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ARCHITECTURE OF HYBRID CNN-TRANSFORMER WITH MASKED TIME  
SERIES AUTO-CODING FOR BEHAVIOURAL BIOMETRICS ON MOBILE DEVICES

Background. Continuous behavioural authentication (keystroke dynamics, touch/swipe, motion sensors) verifies identity 
without extra actions. However, models degrade under device, session and activity shifts, are sensitive to noise and often 
require significant labelling. As passwordless logins spread, demand rises for post-login risk control and for models that 
are robust, compute-efficient and stable in real-world conditions.
Objective. The paper aims to develop and empirically study a compact CNN-Transformer hybrid with lightweight 
self-supervised masked time-series autoencoding (MAE-style) for mobile behavioural biometrics on the HMOG and 
WISDM datasets.
Methods. A 1D-CNN front end extracts local cues from smartphone motion signals, while a Transformer encoder 
captures longer-range dependencies. We use masked reconstruction on unlabelled HMOG sessions for self-supervised 
pretraining under a limited computational budget and then fine-tune the same hybrid architecture for user identifica-
tion. We evaluate three hybrid variants on HMOG (trained from scratch, with masked pretraining, and with masked 
pretraining plus CORAL domain adaptation) and three models on WISDM (a Transformer baseline, a hybrid trained 
from scratch and a hybrid initialised from the HMOG-pretrained weights). Performance is measured using user-level 
mean and median Equal Error Rate (EER) and AUC at the individual user level.
Results. On HMOG, the hybrid model trained from scratch achieves the best user-level metrics (EER 21.51 % mean, 
18.63 % median; AUC 0.854 mean, 0.905 median), while the lightweight MAE and CORAL variants do not yet surpass 
this baseline. On WISDM, the hybrid model substantially outperforms a pure Transformer baseline (EER 9.41 % vs 
51.25 % mean; AUC 0.902 vs 0.488 mean), and cross-dataset initialisation from the HMOG MAE-pretrained weights 
provides an additional improvement (EER 8.42 % mean, 2.07 % median; AUC 0.907 mean, 0.959 median).
Conclusions. The results indicate that a compact CNN-Transformer hybrid is effective for sensor-based mobile be-
havioural biometrics and that even lightweight masked pretraining can be helpful for cross-dataset transfer. At the same 
time, the benefits of MAE and CORAL on HMOG depend strongly on the pretraining budget and masking configura-
tion, suggesting that further tuning is needed to fully exploit self-supervised pretraining in this setting.
Keywords: behavioural biometrics; continuous authentication; smartphone sensors; CNN-Transformer hybrid; masked 
autoencoding; self-supervised pretraining; domain adaptation.
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Introduction

The widespread use of smartphones and wear-
ables has turned them into primary access points 
for services, including systems that explicitly explore 
behavioural biometrics on everyday activities [1] and 
continuous sensing on smartphones [2, 3], which in 
turn creates stricter requirements for the underlying 
information security mechanisms. Traditional one-
shot authentication methods such as passwords, PIN 
codes and fingerprint scans verify the user only at 

login time. Once a device is unlocked, anyone who 
physically gains access to it can continue to work 
under the legitimate user’s identity. This is parti
cularly critical when smartphones are used to access 
financial services, corporate resources and personal 
communications, as demonstrated both in general-
purpose smartphone biometrics [1, 2, 3] and in our 
earlier work on continuous authentication for secu-
rity‑critical services [4].

Continuous behavioural authentication offers 
an alternative paradigm: the user’s identity is verified 
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in the background throughout device usage, based on 
behavioural signals [1, 2, 3]. These signals include 
keystroke dynamics on the virtual keyboard, which 
have been extensively reviewed for both fixed‑text 
and free‑text scenarios [8, 9], deep keystroke models 
on desktop and mobile platforms [10, 11], as well 
as touch/swipe patterns and inertial sensor data such 
as accelerometer and gyroscope signals that under-
pin smartphone and smartwatch biometrics [1, 2, 3]. 
Together, they form a behavioural “fingerprint” that 
can be used to distinguish one user from others with-
out requiring explicit re-authentication. This class of 
methods is closely related to behavioural biometrics 
and continuous authentication frameworks used for 
post-login risk control in high-stakes applications 
[1, 4].

However, building robust behavioural biomet-
ric models is challenging. Unlike static biometrics, 
behavioural patterns are highly context-dependent. 
They vary with posture (sitting, standing, walking), 
activity, device model and UI layout, and can also 
drift over time. Sensor data is noisy and often con-
tains missing values. Changes in hardware, operating 
system version or user habits can cause domain shifts 
that degrade the performance of models trained on 
earlier data. Collecting large labelled datasets per 
user is expensive and often impractical, especially at 
scale, a limitation repeatedly highlighted in smart-
phone and sensor-based continuous authentication 
studies [1, 2, 3] and confirmed in our own experi
ments on motion‑based verification and wearable 
sensing [4].

Recent advances in deep learning, particularly 
convolutional and recurrent architectures in conti
nuous authentication [4, 6] and Transformer-based 
models for keystroke and time-series data [10, 11, 
13, 14], have significantly improved the state of the 
art in signal and sequence modelling. CNNs are 
effective at capturing local patterns and invarian
ces, while Transformers use self-attention to model 
long-range dependencies. In parallel, self-supervised 
learning methods such as masked autoencoders 
(MAE) have demonstrated that useful representa-
tions can be learned from large unlabelled datasets 
by reconstructing masked parts of the input [13, 14].

Despite these advances, many mobile be-
havioural biometric systems still rely on purely con-
volutional or recurrent architectures [1, 2, 11] or 
on traditional keystroke pipelines surveyed in [8, 9], 
are trained from scratch on relatively small labelled 
datasets and only partially address domain shifts be-
tween sessions and conditions. There is still a need 
for models that can exploit unlabelled behavioural 
data, maintain robustness under cross-session and 

cross-condition scenarios and remain efficient 
enough for deployment on mobile devices.

This work addresses these challenges by ex-
ploring a hybrid CNN-Transformer architecture 
with masked time-series autoencoding for mobile 
behavioural biometrics. The proposed model targets 
continuous authentication scenarios, where deci-
sions about user identity must be made based on 
short sliding windows of behavioural data, similar 
to the window-based protocols used in HMOG, 
WISDM and related continuous authentication work 
[2, 3, 12]. The architecture is designed to leverage 
unlabelled sessions for lightweight self-supervised 
pretraining and to support efficient inference on 
mobile devices while remaining robust to domain 
shifts, building on ideas from prior deep continuous 
authentication systems [4, 6], Transformer-based 
keystroke and time-series models [10, 11, 14] and 
masked autoencoding for temporal data [13].

Problem Statement

Let U = {u_1, ..., u_K} be a set of users. For 
each user u_k, we have a collection of interaction 
sessions recorded from a smartphone. Each session 
consists of one or more time-series channels derived 
from sensors (e.g., accelerometer, gyroscope) and/
or interaction events (such as touch coordinates).  
A session can be represented as a sequence x^(i) =  
= {x_t^(i)}_t, where x_t^(i) ∈ R^C, is the feature vec-
tor at time t and C is the number of channels.

For continuous authentication, the data stream 
is segmented into overlapping windows of fixed 
length T, producing fragments X_j ∈ R^(T×C), 
each labelled with the corresponding user ID y_j in  
{1, ..., K}. The primary task considered in this work 
is user identification: given a window X, predict the 
user label y. Formally, we seek a model f_θ: R^(T×C) 
to {1, ..., K} that maps each window to a distribution 
over user classes and minimises identification and 
verification errors under realistic cross-session and 
cross-condition settings.

In this work, we focus on Equal Error Rate 
(EER) and the area under the ROC curve (AUC), 
computed at the user level, as the primary evaluation 
metrics for continuous authentication. For each user, 
we compute individual EER and AUC values and 
then aggregate them across users by taking the mean 
and median. Beyond these verification metrics, the 
model should also satisfy practical constraints such 
as robustness to domain shifts and efficient infe
rence on resource-constrained mobile hardware, 
and remain compatible with model compression and 
quantisation in future deployments.
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Presentation of the Main Research Results

1. Related Work
Research on behavioural biometrics for mo-

bile devices can be broadly divided into three di-
rections: keystroke dynamics on virtual keyboards, 
sensor-based activity and movement analysis, and 
multimodal fusion of interaction and sensor signals 
[1, 2, 3].

Keystroke-based authentication methods ana
lyse timing information associated with keypress 
events: inter-keystroke intervals, key hold times and 
editing patterns. Early works focused on fixed-text 
scenarios, whereas more recent approaches consider 
free-text typing where the user enters arbitrary con-
tent [8, 9]. It has been shown that even in free-text 
conditions, typing patterns remain sufficiently stable 
to support user identification and verification when 
combined with appropriate sequence models, inclu
ding modern deep learning architectures [9, 10, 11].

In sensor-based continuous authentication, data- 
sets such as HMOG and WISDM have become 
standard benchmarks. HMOG provides inertial sen-
sor readings, device orientation and touch events 
from smartphones in sitting and walking scenarios, 
enabling evaluation under motion-induced variabi
lity and fine-grained hand movement patterns [2]. 
WISDM includes accelerometer and gyroscope time 
series from smartphones and smartwatches collected 
during daily activities and has been used both for ac-
tivity recognition [1] and for biometric identification 
when users are treated as classes, including in our 
earlier work on motion-based verification [4]. Deep 
learning models for these datasets range from con-
volutional and recurrent networks to architectures 
specifically designed for continuous smartphone 
authentication [1, 3], with our previous studies ex-
ploring autoencoder-based and hybrid transformer 
architectures for user verification on motion and 
wearable signals [4, 6].

Transformer-based models have recently been 
proposed in mobile behavioural biometrics to ope
rate directly on sequences of interaction and sensor 
events [10, 11, 14]. On large-scale typing datasets, 
Transformer architectures have been shown to out-
perform classical recurrent networks by effectively 
modelling long sequences of interactions and their 
contextual dependencies; TypeFormer is one example 
of a mobile keystroke Transformer achieving state-
of-the-art results [10]. Hybrid CNN-Transformer 
architectures and attention-based sequence models 
more generally have also been explored in time-se-
ries processing, where convolutional layers serve as 
a front end for local pattern extraction and sequence 

length reduction, while Transformer encoders model 
global dependencies [11, 14].

Self-supervised methods, in particular masked 
autoencoders, allow learning robust representations 
from unlabelled data by reconstructing masked parts 
of the input. For time series, TS-MAE demonstrates 
that masked reconstruction can significantly im-
prove representation quality under limited labels and 
domain shifts [13], while broader surveys of Trans-
formers in time series highlight both the strengths 
and open issues of such models for temporal data 
[14]. Domain adaptation techniques such as Deep 
CORAL achieve additional robustness by aligning 
feature distributions across domains [15]. In our pre-
vious work we have investigated autoencoder-based 
and recurrent models for biometric verification using 
motion and sensor signals, as well as hybrid Trans-
former-autoencoder architectures for continuous 
authentication on wearable devices, demonstrating 
competitive Equal Error Rates and flexibility across 
signal types [5, 6, 7]. The present work extends these 
ideas to a CNN-Transformer hybrid with self-super-
vised pretraining and domain adaptation tailored to 
mobile behavioural biometrics.

2. Proposed CNN-Transformer Architecture
with Masked Autoencoding

2.1. Input Preprocessing
Raw time-series data from sensors and, where 

available, interaction logs are first normalised per 
channel by subtracting the mean and dividing by 
the standard deviation computed on the training 
set. Each session is then segmented into overlap-
ping windows of fixed length T with a chosen stride. 
Windows with insufficient valid samples are dis-
carded. Each window X ∈ R^(C × T) is treated as 
a multi-channel time-series fragment. For imple-
mentation convenience, tensors can be rearranged 
to shape (C, T) for compatibility with one-dimen-
sional convolutions. In the experiments reported in 
this paper, we focus on inertial sensor channels from 
HMOG and WISDM.

2.2. Convolutional Front End
The convolutional front end is a stack of 1D 

convolutional layers applied along the temporal di-
mension. Each layer consists of a convolution with a 
small kernel, batch normalisation and a non-linear 
activation such as GELU. Channel dimensionality 
is gradually increased across layers, allowing the 
network to capture increasingly complex local pat-
terns while suppressing noise. A multi-scale design 
can be achieved by combining kernels of different 
sizes or using dilated convolutions. The result is 
a sequence of feature vectors of shape T × C_out 
that summarise local behavioural patterns such as 

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ



58 KPI Science News 2025 / 4

micro-movements and short-term dynamics in the 
motion signals.

2.3. Transformer Encoder
The CNN features are linearly projected into a 

d-dimensional space to form a sequence of embed-
dings. Positional encodings, such as sinusoidal or 
relative positional encodings, are added to represent 
temporal order. The resulting sequence is processed 
by a stack of Transformer encoder layers, each com-
prising multi-head self-attention and position-wise 
feed-forward networks with residual connections and 
layer normalisation. Self-attention allows the model 
to focus on the most informative events within the 
window and to capture long-range dependencies 
and interactions between channels. This is particu
larly important for behavioural biometrics, where 
discriminative patterns may be scattered across the 
window rather than localised.

2.4. Masked Time-Series Autoencoding
To exploit unlabelled sessions, a masked 

time-series autoencoding task is used for self-super-
vised pretraining. For each window, a binary mask 
over time steps is sampled, masking a fixed fraction 
of positions. The corresponding inputs are zeroed 
out, and the masked sequence is fed through the 
CNN front end and Transformer encoder. A recon-
struction head maps the hidden representations back 
to the CNN feature space, and the mean squared error 
is computed between the reconstructed and original 
CNN features, but only on masked time steps.

This masked reconstruction objective encou
rages the model to infer missing local patterns from 
temporal context and to build representations that 
are robust to noise and missing data. Because no 
user labels are required, large volumes of unlabelled 
behavioural data can be used for pretraining. In 
practice, a lightweight pretraining regime is adopted: 
a compact model with modest dimensionality and a 
short window length is trained for a limited number 
of epochs and gradient steps, which is sufficient to 
provide a useful initialisation for subsequent super-
vised training.

2.5. Classification and Loss Functions
After the Transformer encoder, the sequence 

of hidden vectors is aggregated into a fixed-dimen-
sional representation via global average pooling over 
time. The pooled vector is passed through a small 
multi-layer classification head consisting of layer 
normalisation, a hidden linear layer with non-li
nearity and an output linear layer mapping to K user 
classes.

In this work, the supervised loss is the standard 
cross-entropy loss. The architecture is compatible 
with angular-margin softmax losses and additional 

metric-learning losses such as triplet loss or center 
loss, as well as with domain adaptation regularizers 
such as CORAL, which we explicitly use in one of 
the HMOG variants. A more extensive exploration 
of alternative loss functions is left for future work.

3. Experimental Setup
3.1. Datasets
We consider two public datasets that are widely 

used in mobile behavioural biometrics and activity 
recognition.

The HMOG dataset provides multimodal 
recordings for continuous authentication, including  
accelerometer, gyroscope, magnetometer, device ori- 
entation and touch events from smartphones [2]. 
Users perform text-entry and other tasks in sitting 
and walking conditions, which enables evaluation 
under motion-induced variability. From HMOG 
we derive multimodal windows that may include 
multiple inertial sensor channels.

The WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics dataset contains accelerometer 
and gyroscope time series collected from multiple 
subjects during daily activities [1, 12]. While it is 
often used for activity recognition, we treat users as 
classes and extract fixed-length windows of motion 
data for biometric identification.

For both datasets, raw recordings are converted 
into fixed-length windows X in R^(T×C) with user 
labels. We keep the same windowing strategy across 
baselines and our model.

3.2. Evaluation Protocols
We use cross-session protocols in which trai

ning and testing data for each user come from diffe
rent recording sessions. Where the dataset structure 
allows it, we additionally simulate cross-condition 
or cross-device scenarios by training and testing on 
disjoint subsets corresponding to different recording 
conditions or device types (for example, sitting ver-
sus walking conditions in HMOG).

Performance is reported in terms of user-level 
mean and median Equal Error Rate (EER) and the 
area under the ROC curve (AUC). For each user, 
we compute individual EER and AUC values and 
then aggregate them across users by taking the mean 
and median.

3.3. Model Variants and Baselines
To quantify the benefits of the proposed 

CNN-Transformer architecture, masked pretrai
ning and domain adaptation, we evaluate a family 
of models on both datasets. Each model variant cor-
responds to a specific configuration in the codebase 
and is identified by a short experiment name.

On the HMOG dataset, we consider three va
riants:
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‒	 HMOG_HYBRID_NO_MAE – the propo
sed CNN-Transformer hybrid architecture trained 
from scratch in a purely supervised way, without 
masked pretraining or domain adaptation. This vari-
ant isolates the architectural contribution of the hy-
brid model.

‒	 HMOG_HYBRID_MAE_LIGHT – the same  
hybrid architecture, but initialised using a lightweight 
masked autoencoding pretraining stage on HMOG. 
This experiment tests whether even modest self-su-
pervised pretraining improves downstream identifica-
tion and verification metrics.

‒	 HMOG_HYBRID_MAE_LIGHT_CO
RAL – the hybrid model with lightweight MAE pre-
training and an additional CORAL-based domain 
adaptation term that aligns feature distributions be-
tween two HMOG conditions (e.g., sitting vs wal
king) during supervised training. This variant is used 
to evaluate the impact of explicit domain adaptation 
on cross-condition performance.

On the WISDM dataset, we evaluate three ana
logous variants:

‒	 WISDM_TRANSFORMER – a pure Trans-
former baseline trained on WISDM windows with no 
CNN front end.

‒	 WISDM_HYBRID_NO_MAE – the CNN- 
Transformer hybrid architecture trained from scratch 
on WISDM without masked pretraining.

‒	 WISDM_HYBRID_FROM_HMOG_MAE – 
the hybrid model initialised from the HMOG light-
weight MAE-pretrained checkpoint and subsequently 
fine-tuned on WISDM. In this setting, no separate 
MAE pretraining is performed on WISDM; instead, 
HMOG serves as a source domain for cross-dataset 
pretraining.

Together, these experiments allow us to disen-
tangle the effects of architecture (Transformer-only vs 
hybrid), masked pretraining (with vs without MAE) 
and domain adaptation (with vs without CORAL 
on HMOG), as well as to study the usefulness of 
cross-dataset pretraining when transferring from 
HMOG to WISDM.

3.4. Training Procedure and Ablation Studies
All models are trained using the same windo

wing strategy and train/validation splits within each 
dataset. The hybrid architecture is evaluated under 
different training regimes that correspond directly to 
the experiment list described above.

For hybrid models with masked pretraining, we 
adopt a lightweight MAE regime. In the HMOG_
HYBRID_MAE_LIGHT and HMOG_HYBRID_
MAE_LIGHT_CORAL experiments, a compact 
hybrid model (with a moderate embedding dimen-
sion and a short window length) is pretrained on the 

HMOG training split using a masked reconstruction 
objective. A fixed fraction of time steps is randomly 
masked in each window, and the model is trained to 
reconstruct convolutional features at the masked po-
sitions. The number of pretraining epochs and gra-
dient steps per epoch is deliberately limited to keep 
computational cost modest while still providing a 
beneficial initialisation for supervised training.

In the subsequent fine-tuning stage, all models 
are optimised for user identification using cross-en-
tropy. For the HMOG_HYBRID_MAE_LIGHT_
CORAL variant, a CORAL term is included to align 
feature covariances between HMOG conditions (for 
example, sitting versus walking sessions), thereby 
mitigating domain shift.

On WISDM, the MAE pretraining is not re-
peated. Instead, the WISDM_HYBRID_FROM_
HMOG_MAE experiment reuses the HMOG 
MAE-pretrained checkpoint as an initialisation and 
fine-tunes the hybrid model on WISDM in a super-
vised manner. This cross-dataset transfer setting al-
lows us to test whether representations learned from 
HMOG generalise to a different sensor dataset with-
out additional self-supervised pretraining.

The remaining variants, HMOG_HYBRID_
NO_MAE and WISDM_HYBRID_NO_MAE, are 
trained from randomly initialised weights without 
any masked pretraining or domain adaptation and 
serve as ablations that isolate the architectural effect 
of the hybrid model. The WISDM_TRANSFORM-
ER baseline enables a direct comparison between a 
purely attention-based model and the hybrid design.

For each experiment, we report user-level mean 
and median Equal Error Rate (EER) and AUC, 
computed by first evaluating EER and AUC per user 
and then aggregating across users.

4. Results
Tables 1 and 2 summarise the user-level veri

fication performance of all model variants on the 
HMOG and WISDM datasets, respectively. For 
each model, we report the mean and median Equal 
Error Rate (EER) and the mean and median AUC 
across users.

On HMOG (Table 1), the hybrid model trained 
from scratch (H-HYB) achieves a mean EER of 
21.51 % and a median EER of 18.63 %, with a mean 
AUC of 0.854 and a median AUC of 0.905. Light-
weight masked pretraining (H-HYB-MAE) leads to 
substantially lower global EER before averaging, but 
when evaluated in terms of user-level mean and me-
dian EER it results in a higher EER (29.40 % mean, 
27.41 % median) and a lower AUC (0.762 mean, 
0.800 median) than H-HYB. The CORAL-en-
hanced hybrid (H-HYB-MAE-CORAL) improves 

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ



60 KPI Science News 2025 / 4

over H-HYB-MAE, reducing the mean and median 
EER to 23.37 % and 20.61 %, respectively, and in-
creasing the mean and median AUC to 0.832 and 
0.892. Nevertheless, in this lightweight training re-
gime, the best user-level EER and AUC on HMOG 
are still obtained by the hybrid model trained from 
scratch without MAE, suggesting that the current 
pretraining budget and masking configuration are 
not yet optimal for this dataset.

On WISDM (Table 2), the situation is markedly 
different. The pure Transformer baseline (W-TRF) 
exhibits very poor user-level EER (51.25 % mean, 
48.62 % median) and low AUC (0.488 mean, 0.513 
median), indicating that it fails to provide a good 
operating point for verification on a per-user basis. 
In contrast, the hybrid models significantly improve 
user-level performance. The hybrid trained from 
scratch on WISDM (W-HYB) achieves a mean 
EER of 9.41 % and a median EER of 2.40 %, with 
a mean AUC of 0.902 and a median AUC of 0.956. 
Initialising the hybrid from the HMOG MAE-pre-
trained checkpoint (W-HYB-HMOG-MAE) further 
reduces the mean and median EER to 8.42 % and 
2.07 %, respectively, and slightly increases the mean 
and median AUC to 0.907 and 0.959. These results 
indicate that, even under a lightweight pretraining 
regime, cross-dataset initialisation from HMOG is 
beneficial for WISDM.

Overall, the experiments show that the 
CNN-Transformer hybrid clearly outperforms the 
pure Transformer baseline on WISDM in terms of 
user-level EER and AUC, and that cross-dataset 
masked pretraining provides a small but consistent 
improvement there. On HMOG, however, the same 
lightweight MAE configuration does not yet im-
prove user-level metrics over training from scratch, 
although CORAL-based domain adaptation partially 

recovers performance relative to the MAE-only vari-
ant. This suggests that the effectiveness of masked 
pretraining in mobile behavioural biometrics is sen-
sitive to the choice of dataset, pretraining budget 
and masking strategy, and highlights the need for 
further tuning and ablation studies.

5. Discussion
The proposed CNN-Transformer hybrid with 

masked time-series autoencoding combines several 
complementary ideas. The convolutional front end 
acts as a robust local feature extractor that smooths 
noise and emphasises characteristic micro-move-
ments and interaction patterns. The Transformer 
encoder provides a flexible mechanism for model
ling long-range dependencies and interactions be-
tween modalities within the window. Masked auto
encoding enables effective use of large pools of 
unlabelled behavioural data and encourages repre-
sentations that are robust to missing values and do-
main shifts. The structured set of experiments on 
HMOG and WISDM, covering a Transformer base-
line on WISDM and hybrid models trained from 
scratch, with lightweight MAE pretraining and with 
CORAL-enhanced training, provides a basis for at-
tributing gains to specific architectural and training 
choices rather than to a single monolithic model.

At the same time, the architecture has limitations. 
Its performance can be sensitive to design choices 
such as window length, mask ratio, number of Trans-
former layers and attention heads. The Transformer 
component is more computationally demanding than 
purely convolutional or recurrent alternatives, which 
constrains model depth on mobile devices. Domain 
adaptation techniques such as CORAL mitigate some 
cross-condition shifts but may not fully address all 
forms of domain mismatch, especially when device 
hardware or user populations differ substantially.

Table 1. Verification performance of hybrid models on the HMOG dataset (user-level mean and median EER and AUC) 

Model EER mean, % EER median, % AUC mean AUC median

H-HYB 21.51 18.63 0.854 0.905

H-HYB-MAE 29.40 27.41 0.762 0.800

H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

Table 2. Verification performance of hybrid and Transformer models on the WISDM dataset (user-level mean and median EER 
and AUC)

Model EER mean, % EER median, % AUC mean AUC median

H-HYB 21.51 18.63 0.854 0.905

H-HYB-MAE 29.40 27.41 0.762 0.800

H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892
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Despite these challenges, the CNN-Transfor
mer MAE hybrid represents a promising direction for 
robust mobile behavioural biometrics and continuous 
authentication. It allows combining heterogeneous 
behavioural signals within a unified model and natu-
rally exploits unlabelled data that arise in real-world 
deployments.

Conclusions

This paper has presented a CNN-Transformer 
hybrid architecture with masked time-series auto-
encoding for mobile behavioural biometrics and 
continuous authentication. The model combines a 
convolutional front end for local pattern extraction, 
a Transformer encoder for global sequence model-
ling and a masked reconstruction task for self-su-
pervised pretraining on unlabelled sessions under a 
lightweight training budget.

The approach is motivated by the practical chal-
lenges of behavioural biometric modelling on smart-

phones: noisy and context-dependent data, domain 
shifts over time and limited labelled data per user. By 
leveraging self-supervised pretraining, domain adap-
tation and flexible sequence modelling, the proposed 
architecture aims to improve robustness and accuracy 
under realistic conditions while remaining compa
tible with mobile deployment. The comparison with 
a Transformer-only baseline on WISDM, as well as 
ablation studies on masked pretraining and domain 
adaptation on HMOG, are intended to clarify the 
contribution of each architectural component.

Future work includes comprehensive experi-
ments on additional public datasets, more detailed 
ablation studies of architectural and training choices 
and investigation of on-device optimisation tech-
niques such as quantisation and pruning, as well 
as more advanced domain adaptation methods for 
cross-device and cross-population scenarios.
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М.П. Гаврилович

АРХІТЕКТУРА ГІБРИДНОГО CNN-TRANSFORMER З МАСКОВАНИМ АВТОКОДУВАННЯМ ЧАСОВИХ РЯДІВ ДЛЯ 
ПОВЕДІНКОВОЇ БІОМЕТРІЇ НА МОБІЛЬНИХ ПРИСТРОЯХ

Проблематика. Безперервна поведінкова автентифікація (динаміка натискань клавіш, жести торкання/свайпи, датчики 
руху) дає змогу перевіряти особу користувача без додаткових дій з його боку. Водночас моделі деградують у разі зміни пристрою, 
сесії чи виду активності, є чутливими до шуму та часто потребують значних обсягів розмічених даних. З поширенням безпарольних 
методів входу зростає потреба в механізмах постлогін-контролю ризиків та у моделях, які є стійкими, обчислювально ефективними 
й стабільними в реальних умовах експлуатації.

Мета дослідження. Розробити та емпірично дослідити компактний гібрид CNN-Transformer із легковаговим самонавчальним 
маскованим автокодуванням часових рядів (MAE-підхід) для мобільної поведінкової біометрії на наборах даних HMOG та WISDM.

Методика реалізації. Попередній 1D-CNN-блок виділяє локальні ознаки із сигналів руху смартфона, тоді як енкодер 
Transformer моделює довгострокові залежності. Для самонавчального претрейнінгу за обмеженого обчислювального бюджету 
використовують масковану реконструкцію на немаркованих сесіях HMOG, після чого та сама гібридна архітектура продовжує 
навчатися в режимі класифікації користувачів. Оцінено три гібридні варіанти на HMOG (навчання з нуля, навчання з маскованим 
претрейнінгом, а також з маскованим претрейнінгом і адаптацією CORAL) і три моделі на WISDM (базовий Transformer, гібрид без 
претрейнінгу та гібрид, ініціалізований вагами після MAE-претрейнінгу на HMOG). Якість вимірюють за середніми та медіанними 
значеннями Equal Error Rate (EER) та AUC на рівні окремих користувачів.

Результати дослідження. На наборі HMOG найкращих користувацьких показників досягає гібридна модель, навчена 
з нуля (EER: 21,51 % у середньому та 18,63 % за медіаною; AUC: 0,854 у середньому та 0,905 за медіаною), тоді як легковагові 
варіанти з MAE та CORAL поки що не перевершують цю базову конфігурацію. На WISDM гібридна модель суттєво переважає 
чистий Transformer-базлайн (EER: 9,41 % проти 51,25 % у середньому; AUC: 0,902 проти 0,488 у середньому), а ініціалізація 
вагами після MAE-претрейнінгу на HMOG дає додаткове покращення (EER: 8,42 % у середньому та 2,07 % за медіаною; AUC: 
0,907 у середньому та 0,959 за медіаною).

Висновки. Отримані результати свідчать, що компактний гібрид CNN-Transformer є ефективним для сенсорної мобільної 
поведінкової біометрії та що навіть легковаговий маскований претрейнінг може бути корисним для перенесення між наборами 
даних. Водночас користь MAE та CORAL на HMOG істотно залежить від бюджету претрейнінгу та конфігурації маскування, 
що вказує на необхідність подальшого налаштування, аби повністю використати потенціал самонавчального претрейнінгу в цій 
постановці.

Ключові слова: поведінкова біометрія; безперервна автентифікація; давачі смартфона; гібрид CNN-Transformer; масковане 
автокодування; самонавчальний претрейнінг; адаптація домену.
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