked pretraining or domain adaptation. This vari-
ant isolates the architectural contribution of the hy-
brid model.

‒	 HMOG_HYBRID_MAE_LIGHT – the same  
hybrid architecture, but initialised using a lightweight 
masked autoencoding pretraining stage on HMOG. 
This experiment tests whether even modest self-su-
pervised pretraining improves downstream identifica-
tion and verification metrics.

‒	 HMOG_HYBRID_MAE_LIGHT_CO
RAL – the hybrid model with lightweight MAE pre-
training and an additional CORAL-based domain 
adaptation term that aligns feature distributions be-
tween two HMOG conditions (e.g., sitting vs wal
king) during supervised training. This variant is used 
to evaluate the impact of explicit domain adaptation 
on cross-condition performance.

On the WISDM dataset, we evaluate three ana
logous variants:

‒	 WISDM_TRANSFORMER – a pure Trans-
former baseline trained on WISDM windows with no 
CNN front end.

‒	 WISDM_HYBRID_NO_MAE – the CNN- 
Transformer hybrid architecture trained from scratch 
on WISDM without masked pretraining.

‒	 WISDM_HYBRID_FROM_HMOG_MAE – 
the hybrid model initialised from the HMOG light-
weight MAE-pretrained checkpoint and subsequently 
fine-tuned on WISDM. In this setting, no separate 
MAE pretraining is performed on WISDM; instead, 
HMOG serves as a source domain for cross-dataset 
pretraining.

Together, these experiments allow us to disen-
tangle the effects of architecture (Transformer-only vs 
hybrid), masked pretraining (with vs without MAE) 
and domain adaptation (with vs without CORAL 
on HMOG), as well as to study the usefulness of 
cross-dataset pretraining when transferring from 
HMOG to WISDM.

3.4. Training Procedure and Ablation Studies
All models are trained using the same windo

wing strategy and train/validation splits within each 
dataset. The hybrid architecture is evaluated under 
different training regimes that correspond directly to 
the experiment list described above.

For hybrid models with masked pretraining, we 
adopt a lightweight MAE regime. In the HMOG_
HYBRID_MAE_LIGHT and HMOG_HYBRID_
MAE_LIGHT_CORAL experiments, a compact 
hybrid model (with a moderate embedding dimen-
sion and a short window length) is pretrained on the 

HMOG training split using a masked reconstruction 
objective. A fixed fraction of time steps is randomly 
masked in each window, and the model is trained to 
reconstruct convolutional features at the masked po-
sitions. The number of pretraining epochs and gra-
dient steps per epoch is deliberately limited to keep 
computational cost modest while still providing a 
beneficial initialisation for supervised training.

In the subsequent fine-tuning stage, all models 
are optimised for user identification using cross-en-
tropy. For the HMOG_HYBRID_MAE_LIGHT_
CORAL variant, a CORAL term is included to align 
feature covariances between HMOG conditions (for 
example, sitting versus walking sessions), thereby 
mitigating domain shift.

On WISDM, the MAE pretraining is not re-
peated. Instead, the WISDM_HYBRID_FROM_
HMOG_MAE experiment reuses the HMOG 
MAE-pretrained checkpoint as an initialisation and 
fine-tunes the hybrid model on WISDM in a super-
vised manner. This cross-dataset transfer setting al-
lows us to test whether representations learned from 
HMOG generalise to a different sensor dataset with-
out additional self-supervised pretraining.

The remaining variants, HMOG_HYBRID_
NO_MAE and WISDM_HYBRID_NO_MAE, are 
trained from randomly initialised weights without 
any masked pretraining or domain adaptation and 
serve as ablations that isolate the architectural effect 
of the hybrid model. The WISDM_TRANSFORM-
ER baseline enables a direct comparison between a 
purely attention-based model and the hybrid design.

For each experiment, we report user-level mean 
and median Equal Error Rate (EER) and AUC, 
computed by first evaluating EER and AUC per user 
and then aggregating across users.

4. Results
Tables 1 and 2 summarise the user-level veri

fication performance of all model variants on the 
HMOG and WISDM datasets, respectively. For 
each model, we report the mean and median Equal 
Error Rate (EER) and the mean and median AUC 
across users.

On HMOG (Table 1), the hybrid model trained 
from scratch (H-HYB) achieves a mean EER of 
21.51 % and a median EER of 18.63 %, with a mean 
AUC of 0.854 and a median AUC of 0.905. Light-
weight masked pretraining (H-HYB-MAE) leads to 
substantially lower global EER before averaging, but 
when evaluated in terms of user-level mean and me-
dian EER it results in a higher EER (29.40 % mean, 
27.41 % median) and a lower AUC (0.762 mean, 
0.800 median) than H-HYB. The CORAL-en-
hanced hybrid (H-HYB-MAE-CORAL) improves 
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over H-HYB-MAE, reducing the mean and median 
EER to 23.37 % and 20.61 %, respectively, and in-
creasing the mean and median AUC to 0.832 and 
0.892. Nevertheless, in this lightweight training re-
gime, the best user-level EER and AUC on HMOG 
are still obtained by the hybrid model trained from 
scratch without MAE, suggesting that the current 
pretraining budget and masking configuration are 
not yet optimal for this dataset.

On WISDM (Table 2), the situation is markedly 
different. The pure Transformer baseline (W-TRF) 
exhibits very poor user-level EER (51.25 % mean, 
48.62 % median) and low AUC (0.488 mean, 0.513 
median), indicating that it fails to provide a good 
operating point for verification on a per-user basis. 
In contrast, the hybrid models significantly improve 
user-level performance. The hybrid trained from 
scratch on WISDM (W-HYB) achieves a mean 
EER of 9.41 % and a median EER of 2.40 %, with 
a mean AUC of 0.902 and a median AUC of 0.956. 
Initialising the hybrid from the HMOG MAE-pre-
trained checkpoint (W-HYB-HMOG-MAE) further 
reduces the mean and median EER to 8.42 % and 
2.07 %, respectively, and slightly increases the mean 
and median AUC to 0.907 and 0.959. These results 
indicate that, even under a lightweight pretraining 
regime, cross-dataset initialisation from HMOG is 
beneficial for WISDM.

Overall, the experiments show that the 
CNN-Transformer hybrid clearly outperforms the 
pure Transformer baseline on WISDM in terms of 
user-level EER and AUC, and that cross-dataset 
masked pretraining provides a small but consistent 
improvement there. On HMOG, however, the same 
lightweight MAE configuration does not yet im-
prove user-level metrics over training from scratch, 
although CORAL-based domain adaptation partially 

recovers performance relative to the MAE-only vari-
ant. This suggests that the effectiveness of masked 
pretraining in mobile behavioural biometrics is sen-
sitive to the choice of dataset, pretraining budget 
and masking strategy, and highlights the need for 
further tuning and ablation studies.

5. Discussion
The proposed CNN-Transformer hybrid with 

masked time-series autoencoding combines several 
complementary ideas. The convolutional front end 
acts as a robust local feature extractor that smooths 
noise and emphasises characteristic micro-move-
ments and interaction patterns. The Transformer 
encoder provides a flexible mechanism for model
ling long-range dependencies and interactions be-
tween modalities within the window. Masked auto
encoding enables effective use of large pools of 
unlabelled behavioural data and encourages repre-
sentations that are robust to missing values and do-
main shifts. The structured set of experiments on 
HMOG and WISDM, covering a Transformer base-
line on WISDM and hybrid models trained from 
scratch, with lightweight MAE pretraining and with 
CORAL-enhanced training, provides a basis for at-
tributing gains to specific architectural and training 
choices rather than to a single monolithic model.

At the same time, the architecture has limitations. 
Its performance can be sensitive to design choices 
such as window length, mask ratio, number of Trans-
former layers and attention heads. The Transformer 
component is more computationally demanding than 
purely convolutional or recurrent alternatives, which 
constrains model depth on mobile devices. Domain 
adaptation techniques such as CORAL mitigate some 
cross-condition shifts but may not fully address all 
forms of domain mismatch, especially when device 
hardware or user populations differ substantially.

Table 1. Verification performance of hybrid models on the HMOG dataset (user-level mean and median EER and AUC) 

Model EER mean, % EER median, % AUC mean AUC median

H-HYB 21.51 18.63 0.854 0.905

H-HYB-MAE 29.40 27.41 0.762 0.800

H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

Table 2. Verification performance of hybrid and Transformer models on the WISDM dataset (user-level mean and median EER 
and AUC)

Model EER mean, % EER median, % AUC mean AUC median

H-HYB 21.51 18.63 0.854 0.905

H-HYB-MAE 29.40 27.41 0.762 0.800

H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892
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Despite these challenges, the CNN-Transfor
mer MAE hybrid represents a promising direction for 
robust mobile behavioural biometrics and continuous 
authentication. It allows combining heterogeneous 
behavioural signals within a unified model and natu-
rally exploits unlabelled data that arise in real-world 
deployments.

Conclusions

This paper has presented a CNN-Transformer 
hybrid architecture with masked time-series auto-
encoding for mobile behavioural biometrics and 
continuous authentication. The model combines a 
convolutional front end for local pattern extraction, 
a Transformer encoder for global sequence model-
ling and a masked reconstruction task for self-su-
pervised pretraining on unlabelled sessions under a 
lightweight training budget.

The approach is motivated by the practical chal-
lenges of behavioural biometric modelling on smart-

phones: noisy and context-dependent data, domain 
shifts over time and limited labelled data per user. By 
leveraging self-supervised pretraining, domain adap-
tation and flexible sequence modelling, the proposed 
architecture aims to improve robustness and accuracy 
under realistic conditions while remaining compa
tible with mobile deployment. The comparison with 
a Transformer-only baseline on WISDM, as well as 
ablation studies on masked pretraining and domain 
adaptation on HMOG, are intended to clarify the 
contribution of each architectural component.

Future work includes comprehensive experi-
ments on additional public datasets, more detailed 
ablation studies of architectural and training choices 
and investigation of on-device optimisation tech-
niques such as quantisation and pruning, as well 
as more advanced domain adaptation methods for 
cross-device and cross-population scenarios.
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М.П. Гаврилович

АРХІТЕКТУРА ГІБРИДНОГО CNN-TRANSFORMER З МАСКОВАНИМ АВТОКОДУВАННЯМ ЧАСОВИХ РЯДІВ ДЛЯ 
ПОВЕДІНКОВОЇ БІОМЕТРІЇ НА МОБІЛЬНИХ ПРИСТРОЯХ

Проблематика. Безперервна поведінкова автентифікація (динаміка натискань клавіш, жести торкання/свайпи, датчики 
руху) дає змогу перевіряти особу користувача без додаткових дій з його боку. Водночас моделі деградують у разі зміни пристрою, 
сесії чи виду активності, є чутливими до шуму та часто потребують значних обсягів розмічених даних. З поширенням безпарольних 
методів входу зростає потреба в механізмах постлогін-контролю ризиків та у моделях, які є стійкими, обчислювально ефективними 
й стабільними в реальних умовах експлуатації.

Мета дослідження. Розробити та емпірично дослідити компактний гібрид CNN-Transformer із легковаговим самонавчальним 
маскованим автокодуванням часових рядів (MAE-підхід) для мобільної поведінкової біометрії на наборах даних HMOG та WISDM.

Методика реалізації. Попередній 1D-CNN-блок виділяє локальні ознаки із сигналів руху смартфона, тоді як енкодер 
Transformer моделює довгострокові залежності. Для самонавчального претрейнінгу за обмеженого обчислювального бюджету 
використовують масковану реконструкцію на немаркованих сесіях HMOG, після чого та сама гібридна архітектура продовжує 
навчатися в режимі класифікації користувачів. Оцінено три гібридні варіанти на HMOG (навчання з нуля, навчання з маскованим 
претрейнінгом, а також з маскованим претрейнінгом і адаптацією CORAL) і три моделі на WISDM (базовий Transformer, гібрид без 
претрейнінгу та гібрид, ініціалізований вагами після MAE-претрейнінгу на HMOG). Якість вимірюють за середніми та медіанними 
значеннями Equal Error Rate (EER) та AUC на рівні окремих користувачів.

Результати дослідження. На наборі HMOG найкращих користувацьких показників досягає гібридна модель, навчена 
з нуля (EER: 21,51 % у середньому та 18,63 % за медіаною; AUC: 0,854 у середньому та 0,905 за медіаною), тоді як легковагові 
варіанти з MAE та CORAL поки що не перевершують цю базову конфігурацію. На WISDM гібридна модель суттєво переважає 
чистий Transformer-базлайн (EER: 9,41 % проти 51,25 % у середньому; AUC: 0,902 проти 0,488 у середньому), а ініціалізація 
вагами після MAE-претрейнінгу на HMOG дає додаткове покращення (EER: 8,42 % у середньому та 2,07 % за медіаною; AUC: 
0,907 у середньому та 0,959 за медіаною).

Висновки. Отримані результати свідчать, що компактний гібрид CNN-Transformer є ефективним для сенсорної мобільної 
поведінкової біометрії та що навіть легковаговий маскований претрейнінг може бути корисним для перенесення між наборами 
даних. Водночас користь MAE та CORAL на HMOG істотно залежить від бюджету претрейнінгу та конфігурації маскування, 
що вказує на необхідність подальшого налаштування, аби повністю використати потенціал самонавчального претрейнінгу в цій 
постановці.

Ключові слова: поведінкова біометрія; безперервна автентифікація; давачі смартфона; гібрид CNN-Transformer; масковане 
автокодування; самонавчальний претрейнінг; адаптація домену.
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