ANISOTROPY OF MICROSTRUCTURE AND PROPERTIES OF SLM ALLOY INCONEL 718

Authors

  • Svitlana Voloshko Department of physical materials science and heat treatment E.O. PATON Еducational and Research institute of materials science and welding National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,, Ukraine https://orcid.org/0000-0003-3170-8362
  • Andrii Burmak Department of physical materials science and heat treatment E.O. PATON Еducational and Research institute of materials science and welding National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,, Ukraine https://orcid.org/0000-0003-2415-8032
  • Mykhailo Voron Physico-technological Institute of Metals and Alloys of National Academy of Sciences of Ukraine, Kyiv,, Ukraine https://orcid.org/0000-0002-0804-9496
  • Nataliia Franchik Department of physical materials science and heat treatment E.O. PATON Еducational and Research institute of materials science and welding National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute, Kyiv,, Ukraine https://orcid.org/0000-0002-7041-874X
  • Yakiv Furmaniuk Department of physical materials science and heat treatment E.O. PATON Еducational and Research institute of materials science and welding National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,, Ukraine https://orcid.org/0009-0009-0787-4652

DOI:

https://doi.org/10.20535/kpisn.2025.3.333074

Keywords:

selective laser melting, Inconel 718, microstructure, phase composition, texture, stress

Abstract

Background. The use of additive technologies, in particular selective laser melting (SLM), opens up new opportunities for the manufacture of parts with complex geometric shapes. However, the specifics of the 3D printing process cause a number of technological problems. Research into the mechanisms of microstructural evolution during SLM is necessary to optimize technological modes and ensure reliable and long-term operation of printed products in various industries.

Objective. Determination of microstructure features and microhardness distribution in different planes of the Inconel 718 SLM alloy, as well as comparative analysis of phase composition, texture, and macroscopic stress level.

Methods. A complex of techniques was applied - metallography, scanning electron microscopy, microdurometric and X-ray phase analysis.

Results. The anisotropy of the microstructure of the SLM alloy Inconel 718, which is formed during 3D printing as a result of sequential solidification of melt pools, has been identified and characterized. Significant variability of microhardness values in different planes has been shown as a consequence of the anisotropy of the structure and phase composition.

Conclusions. The amount of the main γ-phase and the strengthening γ′- and γ″-phases, as well as NbC carbide, is determined. Factors affecting the anisotropy of residual stresses and texture are discussed, including the direction of heat flow, cooling rate, reheating of layers, and the orientation of the grains formed.

 

References

L.E. Murr et al., “Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science”, J. Mater. Res. Technol., 2012, vol. 1, no 1, pp. 42‒54. https://doi.org/10.1016/S2238-7854(12)70009-1

M. O. Vasylyev, B. M. Mordyuk, and S.M. Voloshko, “Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part I. Microstructure”, Progress in Physics of Metals, 2023, vol. 24, no. 1, pp. 5–37. https://doi.org/10.15407/ufm.24.01.005

Y.W. D. Tay, et al., “3D printing trends in building and construction industry: a review”, Virtual Phys. Prototyping, 2017, vol. 12, is. 3, pp. 261‒276. https://doi.org/10.1080/17452759.2017.1326724

M. O. Vasylyev, et al., “Microstructure of Co–Cr Dental Alloys Manufactured by Casting and 3D Selective Laser Melting”, Progress in Physics of Metals, 2022, vol. 23, no. 2, pp. 337–359. https://doi.org/10.15407/ufm.23.03.001

J.F. Barker, “The Initial Years of Alloy 718–A GE Perspective. Superalloy 718: A GE Perspective”, Metall. Appl., 1989, pp. 269–277. DOI: 10.7449/1989/Superalloys_1989_269_277

D.F. Paulonis and J.J. Schirra, “Alloy 718 at Pratt & Whitney-Historical Perspective and Future Challenges”, Superalloys, 2001, no. 718, pp. 13–23. DOI: 10.7449/2001/Superalloys_2001_13_23

S. Sanchez et al., “Powder Bed Fusion of nickel-based superalloys: A review”, Int. J. Mach. Tools Manuf., 2021, vol. 165, 103729 p. DOI: 10.1016/j.ijmachtools.2021.103729

С.В. Аджамський, Г.А. Кононенко, Р.В. Подольський, “Аналіз структури після термічної обробки зразків з жароміцного стопу Inconel 718, виготовлених за SLM-технологією”, Metallofiz. Noveishie Tekhnol., 2021, vol. 43, no.7, pp. 909–924. https://doi.org/10.15407/mfint.43.07.0909

С.В. Аджамський, Г.А. Кононенко, Р.В. Подольський, “Вплив параметрів SLM-процесу на формування області кордонів деталей з жароміцного нікелевого сплаву Inconel 718”, Космічна наука і технологія, 2021, T. 27, № 6, С. 105‒114. https://doi.org/10.15407/knit2021.06.105

R. Jiang et al., “Effect of heat treatment on microstructural evolution and hardness homogeneity in laser powder bed fusion of alloy 718”, Additive Manufacturing, 2020, vol. 35, 101282 p. https://doi.org/10.1016/j.addma.2020.101282

J. F. Radavich, “The physical metallurgy of cast and wrought alloy 718”, 1989, Metallurgy and Applications, TMS, Warrendale, pp. 229-240.

X. Zhao et al., “Study on microstructure and mechanical properties of laser rapid forming Inconel 718”, Mater. Sci. Eng. A, 2008, vol. 478, is. 1‒2, pp. 119‒124. https://doi.org/10.1016/j.msea.2007.05.079

Y. Wang et al., “Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718”, Mater. Sci. Eng. A, 2008, vol. 486, is. 1‒2, pp. 321–332 https://doi.org/10.1016/j.msea.2007.09.008

Y. Wang et al., “Hot deformation behavior of delta-processed superalloy 718”, Mater. Sci. Eng. A, 2011, vol. 528, is. 7‒8, pp. 3218‒3227. https://doi.org/10.1016/j.msea.2011.01.013

R.G. Thompson, D.E. Mayo, and B. Radhakrishnan, “The relationship between carbon content, microstructure, and intergranular liquation cracking in cast nickel alloy 718”, Metall. Trans. A, 1991, vol. 22, pp. 557–567. https://doi:10.1007/BF02656823

G.A. Rao, et al., “Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718”, Mater. Sci. Eng. A, 2003, vol. 355, is. 1–2, pp. 114–125. https://doi.org/10.1016/S0921-5093(03)00079-0

C.H. Radhakrishna, and K. Prasad Rao, “The formation and control of Laves phase in superalloy 718 welds”, J. Mater. Sci., 1997, vol. 32, pp. 1977–1984. doi:10.1023/A:1018541915113

J.K. Hong, et. al., “Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding”, J. Mater. Process. Technol., 2008, vol. 201, is. 1‒3, pp. 515–520. https://doi.org/10.1016/j.jmatprotec.2007.11.224

M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, “Surface Post-Processing of Inconel 718 Alloy Fabricated by Additive Manufacturing: Selective Laser Melting”, Prog. Phys. Met., 2024, vol. 25, no. 3. pp. 614–642. https://doi.org/10.15407/ufm.25.03.614.

J. Schröder, et al., “Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718”, J. Mater. Sci., 2022, vol. 57, pp. 15036–15058. https://doi.org/10.1007/s10853-022-07499-9

U.G. Başcı, et. al., “Microstructural, Mechanical, and Tribological Properties of Selective Laser Melted Inconel 718 Alloy: The Influences of Heat Treatment”, Crystals, 2025, vol. 15, is. 1, 18 p. https://doi.org/10.3390/cryst15010018

С.М. Волошко, та ін., “Модифікування поверхні 3D-друкованого стопу Ti–6Al–4V ультразвуковим ударним обробленням”, Металофіз. новітні технол., 2023, vol. 45, no. 2, pp. 217–237. https://doi.org/10.15407/mfint.45.02.0217

Компанія ТОВ “Адитивні лазерні технології України”. [Online]. Доступно: https://alt-print.com/docs/In718_ds_uk.pdf.

D.A. Lesyk, et al., “Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress”, Surf. Coat. Technol., 2020, vol. 381, 125136 p. https://doi.org/10.1016/j.surfcoat.2019.125136

V.G. Efremenko, et al., “Laser beam surface modification of additively manufactured Ni-based superalloy: Correlations of microstructure and tribological/corrosion properties”, J. Mater. Res. Technol., 2025, vol. 35, pp. 4390–4411.https://doi.org/10.1016/j.jmrt.2025.02.063

H. Yang, et al., “The printability, microstructure, crystallographic features and microhardness of selective laser melted Inconel 718 thin wall”, Mater. Des., 2018, vol. 156, pp. 407–418. https://doi.org/10.1016/j.matdes.2018.07.007

R. Seede, et al., “Microstructural and Microhardness Evolution from Homogenization and Hot Isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases”, J. Manuf. Mater. Process., 2018, vol. 2, is. 2, 30 p. https://doi.org/10.3390/jmmp2020030

E. L. Stevens, et al., “Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids”, Mater. Des., 2017, vol. 119, pp. 188–198. https://doi.org/10.1016/j.matdes.2017.01.031.

W. Shifeng, et al., “Effect of molten pool boundaries on the mechanical properties of selective laser melting parts”, J. Mater. Process. Technol., 2014, vol. 214, is. 11, pp. 2660–2667. https://doi.org/10.1016/j.jmatprotec.2014.06.002

N. Zotov, et al., “Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys”, Mater. Sci. Eng. A., 2017, vol. 682, pp. 178–191. https://doi.org/10.1016/j.msea.2016.11.052

H. Gong, et al., “Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes”, Additive Manufacturing, vol. 1–4, pp. 87–98. https://doi.org/10.1016/j.addma.2014.08.002

J.A. Lami, et al., “Dislocation distribution, crystallographic texture evolution and microstructural anisotropy of Inconel 718 processed by LPBF”, Adv. Eng. Mater., 2023, vol. 5, 100157 p. DOI:10.48550/arXiv.2303.10522

Y. Liang, et al., “Selective anisotropy of mechanical properties in Inconel 718 alloy produced by plastic working”, Materials, 2021, vol. 14, is. 14, 3869 p. https://doi.org/10.3390/ma14143869

A. Hamada, et al., “Strengthening and embrittlement mechanisms in laser-welded additively manufactured Inconel 718 superalloy”, Welding in the World, 2024, vol. 69, pp. 81–98. https://doi.org/10.1007/s40194-024-01897-0

J.-P. Choi, et al., “Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting”, Powder Technol., 2017, vol. 310, pp. 60–66. https://doi.org/10.1016/j.powtec.2017.01.030

D. Zhang, et al., “Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM”, J. Mater. Process. Technol., 2019, vol. 268, pp. 25–36. https://doi.org/10.1016/j.jmatprotec.2019.01.002

L. Velterop, et al., “X-ray Diffraction Analysis of Stacking and Twin Faults in f.c.c. Metals: A Revision and Allowance for Texture and Non-uniform Fault Probabilities”, J. Appl. Crystallogr., 2000, vol. 33, no. 2, pp. 296–306. DOI: 10.1107/S0021889800000133

F. Otto, et al., “Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures”, Acta Mater., 2016, vol. 112, pp. 40–52. https://doi.org/10.1016/j.actamat.2016.04.005

R. Li, et al., “Balling behavior of stainless steel and nickel powder during selective laser melting process”, Int. J. Adv. Manuf. Tech., 2011, vol. 59, pp. 1025–1035. [30] https://doi.org/10.1007/s00170-011-3566-1

E. Cetkin, Y. H. Çelik, and S. Temiz, “Microstructure and mechanical properties of AA7075/AA5182 jointed by FSW”, J. Mater. Process. Technol., 2019, vol. 268, pp. 107–116. https://doi.org/10.1016/j.jmatprotec.2019.01.005

P. Mercelis, and J.-P. Kruth, “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyp. J., 2006, vol. 12, is. 5, pp. 254–265. https://doi.org/10.1108/13552540610707013

Published

2025-09-30