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ARCHITECTURE OF HYBRID CNN-TRANSFORMER WITH MASKED TIME
SERIES AUTO-CODING FOR BEHAVIOURAL BIOMETRICS ON MOBILE DEVICES

Background. Continuous behavioural authentication (keystroke dynamics, touch/swipe, motion sensors) verifies identity
without extra actions. However, models degrade under device, session and activity shifts, are sensitive to noise and often
require significant labelling. As passwordless logins spread, demand rises for post-login risk control and for models that
are robust, compute-efficient and stable in real-world conditions.

Objective. The paper aims to develop and empirically study a compact CNN-Transformer hybrid with lightweight
self-supervised masked time-series autoencoding (MAE-style) for mobile behavioural biometrics on the HMOG and
WISDM datasets.

Methods. A 1D-CNN front end extracts local cues from smartphone motion signals, while a Transformer encoder
captures longer-range dependencies. We use masked reconstruction on unlabelled HMOG sessions for self-supervised
pretraining under a limited computational budget and then fine-tune the same hybrid architecture for user identifica-
tion. We evaluate three hybrid variants on HMOG (trained from scratch, with masked pretraining, and with masked
pretraining plus CORAL domain adaptation) and three models on WISDM (a Transformer baseline, a hybrid trained
from scratch and a hybrid initialised from the HMOG-pretrained weights). Performance is measured using user-level
mean and median Equal Error Rate (EER) and AUC at the individual user level.

Results. On HMOG, the hybrid model trained from scratch achieves the best user-level metrics (EER 21.51 % mean,
18.63 % median; AUC 0.854 mean, 0.905 median), while the lightweight MAE and CORAL variants do not yet surpass
this baseline. On WISDM, the hybrid model substantially outperforms a pure Transformer baseline (EER 9.41 % vs
51.25 % mean; AUC 0.902 vs 0.488 mean), and cross-dataset initialisation from the HMOG MAE-pretrained weights
provides an additional improvement (EER 8.42 % mean, 2.07 % median; AUC 0.907 mean, 0.959 median).
Conclusions. The results indicate that a compact CNN-Transformer hybrid is effective for sensor-based mobile be-
havioural biometrics and that even lightweight masked pretraining can be helpful for cross-dataset transfer. At the same
time, the benefits of MAE and CORAL on HMOG depend strongly on the pretraining budget and masking configura-
tion, suggesting that further tuning is needed to fully exploit self-supervised pretraining in this setting.

Keywords: behavioural biometrics; continuous authentication; smartphone sensors; CNN-Transformer hybrid; masked
autoencoding; self-supervised pretraining; domain adaptation.

Introduction

The widespread use of smartphones and wear-
ables has turned them into primary access points
for services, including systems that explicitly explore
behavioural biometrics on everyday activities [1] and
continuous sensing on smartphones [2, 3], which in
turn creates stricter requirements for the underlying
information security mechanisms. Traditional one-
shot authentication methods such as passwords, PIN
codes and fingerprint scans verify the user only at

login time. Once a device is unlocked, anyone who
physically gains access to it can continue to work
under the legitimate user’s identity. This is parti-
cularly critical when smartphones are used to access
financial services, corporate resources and personal
communications, as demonstrated both in general-
purpose smartphone biometrics [1, 2, 3] and in our
earlier work on continuous authentication for secu-
rity-critical services [4].

Continuous behavioural authentication offers
an alternative paradigm: the user’s identity is verified
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in the background throughout device usage, based on
behavioural signals [1, 2, 3]. These signals include
keystroke dynamics on the virtual keyboard, which
have been extensively reviewed for both fixed-text
and free-text scenarios [8, 9], deep keystroke models
on desktop and mobile platforms [10, 11], as well
as touch/swipe patterns and inertial sensor data such
as accelerometer and gyroscope signals that under-
pin smartphone and smartwatch biometrics [1, 2, 3].
Together, they form a behavioural “fingerprint” that
can be used to distinguish one user from others with-
out requiring explicit re-authentication. This class of
methods is closely related to behavioural biometrics
and continuous authentication frameworks used for
post-login risk control in high-stakes applications
[1, 4].

However, building robust behavioural biomet-
ric models is challenging. Unlike static biometrics,
behavioural patterns are highly context-dependent.
They vary with posture (sitting, standing, walking),
activity, device model and UI layout, and can also
drift over time. Sensor data is noisy and often con-
tains missing values. Changes in hardware, operating
system version or user habits can cause domain shifts
that degrade the performance of models trained on
earlier data. Collecting large labelled datasets per
user is expensive and often impractical, especially at
scale, a limitation repeatedly highlighted in smart-
phone and sensor-based continuous authentication
studies [1, 2, 3] and confirmed in our own experi-
ments on motion-based verification and wearable
sensing [4].

Recent advances in deep learning, particularly
convolutional and recurrent architectures in conti-
nuous authentication [4, 6] and Transformer-based
models for keystroke and time-series data [10, 11,
13, 14], have significantly improved the state of the
art in signal and sequence modelling. CNNs are
effective at capturing local patterns and invarian-
ces, while Transformers use self-attention to model
long-range dependencies. In parallel, self-supervised
learning methods such as masked autoencoders
(MAE) have demonstrated that useful representa-
tions can be learned from large unlabelled datasets
by reconstructing masked parts of the input [13, 14].

Despite these advances, many mobile be-
havioural biometric systems still rely on purely con-
volutional or recurrent architectures [1, 2, 11] or
on traditional keystroke pipelines surveyed in [8, 9],
are trained from scratch on relatively small labelled
datasets and only partially address domain shifts be-
tween sessions and conditions. There is still a need
for models that can exploit unlabelled behavioural
data, maintain robustness under cross-session and

cross-condition scenarios and remain efficient
enough for deployment on mobile devices.

This work addresses these challenges by ex-
ploring a hybrid CNN-Transformer architecture
with masked time-series autoencoding for mobile
behavioural biometrics. The proposed model targets
continuous authentication scenarios, where deci-
sions about user identity must be made based on
short sliding windows of behavioural data, similar
to the window-based protocols used in HMOG,
WISDM and related continuous authentication work
[2, 3, 12]. The architecture is designed to leverage
unlabelled sessions for lightweight self-supervised
pretraining and to support efficient inference on
mobile devices while remaining robust to domain
shifts, building on ideas from prior deep continuous
authentication systems [4, 6], Transformer-based
keystroke and time-series models [10, 11, 14] and
masked autoencoding for temporal data [13].

Problem Statement

Let U= {u_1, ..., u K} be a set of users. For
each user u_k, we have a collection of interaction
sessions recorded from a smartphone. Each session
consists of one or more time-series channels derived
from sensors (e.g., accelerometer, gyroscope) and/
or interaction events (such as touch coordinates).
A session can be represented as a sequence x"(i) =
= {x_t"(i)}_t, where x_t"(i) e R"C, is the feature vec-
tor at time ¢ and C is the number of channels.

For continuous authentication, the data stream
is segmented into overlapping windows of fixed
length 7, producing fragments X j € R*(7xC(),
each labelled with the corresponding user ID y j in
{1, ..., K}. The primary task considered in this work
is user identification: given a window X, predict the
user label y. Formally, we seek a model £ 0: R*(TxC)
to {1, ..., K} that maps each window to a distribution
over user classes and minimises identification and
verification errors under realistic cross-session and
cross-condition settings.

In this work, we focus on Equal Error Rate
(EER) and the area under the ROC curve (AUC),
computed at the user level, as the primary evaluation
metrics for continuous authentication. For each user,
we compute individual EER and AUC values and
then aggregate them across users by taking the mean
and median. Beyond these verification metrics, the
model should also satisfy practical constraints such
as robustness to domain shifts and efficient infe-
rence on resource-constrained mobile hardware,
and remain compatible with model compression and
quantisation in future deployments.
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Presentation of the Main Research Results

1. Related Work

Research on behavioural biometrics for mo-
bile devices can be broadly divided into three di-
rections: keystroke dynamics on virtual keyboards,
sensor-based activity and movement analysis, and
multimodal fusion of interaction and sensor signals
[1, 2, 3].

Keystroke-based authentication methods ana-
lyse timing information associated with keypress
events: inter-keystroke intervals, key hold times and
editing patterns. Early works focused on fixed-text
scenarios, whereas more recent approaches consider
free-text typing where the user enters arbitrary con-
tent [8, 9]. It has been shown that even in free-text
conditions, typing patterns remain sufficiently stable
to support user identification and verification when
combined with appropriate sequence models, inclu-
ding modern deep learning architectures [9, 10, 11].

Insensor-based continuousauthentication, data-
sets such as HMOG and WISDM have become
standard benchmarks. HMOG provides inertial sen-
sor readings, device orientation and touch events
from smartphones in sitting and walking scenarios,
enabling evaluation under motion-induced variabi-
lity and fine-grained hand movement patterns [2].
WISDM includes accelerometer and gyroscope time
series from smartphones and smartwatches collected
during daily activities and has been used both for ac-
tivity recognition [1] and for biometric identification
when users are treated as classes, including in our
earlier work on motion-based verification [4]. Deep
learning models for these datasets range from con-
volutional and recurrent networks to architectures
specifically designed for continuous smartphone
authentication [1, 3], with our previous studies ex-
ploring autoencoder-based and hybrid transformer
architectures for user verification on motion and
wearable signals [4, 6].

Transformer-based models have recently been
proposed in mobile behavioural biometrics to ope-
rate directly on sequences of interaction and sensor
events [10, 11, 14]. On large-scale typing datasets,
Transformer architectures have been shown to out-
perform classical recurrent networks by effectively
modelling long sequences of interactions and their
contextual dependencies; TypeFormer is one example
of a mobile keystroke Transformer achieving state-
of-the-art results [10]. Hybrid CNN-Transformer
architectures and attention-based sequence models
more generally have also been explored in time-se-
ries processing, where convolutional layers serve as
a front end for local pattern extraction and sequence

length reduction, while Transformer encoders model
global dependencies [11, 14].

Self-supervised methods, in particular masked
autoencoders, allow learning robust representations
from unlabelled data by reconstructing masked parts
of the input. For time series, TS-MAE demonstrates
that masked reconstruction can significantly im-
prove representation quality under limited labels and
domain shifts [13], while broader surveys of Trans-
formers in time series highlight both the strengths
and open issues of such models for temporal data
[14]. Domain adaptation techniques such as Deep
CORAL achieve additional robustness by aligning
feature distributions across domains [15]. In our pre-
vious work we have investigated autoencoder-based
and recurrent models for biometric verification using
motion and sensor signals, as well as hybrid Trans-
former-autoencoder architectures for continuous
authentication on wearable devices, demonstrating
competitive Equal Error Rates and flexibility across
signal types [5, 6, 7]. The present work extends these
ideas to a CNN-Transformer hybrid with self-super-
vised pretraining and domain adaptation tailored to
mobile behavioural biometrics.

2. Proposed CNN-Transformer Architecture
with Masked Autoencoding

2.1. Input Preprocessing

Raw time-series data from sensors and, where
available, interaction logs are first normalised per
channel by subtracting the mean and dividing by
the standard deviation computed on the training
set. Each session is then segmented into overlap-
ping windows of fixed length 7 with a chosen stride.
Windows with insufficient valid samples are dis-
carded. Each window X € R*(C x T) is treated as
a multi-channel time-series fragment. For imple-
mentation convenience, tensors can be rearranged
to shape (C, 7T) for compatibility with one-dimen-
sional convolutions. In the experiments reported in
this paper, we focus on inertial sensor channels from
HMOG and WISDM.

2.2. Convolutional Front End

The convolutional front end is a stack of 1D
convolutional layers applied along the temporal di-
mension. Each layer consists of a convolution with a
small kernel, batch normalisation and a non-linear
activation such as GELU. Channel dimensionality
is gradually increased across layers, allowing the
network to capture increasingly complex local pat-
terns while suppressing noise. A multi-scale design
can be achieved by combining kernels of different
sizes or using dilated convolutions. The result is
a sequence of feature vectors of shape 7 x C_out
that summarise local behavioural patterns such as
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micro-movements and short-term dynamics in the
motion signals.

2.3. Transformer Encoder

The CNN features are linearly projected into a
d-dimensional space to form a sequence of embed-
dings. Positional encodings, such as sinusoidal or
relative positional encodings, are added to represent
temporal order. The resulting sequence is processed
by a stack of Transformer encoder layers, each com-
prising multi-head self-attention and position-wise
feed-forward networks with residual connections and
layer normalisation. Self-attention allows the model
to focus on the most informative events within the
window and to capture long-range dependencies
and interactions between channels. This is particu-
larly important for behavioural biometrics, where
discriminative patterns may be scattered across the
window rather than localised.

2.4. Masked Time-Series Autoencoding

To exploit unlabelled sessions, a masked
time-series autoencoding task is used for self-super-
vised pretraining. For each window, a binary mask
over time steps is sampled, masking a fixed fraction
of positions. The corresponding inputs are zeroed
out, and the masked sequence is fed through the
CNN front end and Transformer encoder. A recon-
struction head maps the hidden representations back
to the CNN feature space, and the mean squared error
is computed between the reconstructed and original
CNN features, but only on masked time steps.

This masked reconstruction objective encou-
rages the model to infer missing local patterns from
temporal context and to build representations that
are robust to noise and missing data. Because no
user labels are required, large volumes of unlabelled
behavioural data can be used for pretraining. In
practice, a lightweight pretraining regime is adopted:
a compact model with modest dimensionality and a
short window length is trained for a limited number
of epochs and gradient steps, which is sufficient to
provide a useful initialisation for subsequent super-
vised training.

2.5. Classification and Loss Functions

After the Transformer encoder, the sequence
of hidden vectors is aggregated into a fixed-dimen-
sional representation via global average pooling over
time. The pooled vector is passed through a small
multi-layer classification head consisting of layer
normalisation, a hidden linear layer with non-li-
nearity and an output linear layer mapping to K user
classes.

In this work, the supervised loss is the standard
cross-entropy loss. The architecture is compatible
with angular-margin softmax losses and additional

metric-learning losses such as triplet loss or center
loss, as well as with domain adaptation regularizers
such as CORAL, which we explicitly use in one of
the HMOG variants. A more extensive exploration
of alternative loss functions is left for future work.

3. Experimental Setup

3.1. Datasets

We consider two public datasets that are widely
used in mobile behavioural biometrics and activity
recognition.

The HMOG dataset provides multimodal
recordings for continuous authentication, including
accelerometer, gyroscope, magnetometer, device ori-
entation and touch events from smartphones [2].
Users perform text-entry and other tasks in sitting
and walking conditions, which enables evaluation
under motion-induced variability. From HMOG
we derive multimodal windows that may include
multiple inertial sensor channels.

The WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics dataset contains accelerometer
and gyroscope time series collected from multiple
subjects during daily activities [1, 12]. While it is
often used for activity recognition, we treat users as
classes and extract fixed-length windows of motion
data for biometric identification.

For both datasets, raw recordings are converted
into fixed-length windows X in R*(7xC) with user
labels. We keep the same windowing strategy across
baselines and our model.

3.2. Evaluation Protocols

We use cross-session protocols in which trai-
ning and testing data for each user come from diffe-
rent recording sessions. Where the dataset structure
allows it, we additionally simulate cross-condition
or cross-device scenarios by training and testing on
disjoint subsets corresponding to different recording
conditions or device types (for example, sitting ver-
sus walking conditions in HMOG).

Performance is reported in terms of user-level
mean and median Equal Error Rate (EER) and the
area under the ROC curve (AUC). For each user,
we compute individual EER and AUC values and
then aggregate them across users by taking the mean
and median.

3.3. Model Variants and Baselines

To quantify the benefits of the proposed
CNN-Transformer architecture, masked pretrai-
ning and domain adaptation, we evaluate a family
of models on both datasets. Each model variant cor-
responds to a specific configuration in the codebase
and is identified by a short experiment name.

On the HMOG dataset, we consider three va-
riants:
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— HMOG_HYBRID_NO_MAE - the propo-
sed CNN-Transformer hybrid architecture trained
from scratch in a purely supervised way, without
masked pretraining or domain adaptation. This vari-
ant isolates the architectural contribution of the hy-
brid model.

— HMOG_HYBRID_MAE_LIGHT —the same
hybrid architecture, but initialised using a lightweight
masked autoencoding pretraining stage on HMOG.
This experiment tests whether even modest self-su-
pervised pretraining improves downstream identifica-
tion and verification metrics.

- HMOG_HYBRID_MAE_LIGHT_CO-
RAL — the hybrid model with lightweight MAE pre-
training and an additional CORAL-based domain
adaptation term that aligns feature distributions be-
tween two HMOG conditions (e.g., sitting vs wal-
king) during supervised training. This variant is used
to evaluate the impact of explicit domain adaptation
on cross-condition performance.

On the WISDM dataset, we evaluate three ana-
logous variants:

— WISDM_TRANSFORMER — a pure Trans-
former baseline trained on WISDM windows with no
CNN front end.

— WISDM_HYBRID_NO_MAE — the CNN-
Transformer hybrid architecture trained from scratch
on WISDM without masked pretraining.

— WISDM_HYBRID_FROM_HMOG_MAE —
the hybrid model initialised from the HMOG light-
weight MAE-pretrained checkpoint and subsequently
fine-tuned on WISDM. In this setting, no separate
MAE pretraining is performed on WISDM; instead,
HMOG serves as a source domain for cross-dataset
pretraining.

Together, these experiments allow us to disen-
tangle the effects of architecture (Transformer-only vs
hybrid), masked pretraining (with vs without MAE)
and domain adaptation (with vs without CORAL
on HMOG), as well as to study the usefulness of
cross-dataset pretraining when transferring from
HMOG to WISDM.

3.4. Training Procedure and Ablation Studies

All models are trained using the same windo-
wing strategy and train/validation splits within each
dataset. The hybrid architecture is evaluated under
different training regimes that correspond directly to
the experiment list described above.

For hybrid models with masked pretraining, we
adopt a lightweight MAE regime. In the HMOG _
HYBRID MAE LIGHT and HMOG_HYBRID
MAE_LIGHT CORAL experiments, a compact
hybrid model (with a moderate embedding dimen-
sion and a short window length) is pretrained on the

HMOG training split using a masked reconstruction
objective. A fixed fraction of time steps is randomly
masked in each window, and the model is trained to
reconstruct convolutional features at the masked po-
sitions. The number of pretraining epochs and gra-
dient steps per epoch is deliberately limited to keep
computational cost modest while still providing a
beneficial initialisation for supervised training.

In the subsequent fine-tuning stage, all models
are optimised for user identification using cross-en-
tropy. For the HMOG_HYBRID MAE LIGHT
CORAL variant, a CORAL term is included to align
feature covariances between HMOG conditions (for
example, sitting versus walking sessions), thereby
mitigating domain shift.

On WISDM, the MAE pretraining is not re-
peated. Instead, the WISDM_HYBRID FROM _
HMOG_MAE experiment reuses the HMOG
MAE-pretrained checkpoint as an initialisation and
fine-tunes the hybrid model on WISDM in a super-
vised manner. This cross-dataset transfer setting al-
lows us to test whether representations learned from
HMOG generalise to a different sensor dataset with-
out additional self-supervised pretraining.

The remaining variants, HMOG_HYBRID _
NO_MAE and WISDM_HYBRID_ NO_MAE, are
trained from randomly initialised weights without
any masked pretraining or domain adaptation and
serve as ablations that isolate the architectural effect
of the hybrid model. The WISDM_TRANSFORM-
ER baseline enables a direct comparison between a
purely attention-based model and the hybrid design.

For each experiment, we report user-level mean
and median Equal Error Rate (EER) and AUC,
computed by first evaluating EER and AUC per user
and then aggregating across users.

4. Results

Tables 1 and 2 summarise the user-level veri-
fication performance of all model variants on the
HMOG and WISDM datasets, respectively. For
each model, we report the mean and median Equal
Error Rate (EER) and the mean and median AUC
across users.

On HMOG (Table 1), the hybrid model trained
from scratch (H-HYB) achieves a mean EER of
21.51 % and a median EER of 18.63 %, with a mean
AUC of 0.854 and a median AUC of 0.905. Light-
weight masked pretraining (H-HYB-MAE) leads to
substantially lower global EER before averaging, but
when evaluated in terms of user-level mean and me-
dian EER it results in a higher EER (29.40 % mean,
27.41 % median) and a lower AUC (0.762 mean,
0.800 median) than H-HYB. The CORAL-en-
hanced hybrid (H-HYB-MAE-CORAL) improves
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Table 1. Verification performance of hybrid models on the HMOG dataset (user-level mean and median EER and AUC)

Model EER mean, % EER median, % AUC mean AUC median
H-HYB 21.51 18.63 0.854 0.905
H-HYB-MAE 29.40 27.41 0.762 0.800
H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

Table 2. Verification performance of hybrid and Transformer models on the WISDM dataset (user-level mean and median EER

and AUC)
Model EER mean, % EER median, % AUC mean AUC median
H-HYB 21.51 18.63 0.854 0.905
H-HYB-MAE 29.40 27.41 0.762 0.800
H-HYB-MAE-CORAL 23.37 20.61 0.832 0.892

over H-HYB-MAE, reducing the mean and median
EER to 23.37 % and 20.61 %, respectively, and in-
creasing the mean and median AUC to 0.832 and
0.892. Nevertheless, in this lightweight training re-
gime, the best user-level EER and AUC on HMOG
are still obtained by the hybrid model trained from
scratch without MAE, suggesting that the current
pretraining budget and masking configuration are
not yet optimal for this dataset.

On WISDM (Table 2), the situation is markedly
different. The pure Transformer baseline (W-TRF)
exhibits very poor user-level EER (51.25 % mean,
48.62 % median) and low AUC (0.488 mean, 0.513
median), indicating that it fails to provide a good
operating point for verification on a per-user basis.
In contrast, the hybrid models significantly improve
user-level performance. The hybrid trained from
scratch on WISDM (W-HYB) achieves a mean
EER of 9.41 % and a median EER of 2.40 %, with
a mean AUC of 0.902 and a median AUC of 0.956.
Initialising the hybrid from the HMOG MAE-pre-
trained checkpoint (W-HYB-HMOG-MAE) further
reduces the mean and median EER to 8.42 % and
2.07 %, respectively, and slightly increases the mean
and median AUC to 0.907 and 0.959. These results
indicate that, even under a lightweight pretraining
regime, cross-dataset initialisation from HMOG is
beneficial for WISDM.

Overall, the experiments show that the
CNN-Transformer hybrid clearly outperforms the
pure Transformer baseline on WISDM in terms of
user-level EER and AUC, and that cross-dataset
masked pretraining provides a small but consistent
improvement there. On HMOG, however, the same
lightweight MAE configuration does not yet im-
prove user-level metrics over training from scratch,
although CORAL-based domain adaptation partially

recovers performance relative to the MAE-only vari-
ant. This suggests that the effectiveness of masked
pretraining in mobile behavioural biometrics is sen-
sitive to the choice of dataset, pretraining budget
and masking strategy, and highlights the need for
further tuning and ablation studies.

5. Discussion

The proposed CNN-Transformer hybrid with
masked time-series autoencoding combines several
complementary ideas. The convolutional front end
acts as a robust local feature extractor that smooths
noise and emphasises characteristic micro-move-
ments and interaction patterns. The Transformer
encoder provides a flexible mechanism for model-
ling long-range dependencies and interactions be-
tween modalities within the window. Masked auto-
encoding enables effective use of large pools of
unlabelled behavioural data and encourages repre-
sentations that are robust to missing values and do-
main shifts. The structured set of experiments on
HMOG and WISDM, covering a Transformer base-
line on WISDM and hybrid models trained from
scratch, with lightweight MAE pretraining and with
CORAL-enhanced training, provides a basis for at-
tributing gains to specific architectural and training
choices rather than to a single monolithic model.

At the same time, the architecture has limitations.
Its performance can be sensitive to design choices
such as window length, mask ratio, number of Trans-
former layers and attention heads. The Transformer
component is more computationally demanding than
purely convolutional or recurrent alternatives, which
constrains model depth on mobile devices. Domain
adaptation techniques such as CORAL mitigate some
cross-condition shifts but may not fully address all
forms of domain mismatch, especially when device
hardware or user populations differ substantially.



CUCTEMHWIN AHATII3 TA HAYKA MPO JAHI 61

Despite these challenges, the CNN-Transfor-
mer MAE hybrid represents a promising direction for
robust mobile behavioural biometrics and continuous
authentication. It allows combining heterogeneous
behavioural signals within a unified model and natu-
rally exploits unlabelled data that arise in real-world
deployments.

Conclusions

This paper has presented a CNN-Transformer
hybrid architecture with masked time-series auto-
encoding for mobile behavioural biometrics and
continuous authentication. The model combines a
convolutional front end for local pattern extraction,
a Transformer encoder for global sequence model-
ling and a masked reconstruction task for self-su-
pervised pretraining on unlabelled sessions under a

phones: noisy and context-dependent data, domain
shifts over time and limited labelled data per user. By
leveraging self-supervised pretraining, domain adap-
tation and flexible sequence modelling, the proposed
architecture aims to improve robustness and accuracy
under realistic conditions while remaining compa-
tible with mobile deployment. The comparison with
a Transformer-only baseline on WISDM, as well as
ablation studies on masked pretraining and domain
adaptation on HMOG, are intended to clarify the
contribution of each architectural component.
Future work includes comprehensive experi-
ments on additional public datasets, more detailed
ablation studies of architectural and training choices
and investigation of on-device optimisation tech-
niques such as quantisation and pruning, as well
as more advanced domain adaptation methods for
cross-device and cross-population scenarios.

lightweight training budget.

The approach is motivated by the practical chal-

lenges of behavioural biometric modelling on smart-
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M.IM. FaBpunosmy

APXITEKTYPA TIBPUOHOMO CNN-TRANSFORMER 3 MACKOBAHWM ABTOKOAYBAHHAM YACOBUX PAAIB ON1A
MOBEAIHKOBOI BIOMETPII HA MOBINTbHUX MPUCTPOSIX

MpobnemaTtuka. BesnepepBHa noeefiHkOBa aBTEHTU(IKALISA (AUMHaMika HaTUCKaHb KMaBill, XeCTW TOpPKaHHsS/CBannu, AaTyvky
pyxy) Aae 3mory nepeBipsT ocoby kopucTyBaya 6e3 goaaTkoBux Ain 3 oro 6oky. BogHovac mogeni gerpaaytoTb y pasi 3MiHU NpucTpoto,
Cecii Yv BMay aKTMBHOCTI, € YyTNMBMMMU 0 LLUYMY Ta YacTo noTpebytoTb 3Ha4HUX 06CSAriB pO3MiYeHNX AaHMX. 3 NoWnpeHHsIM 6e3naponbHMX
MeToziB BXxoay 3pocTae notpeba B MexaHiaMax NMOCTMOrH-KOHTPOI0 PU3KKIB Ta Y MOAEensiX, Ski € CTiKuMu, 064ncroBanbHO ePeKTUBHUMU
1 cTabinbHUMK B peanbHUX yMOBaxX ekcryaTadii.

MeTa gocnigxkeHHs. Po3pobuti Ta emnipMyHo gocnignt komnaktHui riopng CNN-Transformer i3 nerkoBaroBMm camoHaB4anbHUM
MackoBaHUM aBTOKOAyBaHHsM YacoBux pagis (MAE-nigxin) ans mobinbHoi noBediHkoBoi 6iomeTpii Ha Habopax AaHnx HMOG 1a WISDM.

MeToauka peanisauii. MonepegHin 1D-CNN-6nok Buainsie nokanbHi 03HaKku i3 curHanis pyxy cmapTdoHa, TOAi sk eHkoaep
Transformer Mmogentoe JOBrOCTPOKOBI 3anexHocTi. [Insa camoHaB4anbHOro NpeTpenHiHry 3a obmexeHoro obuncnoBansHoOro GromkeTy
BMKOPVCTOBYIOTb MaCKOBaHy PEKOHCTPYKLi0 Ha HemapkoBaHux cecisx HMOG, nicns 4yoro Ta cama ribpmaHa apxiTekTypa npoaoBXKye
HaByaTUCs B pexuMi knacudikauii kopuctysadis. OuiHeHo Tpu ribpuaHi BapiaHTn Ha HMOG (HaBYaHHS 3 Hynsi, HaBYaHHS 3 MackoBaHUM
NpPeTperHIHIOM, a TakoX 3 MackoBaHWUM npeTperiHiHroM i aganTauieto CORAL) i Tpu mogeni Ha WISDM (6a3oBuin Transformer, ribpug 6e3
npeTperHiHry Ta ribpug, iHidianizoaHuii Baramu nicns MAE-npeTpeiiHiHry Ha HMOG). SAkicTb BUMipIOOTh 3a cepeHiMu Ta MegiaHHUMU
3HaveHHsMM Equal Error Rate (EER) Ta AUC Ha piBHi OKpeMux KOpUCTyBauiB.

Pe3ynbTatn gocnipxeHHA. Ha Habopi HMOG Havikpalmx KopucTyBaLbKMX MOKa3HWKIB gocsrae ribpugHa Mogernb, HaB4eHa
3 Hyns (EER: 21,51 % y cepeaHbomy Ta 18,63 % 3a megpiaHoto; AUC: 0,854 y cepegHbomy Ta 0,905 3a megiaHot0), ToAi Sik nerkoarosi
BapiaHTn 3 MAE 1a CORAL noku Lo He nepeBepLuytoTh L 6a3oBy koHdirypauito. Ha WISDM ribpugHa Mmogenb cyTTeEBO nepeBaxae
yuctui Transformer-6asnanH (EER: 9,41 % npotn 51,25 % y cepeaHbomy; AUC: 0,902 npotn 0,488 y cepeaHboMmy), a iHiuianisauis
Baramu nicnst MAE-npeTpeiiHiHry Ha HMOG pae gopatkoBe nokpauleHHsi (EER: 8,42 % y cepegHbomy Ta 2,07 % 3a mepiaHotw; AUC:
0,907 y cepenHbomy Ta 0,959 3a mepiaHoH).

BucHoBku. OTpumaHi pesynbTtati cigyaTh, Wwo komnakTHuiA riopug CNN-Transformer € edpekTMBHUM ANsi CEHCOPHOT MOBINbHOI
noBeajiHKoBOI BioMeTpii Ta WO HaBiTb NerkoBaroBuii MackoBaHU NPeTPEenHIHT Moxe ByTu KOPUCHUM ONsi NepeHeceHHs Mix Habopamu
naHnx. BogHouac kopucte MAE Ta CORAL Ha HMOG icToTHO 3anexuTtb Big GlogKeTy npeTpeviHiHry Ta KoHdirypauii MacKkyBaHHS,
L0 BKa3ye Ha HeOOXigHICTb NOAAnbLUIOrO HanalTyBaHHS, abu NOBHICTIO BUKOPUCTATH MOTEHLian caMOHaB4YanbHOrO NPETPENHIHTY B Ll
NoCTaHOBL.

Knro4yosi cnoBa: noseaiHkoBa 6iomeTpisi; 6e3nepepBHa aBTeHTUdIKaLis; gaBadi cmapTdoHa; ribpug CNN-Transformer; mackoBaHe
aBTOKOJYBaHHS!; CaMOHaBYarnbHWUIA NPETPENHIHT; aganTauist JOMEHY.
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