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DECISION MAKING IN ANTI-CORONAVIRUS DRUG DISCOVERY:
MATHEMATICAL MODELLING AND VALUE OF INFORMATION ANALYSIS

Background. The process of preclinical evaluation of antiviral medications typically involves multiple stages, each con-
taining substantial uncertainties. Traditional methods for screening the compounds often lack structured means for op-
timising the decision-making and calculating the feasibility and risks of transitions between all of the stages. Thus, there
appears to be a problem with the inefficient selection of promising antiviral molecules, which subsequently increases
the probability of choosing suboptimal research trajectories.

Objective. The paper aims to develop a computational framework for optimising of the transition between stages in
preclinical antiviral testing. The system focuses on the integration of decision trees and Markov models in order to
include effectiveness, risks and the value of additional information into assessment, supporting an in-depth planning of
preclinical research pipelines.

Methods. Experimental data from molecular docking, cytotoxicity CD, and antiviral activity IC, were used in a mul-
ti-stage evaluation system with CTI > 4 being the criterion for progression into further stages. Decision trees provided
the explicit rules for advancement of the compounds, while Markov models added context for building sequential
strategies under uncertainty and quantified the feasibility of movement to the next stage. Value of information analysis
added the assessment of the expected benefit of additional data.

Results. The developed framework consistently produced reliable technical results. The decision used in CTI > 4.0
prediction stage demonstrated a conservative classification pattern, correctly identifying compounds with high thera-
peutic potential while missing some effective candidates. The Markov model showed steadily increasing state values in
docking, cytotoxicity, and antiviral testing phases that confirmed the growth of expected utility. Based on the findings
acquired, the most effective solutions were identified for the ongoing investigation into antiviral assays, while the ap-
plication of value of information analysis indicated that the largest gain occurred after antiviral activity testing, whereas
the initial phases serve as filters.

Conclusions. The study showed that both decision trees and Markov models capture different but complementary as-
pects of the preclinical evaluation process. Decision trees provide an interpretable set of rules that formalise how mo-
lecular docking and cytotoxicity measurement influence the progression of compounds, while their limited sensitivity at
the CTI threshold highlighted the complexity of predicting the final success of the evaluated compounds. The Markov
model simulations showed that the full three-stage pipeline is justified and that progression decisions are influenced by
both uncertainty and experimental cost. The value of information analysis clarifies the importance of each stage, helping
to emphasise the role of antiviral activity data. These findings support the integration of analytic methods for improving
the structure, transparency and efficiency of antiviral preclinical research.
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Introduction of uncertainty, high experimental costs, and limited
predictability of candidate efficacy. At each stage

The optimisation of sequential decision-making of the preclinical pipeline — from in silico scree-

in preclinical studies of antiviral compounds remains ning to cytotoxicity assessment and antiviral activity
a highly relevant challenge due to the combination tests — researchers must make a series of decisions,
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where an inaccurate early-stage choice leads to the
loss of time, resources, and potentially promising
compounds. This creates the need for systematic
approaches capable of increasing the rationality and
economic efficiency of the preclinical process.

Despite significant progress in artificial intelli-
gence, current research mainly improves individu-
al steps of drug discovery rather than the full de-
cision-making pipeline. Modern machine learning
techniques demonstrate substantial advances in vir-
tual screening, toxicity prediction, and target selec-
tion [1]. Al-based integration with organ-on-a-chip
platforms and digital twins enhances the accuracy
of pharmacokinetic and toxicological modelling
[2]. Data-driven design of antiviral peptides using
GANs, deep learning and explainable Al demon-
strates strong potential for optimising candidate
properties [3]. Studies of DHODH inhibitors high-
light the complexity of translating promising in vitro
results into clinical effects and emphasise the need
for step-wise risk assessment [4]. Multi-omics deep
learning pipelines accelerate early discovery and fa-
cilitate drug repositioning [5]. Al-based prediction of
viral mutations supports personalised antiviral stra-
tegies and shows the sequential, dynamic nature of
decision-making in virology [6]. Al-driven derepli-
cation and classification of natural products further
illustrate the need for structured transitions between
preclinical stages [7].

However, these advances primarily address pre-
dictive accuracy rather than the principled optimi-
sation of decisions across multiple stages. Current
research lacks integrated mathematical frameworks
that would: formalise transitions between preclinical
stages, quantify risks and probabilities of success, in-
corporate the cost and value of information, and de-
termine when experimental continuation is economi-
cally justified. Decision trees and Markov processes
are rarely applied specifically to antiviral preclinical
pipelines, leaving a methodological gap in modelling
sequential choices under uncertainty.

The study aims to develop and evaluate for-
malised approaches for optimising sequential deci-
sion-making in preclinical antiviral research using
decision tree models and Markov decision processes.
These models are applied to real-world experimental
datasets to quantify transition probabilities, estimate
costs, and compare the effectiveness of alternative
strategies.

The scientific novelty of the work lies in the
integration of an interpretable set of rules provided
by the decision trees with globally optimal Markov
strategies and value of information analysis. Unlike
prior studies, in the proposed framework, predictive

patterns, uncertainty quantification, experimental
costs and utility maximisation are combined into a
unified scheme that supports planning throughout
the entire preclinical process.

Problem statement

The object of the study is the process of precli-
nical evaluation of antiviral drugs, while the subject
is mathematical methods for optimising sequential
decision-making in this process, in particular deci-
sion trees and Markov models. The purpose of the
work is to develop and test formalised approaches
to assessing the effectiveness, risks and feasibility of
transitions between stages of preclinical studies based
on real experimental data. The end result is the
construction and comparative analysis of two algo-
rithmic models — the decision tree and the Markov
process — that demonstrate their ability to support
rational, data-driven planning for preclinical testing
of antiviral candidates.

Materials and methods

The study uses three interrelated methods: deci-
sion trees to formalise the process of selecting com-
pounds, Markov models to describe the sequence
of experimental steps over time and value of infor-
mation analysis metrics to quantify the feasibility of
doing additional measurements. This combination
allows for moving from the description of individu-
al experiments to a systematic approach where each
step is considered to be an element of an optimised
decision-making process.

Decision trees act as interpreted classification
models that reflect the relationship between a set
of input parameters (docking parameters, concen-
tration characteristics, toxicity and antiviral activity
indicators) and binary output events (e.g., reaching a
chemotherapy index threshold). The decision tree is
a hierarchical structure, where each inner node cor-
responds to a condition of the type “sign < thresh-
old”, branches to alternative consequences of this
condition, and leaf nodes to result classes. The con-
struction of the tree is carried out by sequentially
dividing the feature space to minimise the degree of
heterogeneity (for example, the Gini index) in the
daughter nodes at each stage. As a result, a set of
simple logical rules is formed that allows for expli-
cit interpretation of which combinations of docking,
CD,,, 1Dy, and exposure.

Markov chains and Markov decision-making
processes are used to describe the evolution of a sys-
tem in discrete states, taking into account the pro-
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babilistic nature of transitions between them. In the
simplest case, the Markov chain is given by a set of
states and a matrix of transient probabilities, where
the probability of moving to the next state depends
only on the current state, and not on the complete
history. In the context of planning the sequence of ex-
periments, this allows us to consider individual stages
(docking, assessment of cytotoxicity, testing of anti-
viral activity, achievement or failure of therapeutic
success) as states of the Markov process, and possible
actions of the investigator (“to continue” or “stop”
the study at a certain stage) as controlling influences
that change the distribution of probabilities of further
states. In this formulation, the Markov model of de-
cision-making is used, where each state-action pair
corresponds not only to the probability of transition,
but also to a certain instantaneous reward or cost,
and the optimal strategy is determined by solving the
Bellman equations for the value function.

Value-of-information analysis metrics are tools
for evaluating the extent to which the anticipated
utility of decisions can be enhanced through addi-
tional data. Conceptually, the value of information
is defined as the difference between the expected
utility of an optimal policy given the availability of
additional information and the expected utility at the
baseline level of uncertainty. The Total Value of Per-
fect Information (EVPI) reflects a hypothetical in-
crement if the results of the experiments were known
in advance without errors; partial value of perfect
information (EVPPI) characterizes a similar increase
for certain groups of parameters (for example, only
for cytotoxicity indicators or only for antiviral acti-
vity); The expected value of the sample information
(EVSI) assesses how much conducting a realistic in-
cremental experiment with a certain value is able to
improve decision-making. In combination with the
Markov model of the experimental process, these
metrics enable a quantitative comparison of vari-
ous research design variants, determine the stages at
which new measurements give the greatest increase
in information about CTI, and justify the optimal
balance between the costs of the experiment and the
probability of obtaining therapeutically significant
candidates.

The study used a multi-level methodology
combining experimental data on docking, cyto-
toxicity, and antiviral activity with mathematical
dose-response modelling, decision tree construc-
tion, and Markov experiment sequence modelling.
The main target characteristic is the CTI chemo-
therapy index, calculated based on CD,, and ID,;
concentrations for each test sample and cell pro-
cessing regimen.

Baseline data included energy parameters of
molecular docking of a series of candidate com-
pounds to the domains of the spike protein of the vi-
rus and the main protease, results of cytotoxicity tests
on the cell line at two time points (24 and 48 h) and
results of tests of antiviral activity in the therapeutic
(L) and therapeutic-prophylactic (LP) modes. For
the docking, numerical estimates of binding ener-
gy (in conventional units of energy) with individual
target sites were considered, which are represented as
SP, — SP; for the spike protein and MP, — MP, for
the main protease. For each compound, a docking
parameter vector was obtained, which was further
used as an input trait space in decision tree models.

Dose-effect modelling for cytotoxicity and an-
tiviral activity was carried out using a four-parame-
ter sigmoidal model. For each compound, exposure
time, and treatment regimen, a set of concentrations
was given x, and the corresponding measured values
of relative cell viability (for cytotoxicity) or relative
viral activity (for antiviral action), normalised to
control in the interval [0; 1]. As a model function,
the expression

f(x)= (1)

where x is the concentration of the compound, f{x) is
the expected relative value of the indicator (viability
or activity), a, b, ¢, d are unknown parameters of
the curve describing the amplitude of the effect, the
steepness of the transition, the shift along the con-
centration axis and the baseline, respectively. The
estimation of the parameters was carried out by the
method of least squares by minimising the root mean
square error

a
1+e(—bx+c) +d

N
MSE(a,b,c.d) =~ (7, -
N3
2

_f(xiaaabscad)) (2)

where y, — experimental values of the relative viabi-
lity of cells or the relative activity of the virus, N is
the number of points of the curve. Optimisation was
carried out by the numerical method of nonlinear
regression with constraints on parameters to avoid
unrealistic decisions; in cases where numerical op-
timisation did not match, stable heuristic initial ap-
proximations were used, providing a smooth mono-
tonic curve within the studied concentration range.

Based on the fit of the sigmoidal model, the
characteristic concentrations of CD,; and ID,, were
determined. The concentration of CD,, was deter-
mined as the solution of the equation
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[ (X)=0.5 3)

that is, the concentration at which the relative via-
bility of cells is 50 % of the control. Similarly, the
concentration of 1D, was defined as the solution

Jris (X)=0.5 4)

corresponding to a 50 percent level of residual virus
activity. For a given four parameters (a, b, ¢, d), the
analytical expression for such a concentration was
obtained from the equation x*

a
ytarget = W +d (5)
by algebraic transformation:
a
ytarget —-d :m’
1+e ©6)
a 1= e(—bx*+c);
Viarget — d
—bx"+c=1In Ld—l ,
ylarget (7)
c—In| —% 1
* ytarget - d
X =
b

In cases where the expression under the loga-
rithm was incorrect (negative or zero) or the para-
meter b was close to zero, the value of CD,; or ID,,
was considered uncertain (no intersection with the
level of 50 % in the studied range).

The chemotherapeutic index for each combina-
tion “compound — time — treatment regimen” was
calculated according to the standard ratio

CTI:% (8)
ID,,

which is interpreted as a safety margin: the larger
the CTI, the wider the therapeutic interval between
cytotoxic and antiviral concentrations. For further
classification analysis, CTI was converted to a bi-
nary trait by threshold: the value of 6 = 4,0 class
1 denoted combinations with CTI > 4, and class
0 — CTI < 4, which made it possible to interpret
the problem as a two-class problem of “promising /
unpromising” candidates.

To investigate the relationship between the
docking profile of compounds, cytotoxicity parame-
ters and the probability of obtaining a high CTI, the
decision trees method of the CART (Classification
and Regression Trees) type was used. In the first

model, the decision tree described the probability
of obtaining a determined CD,; based on docking
indicators. The trait vector included energy para-
meters of interaction with different regions of the
spike protein and the main protease (SP, — SP,,
MP, — MP,), as well as a coded timestamp of cell
exposure (time class, where 0 corresponded to 24
hours, 1 to 48 hours). The target variable class_CD,;
took a value of 1 if CD, was defined for the cor-
responding compound-time combination, and 0
in the opposite case. Thus, the first model evalua-
ted which docking profiles are associated with the
presence of a correct dose-appropriate cytotoxicity
curve.

In the second model, the decision tree modeled
the dependence of the “connection-time-mode”
combination belonging to the CTI class > 4 on the
combination of docking characteristics, CD,, and
ID,, parameters, and the treatment regimen. In ad-
dition to SP, — SP,, MP, — MP, and time_class,
the numerical values of CD,, ID,,, CTI itself, as
well as the encoded trait treatment_type_class (0 for
mode L and 1 for LP > class_CTI) were added to
the trait vector. Both models were built as binary
trees with a Gini index division criterion that mini-
mises class heterogeneity in nodes.

Decision trees were trained according to the
scheme of dividing the sample into training and test
subsamples in the ratio of 70 % / 30 % with a fixed
random number generator to ensure reproducibility.
In the presence of both classes, a stratified division
was carried out to preserve the proportions of the
classes in the training and test parts. The depth of
the trees was limited to a predetermined maximum
to avoid overtraining, and the number of leaf nodes
and the structure of the resulting rules were analy-
sed to control the complexity of the model. The text
representation of the tree in the form of nested “if”
rules was obtained by traversing the structure of the
tree, where each inner node specifies a condition of
the form “sign < threshold”, and the leaf node —
belonging to class 0 or 1.

Assessment of the quality of classification mo-
dels was carried out on test subsamples using a set
of standard metrics. Accuracy was defined as the
proportion of correctly classified examples:

TP+TN+FP+FN

where TP (true positives) is the number of true
positive classifications, TN (true negatives) is true
negative, FP (false positives) is false positive, FN
(false negatives) is false negative. Sensitivity (or re-
call for a positive class) was defined as

Accuracy =
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TP
TP+FN
which reflects the model’s ability to detect positive
cases. Specificity was calculated as

TN
TN+FP

characterising the ability of the model to correctly
cut off negative cases. To assess the balance between
sensitivity and accuracy of positive classifications,
the F1 measure was used:

Sensitivity = (10)

Specificity = (11)

Precision=

TP+FP’

_ 2-Precision - Sensitivity (12)

F1

Precision + Sensitivity

In the case of probabilistic model outputs (pre-
dict_proba), the area under the ROC curve (ROC-
AUC) was additionally calculated, which characteri-
ses the trade-off between sensitivity and specificity
when varying the classification threshold. In cases
where all observations belonged to the same class
and the ROC curve was incorrectly determined, the
ROC-AUC was not interpreted.

Additionally, two complementary procedures
were used to analyse the contribution of individual
traits. First, standard estimates of the importance of
traits in the tree were used based on a decrease in
the Gini criterion when splitting according to the
corresponding trait. Secondly, the sensitivity ana-
lysis of the “drop-one-feature” sensitivity was per-
formed: for each feature, a new decision tree was
built without this feature in the feature vector, and
then the model metrics were compared with the base
variant. A significant degradation of sensitivity or
specificity in the exclusion of a certain trait was in-
terpreted as an indicator of its critical importance
for decision-making.

To formalise the sequence of decision-making
on the continuation or termination of laboratory
tests at different stages (docking, assessment of cy-
totoxicity, testing of antiviral activity), the Markov
Decision Process (MDP) was used. The state space
described the main stages of the study: post-docking
baseline (.5,), post-doc status (S,), post-antiviral ac-
tivity (S,), post-doctrinal status, and two absorption
states — success (S, .., candidate acquisition with
CTI > 4) and completion without success (S,,). In
each of the non-absorption states, two actions were
considered: “stop” — stop further experiments, and
“continue” — move to the next stage of the study.

Transitions between states were described by
probabilities that were estimated on the basis of em-
pirical frequencies in the population of the com-
pounds studied. For example, the probability of
transition from SP(s'ls,a), to S, under the action
“continue” was estimated as the proportion of com-
pounds for which CD,; could be determined; the
probability of transition from S, to S, as the pro-
portion of combinations for which CTI was deter-
mined; the probability of transition from §, to S, .
as the proportion of cases with CTI > 4 among those
who have passed to the stage of antiviral activity
tests. The reward system R(s, a) included negative
contributions in the form of docking costs, cytotoxi-
city and antiviral activity tests, as well as a positive
reward for achieving a state of S corresponding
to obtaining a promising candidate. To assess the
long-term usefulness of action policies, a discount
factor y € (0;1) was used, which takes into account
the decrease in the “value” of time-distant results.

The optimal policy that maximizes the expec-
ted discounted total reward was determined by the
value iteration method. At each iteration, the value
of the utility function =*(s) ¥(s) was updated accor-
ding to the rule

I/IH—I (S) =
= max|:R(S,a)+}/ZP(S’ | S,a)Vk(S’)j| (13)

until the changes in W(s) for all states become less
than the predetermined error. The choice of action
in state s was carried out as an argument to the
maximum on the right side of the Bellman equation.

Interpretation of the supplementary experi-
ments as sources of information about the probabi-
lity of success and the associated costs allowed us to
integrate the concept of information value analysis
into the Markov formulation. The total expected
value of perfect information (EVPI) is the difference
between the expected utility from having complete,
error-free information about the outcome (e.g., CTI
for each compound before the experiments were
performed) and the expected utility at the current
level of uncertainty. The expected value of partial
perfect information about a subset of parameters
(EVPPI) marks a similar difference, but only for in-
formation about a particular block of parameters (for
example, only about CD,, or only about ID,)). The
expected value of sample information (EVSI) deter-
mines the increase in expected utility obtained by
making additional, but not error-free measurements
(for example, additional experiments on cytotoxicity
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or antiviral activity). In mathematical formulation,
these indicators are calculated as the difference be-
tween the maximum expected utility according to
the refined probability distribution (after taking into
account the new data) and the maximum according
to the original distribution; within the framework of
MDP, it comes down to comparing the values of
W(s) under different assumptions about the informa-
tion state of the system.

Formally, let 6 denote the vector of uncertain
parameters (e.g., transition probabilities and success
rates), d a decision or policy, and U(d, 0) the total
discounted utility under this decision. The baseline
expected value at the initial state s, is

Vbase(so) = max EH[U(d7 9) | 10]
deD
where [, denotes the current information set. The
expected value of perfect information (EVPI) is de-
fined as

EVPI=E,[max E,[U(d,0)|1,]1-V,,.(s,)- (15)
deD

It quantifies the maximum gain in expected
utility that could be achieved if 6 were known with-
out uncertainty before any decision is made.

For a subset of parameters ¢ < 0 (for example,
only cytotoxicity or only antiviral activity parame-
ters), the expected value of partial perfect informa-
tion (EVPPI) is given by

EVPPI(p)=E, x

(14)

x[max E,[U(d,0)|1,]1]1-V,,.(s,)- (16)

deD
Here, only the subset ¢ is assumed to be known
perfectly, whereas the remaining parameters 0\¢ re-
main uncertain.

The expected value of sample information
(EVSI) associated with a realistic additional expe-
riment y is defined as

EVSI(y) = E,[max E,[U(d,0) | 1,]]-

deD

_V;)ase(so)_c(y) (17)

where y denotes the possible outcomes of the new
experiment, and C(y) is the cost of collecting this
information. Within the MDP formulation used in
this work, all three quantities can be evaluated as
differences between optimal state values ¥(s,) com-
puted under different information scenarios (baseline
information, perfect information on 6 or ¢, and pos-
terior distributions updated by sample data y).

This approach provides a holistic methodological
framework: sigmoidal dose-response modelling allows
for stable estimates of CDy, ID,,, and CTI; decision
trees formalise the logic of the selection of compounds
according to the profiles of docking, cytotoxicity and
antiviral activity; The Markov model with associated
information value metrics allows you to assess the fea-
sibility of continuing or stopping experiments at dif-
ferent stages, taking into account costs and the likeli-
hood of achieving chemotherapy success.

The study used a holistic experimental dataset
which covered seven test samples (T1 — T7), each
having obtained both in silico and in vitro characte-
ristics. The generalised structure of this set is provided
in Table 1.

Results of molecular docking to the spike protein
and the main protease of the virus are available for each
sample and presented in the form of binding energy
ranges. In particular, for the spike protein, the mini-
mum and maximum values of the docking energy for
a set of domains (SP, — SP,) were taken into account,
and for the main protease — the minimum and maxi-

Table 1. Generalised characteristics of the experimental dataset

Min. Max. Min. Max. Antiviral
Docking Docking Docking Docking Sum- Sum- Cytotoxi- activity
Test energy energy energy energy marised marised city data data (L
Sample (spike (spike (basic (basic CTIlin 24 | CTI in 48 (24/48 LP: 24/ 4’8
protein), protein), | protease), | protease), hours hours hours) h,ours)
kcal/mol kcal/mol kcal/mol kcal/mol
T1 —6.26 -2.26 -5.68 —4.04 24 16 yes yes
T2 —6.32 -3.3 —7.34 —4.07 - 4 yes yes
T3 -5.24 2.4 -7.12 —4.04 3 yes yes
T4 -5.74 -2.26 -7.34 —4.04 - - yes yes
T5 -4.96 -2.37 -7.34 —4.04 4 3 yes yes
T6 —6.26 -2.4 -7.34 —4.04 6 6 yes yes
T7 -5.64 -2.26 —7.34 —4.21 - - yes yes
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mum values of the interaction energy with individual
functional regions (MP, — MP,). Table 1 shows two
aggregate intervals for each test sample: minimum and
maximum docking energy for the spike protein and ma-
jor protease, reflecting the spectrum of possible binding
configurations within the docking protocols used.

Results

The results obtained demonstrate a consistent
chain of transition from in silico characteristics to
integral assessment of the chemotherapeutic index
and optimisation of the sequence of experiments.
First of all, the analysis of the initial CD,;, ID,, and
CTI values for seven test samples showed significant
inter-sample variability: for some of the sample-
time-mode combinations, CD,; or ID,; could not be
correctly estimated at all within the studied concen-
tration range (the curve did not cross the 50 % le-
vel), while others showed well-defined half-inhibition
points and high CTI values. It is important to note
that this variability turned out to be structured — it is
related to the profile of the docking to the main pro-
tease and to the exposure mode, and is not random
noise; This is confirmed by the construction of the
first decision tree and the Markov model.

In the “docking — cytotoxicity” model, the
decision tree gives a compact but meaningful struc-
ture (Fig. 1).

The root node separates all observations by
the MP, parameter, which characterises the binding
energy of compounds to one of the functional areas
of the main protease. If MP, is found to be above
the threshold value of approximately — 7.0 kcal/mol
(i.e., binding is weaker), the model, without further
branching, assignsthe correspondingsample-time com-

MP_MP2 <= -7.01
gini = 0.469
samples = 8
value = [5, 3]

class = no CD50

MP_MP1 <= -5.97
gini = 0.375
samples = 4

value =[1, 3]
class = has CD50

time_class <= 0.5
gini = 0.5

samples = 2
value = [1, 1]
class = no CDS0

Fig. 1. Decision tree for the transition “docking — cytotoxicity”
using the parameters of interaction with the main protease
(MP,, MP,) and exposure time (24/48 hours) as predictors
of the presence of correctly determined CD,,

bination to a class for which CD is not deter-mined:
all cases where the dose-response of cytotoxicity re-
mains flat or monotonically low are concentrated in
this leaf node. Instead, for compounds with a more
favourable MP, value (<-7.0 kcal/mol), the tree
moves on to the second critical parameter — MP,.
For MP, values <-5.97 kcal/mol, all examples fall
into the sheet with the class “has CD,;”, i.e. a suf-
ficiently strong interaction with two regions of the
main protease is a reliable predictor of the presence
of correctly defined CD,. In the intermediate zone,
where MP, still indicates a fairly strong binding, but
MP, is already closer to the threshold, the model
additionally takes into account the incubation time:
for 24 h, some of the combinations remain in the
class without a defined CD,, while at 48 h the tree
leans towards a class with a defined CD,,. Thus, ex-
posure time acts as a secondary, modulating factor
that can compensate for the insufficient “force” of
docking, but only in a narrow sub-range of MP, and
MP, values. On the test sample, this model demon-
strates classification performance with all metrics
equal to 1.0, indicating that the hierarchical combi-
nation of MP,, MP |, and incubation time provides
deterministic rules for predicting CDso availability.
Trait weights and analysis of the exclusion of in-
dividual predictors confirm the dominance of MP,
and MP, parameters: they provide the main contri-
bution to the reduction of the Gini index, while the
time factor affects the quality of classification much
weaker.

The results for the “cytotoxicity — CTI > 4.0”
model turned out to be fundamentally different and
highlighted the structural features of the existing
dataset. Applying the decision tree to an extended
trait vector that included docking scores, CD,; nu-
merical values, ID,,, CTI itself, encoded treatment
time and regimen, resulted in a moderately complex
tree structure (Fig. 2).

Decision tree: cytotoxicity —» CTl = 4.0

time_class <= 0.5
gini = 0.5

samples = 6
value = [3, 3]
class = CTl < 4.0

Fig. 2. Decision tree for the transition “cytotoxicity — CTI > 4.0”
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Unlike the first model, this tree exhibits bran-
ching that attempts to separate compounds achieving
CTI > 4.0 from those with lower therapeutic indices.
However, the classification performance reflects the
challenging nature of this prediction task. The model
achieved an overall accuracy of 0.89, indicating that
89 % of test cases were correctly classified. Notably,
sensitivity was substantially lower at 0.50, meaning
that only half of the compounds that actually
achieved CTI > 4.0 were correctly identified by the
model. In contrast, perfect specificity at 1.00 indi-
cates that all compounds predicted to have CTI < 4.0
were indeed below this threshold — the model made
no false positive predictions. This imbalance between
precision and recall is reflected in the Fl1-score of
0.67, while the ROC-AUC of 0.75 suggests mode-
rate discriminative ability.

This performance pattern reveals an impor-
tant characteristic of the current model: it adopts a
highly conservative strategy and predicts high CTI
rarely unless multiple favourable conditions are met.
Although this approach does eliminate false opti-
mism, it often results in missed opportunities, as
approximately half of promising compounds are not
identified. The Markov model of the sequence of
experiments made it possible to quantify how expe-
dient it is to continue the study at each stage, taking
into account the costs and probability of obtaining
at least one candidate with a CTI > 4.0. For states S
(after docking), S, (after assessment of cytotoxicity),
and S, (after assessment of antiviral activity), values
of the utility function W(s) were calculated, which
increase from about 9.7 for § to 22.5 for S, and 84.0
for §, as shown in Table 2.

Table 2. The value of the utility function W(s) for Markov
model states and the optimal policy n*(s)

SO Sl SZ success Sfail
W(S) | 9.688 22.5 84 0 0
n(S) | continue | continue | continue | stop | stop

Such monotonous growth means that each sub-
sequent block of experiments significantly increases
the expected “cost” of the candidate portfolio: at
the docking stage, information about the potential
of compounds is still very uncertain; obtaining CD,,
adds an important layer of safety assessment and
cuts off clearly toxic variants; completion of antiviral
activity tests virtually determines whether a portfolio
has a chance of containing at least one drug with
an acceptable CTI. The calculated optimal policy
of n*(s) turned out to be unambiguous: for all three
non-absorption states, the action “continue experi-

ments” is recommended, while in the absorption
states of success or failure — “stop”. On the one
hand, this is consistent with the high CTI values
among the samples that have passed the previous fil-
ters: the projected benefit from the complete passage
of all stages exceeds the total costs. On the other
hand, such a policy indicates that the structure of
the experimental program does not currently con-
tain “redundant” stages: each of them significantly
changes the expected utility, and therefore makes
a non-trivial contribution to reducing uncertainty
about CTI.

Interpreting these results in terms of informa-
tion value shows that the greatest gain in utility is
given by the transition from a post-cytotoxicity state
to a post-antiviral state. This means that it is the
ID,; results and the associated CTI values that are
key to the final decision on the feasibility of promo-
ting the compound; information about the docking
profile and CD, plays mainly the role of a pre-fil-
ter. The tree “docking — cytotoxicity” clearly shows
that already at the stage of in silico evaluation, a
combination of MP, and MP, parameters can be
distinguished, which, with a high probability, leads
to the formation of a correct CD,; curve. Further,
the Markov model demonstrates that, despite the
costs, continuing the studies to the stage of antiviral
activity is economically justified, since the expec-
ted gain from the potential detection of at least one
candidate with a high CTI significantly exceeds the
alternative of “stopping” in the early stages. At the
same time, the moderate performance of the tree
“cytotoxicity — CTI > 4.0” (Table 3) signals that
in the current dataset, predicting final therapeutic
success from intermediate parameters remains chal-
lenging. While the model’s high specificity ensures
that no unpromising compounds are incorrectly ad-
vanced, its lower sensitivity indicates that approxi-
mately half of actually promising candidates are not
recognised by the current decision rules, suggesting
that more sophisticated stratification approaches or
additional predictive features may be needed to im-
prove early identification of therapeutic candidates.

Numerical evaluation of the information-value
metrics within the MDP formulation yielded an ex-
pected value of perfect information (EVPI) equal
to zero, as well as a zero partial value of perfect
information (EVPPI) for the antiviral stage, while
the expected value of sample information (EVSI) for
an additional antiviral experiment was negative and
equal to —10 in the adopted arbitrary utility units.
This pattern indicates that, under the current esti-
mates of transition probabilities and reward struc-
ture, even hypothetically perfect knowledge of the
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Table 3. Comparative metrics of decision tree models and Markov model

Model Positive class | Accuracy S(egzlg;\l/ll;y Specificity | Fl-score | ROC-AUC
Docking — CD,; (presence of
CD,, defined) has CD,; 1 1 1 1
Cytotoxicity — CTI > 4.0 CTI > 4.0 0.89 0.50 1.00 0.67 0.75

antiviral success probability would not change either
the optimal policy or the expected value at the initial
state, so that additional information of this type has
no incremental decision value. At the same time, the
negative EVSI reflects the fact that, in the simplified
scenario considered, a realistic extra experiment on
antiviral activity does not lead to a sufficient increase
in the expected utility to compensate for its cost,
implying that resources would be more efficiently al-
located to adjusting earlier-stage selection criteria or
expanding the candidate set rather than intensifying
measurements at the final antiviral stage.

The comparative values of classification met-
rics for both decision trees, as well as the utility
functions of the states of the Markov model, are
summarised in Table 3, allow you to quantitatively
compare the accuracy of predictive decisions and
the expected effectiveness of various strategies for
conducting experiments.

Collectively, this indicates that further experi-
mental studies should be directed either to expand
the sample set (to include more examples with inter-
mediate and low CTIs) or to clarify dosing regimens
and time regimens, where the gap between efficacy
and toxicity will be less obvious and, accordingly,
will provide a richer structure for building more
complex but informative decision trees.

Conclusions

This research shows that decision trees and
Markov decision processes are used for comple-
mentary aspects in preclinical antiviral research op-
timisation, and their performance is fundamentally
shaped by the structure of the available data. The
decision-tree model linking docking parameters to
the presence of a well-defined CD,; achieved classi-
fication success on the test set, with all metrics equal
to 1.0. This indicates that strong binding to the main
protease, in particular, favourable values of MP, and
MP, combined with incubation time provides de-
terministic rules for predicting the formation of a
stable dose-response curve. While these results imply
robust predictive ability within the current dataset,
the limited sample size requires validation on larger,

more diverse compound libraries in order to confirm
generalizability.

In contrast, the tree built for the transition from
cytotoxicity parameters to CTI > 4.0 exhibited sub-
stantially different performance characteristics. The
model achieved 89 % overall accuracy but demon-
strated an asymmetric error profile: sensitivity of
only 0.50 (correctly identifying half of compounds
with CTI > 4.0) combined with specificity of 1.00
(no false positives). This classification strategy en-
sures that compounds predicted to achieve high CTI
are indeed therapeutically promising. Still, it results
in missed opportunities, as approximately half of
actually promising candidates are not recognised
by the current decision rules. The F1-score of 0.67
and ROC-AUC of 0.75 show that the relationship
between intermediate experimental parameters and
final therapeutic success is more complex than can
be captured by simple threshold-based rules with the
current feature set and sample size.

The Markov decision process provided a glo-
bal, quantitatively interpretable view of the same ex-
perimental pipeline, explicitly integrating transition
probabilities, experimental costs and the probability
of achieving at least one candidate with CTI > 4.0.
The estimated state values WM(S)), WS,) and W(S,)
increased monotonically during the stage “after
docking — after cytotoxicity — after antiviral test-
ing”, confirming that each successive block of ex-
periments substantially raises the expected utility of
the candidate portfolio. The optimal policy consis-
tently recommended the continuation of the pre-
clinical program from docking through cytotoxicity
to antiviral assays, and that the stop is required only
in the absorbing states of success or failure. Despite
the second decision tree performing the imperfect
classification, the Markov model still indicated that,
under the assumed costs and probabilities of suc-
cess, the full three-stage pipeline is an economically
justified solution and does not contain redundant
experimental steps.

The value of information analysis shows how
much each stage of the pipeline contributes to redu-
cing uncertainty and improving decision quality. The
results suggest that the largest incremental gain in



MPUKNAOHA MATEMATUKA 29

expected utility appears when the compound moves
from the state after cytotoxicity assessment to the state
after antiviral activity testing. This highlights the deci-
sive role of ID,; and derived CTI values in confirming
or rejecting candidates. Information on docking and
CD,, acts primarily as a preliminary filter that shapes
the distribution of outcomes that are observed at la-
ter stages. Decision trees are most effective as local,
interpretable tools for formalising the cut-off rules
based on docking and toxicity profiles at the early

stages, whereas the Markov model outperforms them
in terms of providing a globally optimal, cost-aware
strategy for navigating the entire preclinical pipe-
line. Together, these results show that further deve-
lopment should focus on expanding and rebalancing
the experimental dataset (to enable more informative
tree-based models at the CTI level) and on refining
Markov and value of information formulations to in-
corporate richer biological and economic parameters
in the optimisation of antiviral preclinical programs.
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MPUMHATTSA PILEHb Y MPOLECI JOKNIHIYHOI PO3POEKM MPOTUBIPYCHVX MPEMAPATIB MPOTU KOPOHABIPYCY:
MATEMATWYHE MOLEJIKOBAHHA TA AHAMI3 LIIHHOCTI IHGOPMALLIT

Mpobnematuka. [okniHiyHe OLiHIOBaHHA KaHAuAATIB SK MPOTMBIPYCHMX NpenapaTtiB — ue OaratoeTanHuii npouec, sKui
CYNPOBOXYETHCS 3HAYHOK HEBU3HAYEHICTIO | NOTpebye hopmarnbHUX IHCTPYMEHTIB NIATPUMKN NPURHATTS pilleHb. TpaauuiiHi nigxoam
[0 CKPUWHIHTY CMONyK 3a3Buyali He MIiCTATb CTPYKTYpOBaHUX METOAIB ONTMMI3aLii Ansi MocrigoBHOrO BUOOPY, a TakoX OLiHIOBaHHS
[OOLinNbHOCTI 1 pu3unKiB nepexopis Mixk etanamu. Lie npussoanTe A0 HeedheKTUBHOCTI Mif Yac BiAGOPY NEPCNEKTUBHMX MOMNEKY i MiABULLYE
MOBIPHICTb BUBOPY cyGonTMManbHUX AOCNIOHULBKUX TPAEKTOPIN.

MeTa gocnigxeHHs. Po3pobuTu 11 06r'pyHTYyBaTK hopmanizoBaHuii nigxia, Wob onTumisyBaTn nepexoam Mix etanamu AOKNiHIYHOro
TeCcTyBaHHA NPOTMBIPYCHMX MpenaparTis. Llen nigxig iHTerpye gepesa pilleHb i MApKOBCbKY MOAENb ANS OUiHIOBaHHS edeKTUBHOCTI,
pu3uKiB i LiHHOCTI floAaTkoBoi iHbopMalii, Lo 3abe3neynTs pauioHanbHe NnaHyBaHHsi NOCNIAOBHOCTI AOKNIHIYHMX OOCHIAKEHb.

MeTtoauka peanisauii. EkcnepymeHTanbHi faHi 3 MONEKynApHOro AOKIHry, UMTOTOKCUYHOCTI CD,; Ta aHTUBIPYCHOI aKTUBHOCTI
IC,, 6ynu iHTerpoBaHi B kackagHy CUCTeMy OLiHIOBaHHA i3 kpuTepiem nepexoay XTI 2 4. [lepesa pilueHb 3abesneqmnnu iHTepnpeToBaHi
npasuna NpocyBaHHs CMosykK, a 3a AONOMOro MapKoBChKOi Mofeni 6yno 3aMoAenboBaHO NOCHIAOBHI CTpaTerii B yMOBaX HEBU3HAYEHOCTI
Ta OUIHEHO [OUiNbHICTL nepexodiB Mk eTanamu. 3a [onoMorot aHanidy UiHHOCTI iHdopmaLii Byno OuiHeHO ouikyBaHy KOpWUCTb
[04aTKOBUX eKCrnepuMeHTanbHUX AaHuX.

Pe3ynbTtatn pocnigxeHHA. OnucaHui nigxin AaB y3rofxeHi TexHiuHi pesynbtaTtu. [epeBo pilleHb Ans MPOrHo3yBaHHs
CTI = 4,0 nokasano KoHcepBaTUBHWI LWAbMNoH knacudikawii, NpaBUIIbHO BU3Ha4akouy Cromykn 3 BUCOKMM TepaneBTUYHUM NoTeHLianom,
arne nponyckawyM YacTuHy edeKTUBHUX KaHauaaTiB. MapkoBcbka Mogenb Aornomorfa OWiHUTM CTaH CUCTEMW Ha eTanax LOKiHry,
LIUTOTOKCUYHOCTI 1 aHTUBIPYCHOTO TECTYBaHHSI, LLIO MOKA3aro 3pOCTaHHs! O4ikyBaHOT KOPUCHOCTI. I PYHTYIOUNCH Ha OTPUMAaHUX pesyrbTaTax,
6yno BM3HAYeHO ONTUMarlbHi PiLLEHHS LLOAO NPOAOBXEHHS AOCHIAKEHb A0 aHTUBIPYCHUX TECTIB, TOAI SIK 32 OMOMOrOH aHani3y LiHHOCTi
iHpopmalii 6yno BCTaHOBMNEHO, WO HaWBINbLUMA NPUPICT OYiKyBaHOI KOPUCHOCTI AOCAratoTb NICNs TECTYBaHHS aHTUBIPYCHOT akTUBHOCTI,
KOMW paHHi eTany BUKOHYIOTb ponb (inbTpIB.
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BucHoBku. [JocnigxeHHs nokasye, Wo AepeBa pilleHb i MapkoBCbki Mofeni BigobpaxaloTb pi3Hi, ane B3aEMOAOMNOBHIOBArbHi
acnekTn JOKMiHIYHOro ouiHBaHHSA. [lepeBa pilleHb fonoMaralTb CTPYKTypyBaTy NpaBuna Ha paHHix etanax AOoCnigKEeHHs!, Nokasyouu,
SIK eTanu AOKIHry Ta LIMTOTOKCUYHOCTI BNMBalOTh Ha NPOCyBaHHS crnonyk. BogHoyac ix obmexeHa YyTnumBICTb MiAKPECNoe CKnaaHICTb
nepenbayeHHs KiHLEBOro MpOTMBIPYCHOrO YCMiXy Ha OCHOBI MPOMiIKXHMX MOKa3HWKIB. MapKoBCbKMI Mpouec Aae LuMpLIWMiA nornsg
Ha NoCnifOBHICTb EKCNEPUMEHTIB | JEMOHCTPYE BUNpaBaaHicTe BUGOPY NOBHOrO TPMPIBHEBOrO AOCHIMKEHHS Ta BNIMBY HEBU3HAYEHOCTI
N BUTPAT Ha pilleHHs WoAo nporpecii cnonyk. Pe3ynbTaTty aHanidy LiHHOCTI iHopMaLii YyTOYHIOTL BaXIMBICTb KOXHOro eTany,
NiAKPECIOYM KITIOYOBY POrb AaHWX NPO aHTUBIPYCHY akTUBHICTb. PasoMm Ui pe3ynbTaTi nokasyloTb BaXUBICTb BNPOBaAXEHHS METOAIB
NPUNHATTS pilleHb AN NiABULLEHHS CTPYKTYPW, NPO30POCTi Ta e(PeKTUBHOCTI AOKNIHIYHUX AOCHIAXEHb NPOTUBIPYCHUX Npenaparis.

KntouyoBi cnoBa: kopoHaBipyc; npenapaT; AOKMiHIYHE OLIHIOBaHHS; AepeBO pilleHb; MapKOBCbKWUI MPOLIEC MPUAHATTSA pilleHb;
LiHHICTb iHdopMmaUii.

PexomennoBana Pamoro Haniiinia no penaxitii
akyapTeTy NMPUKIATHOI MAaTEMATUKK 18 xoBTHs 2025 poky
KIII im. Irops Cikopcbkoro
IIpuitnsara go myOGikariii
15 rpynHs 2025 poky



