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DECISION MAKING IN ANTI-CORONAVIRUS DRUG DISCOVERY:  
MATHEMATICAL MODELLING AND VALUE OF INFORMATION ANALYSIS

Background. The process of preclinical evaluation of antiviral medications typically involves multiple stages, each con-
taining substantial uncertainties. Traditional methods for screening the compounds often lack structured means for op-
timising the decision-making and calculating the feasibility and risks of transitions between all of the stages. Thus, there 
appears to be a problem with the inefficient selection of promising antiviral molecules, which subsequently increases 
the probability of choosing suboptimal research trajectories.
Objective. The paper aims to develop a computational framework for optimising of the transition between stages in 
preclinical antiviral testing. The system focuses on the integration of decision trees and Markov models in order to 
include effectiveness, risks and the value of additional information into assessment, supporting an in-depth planning of 
preclinical research pipelines.
Methods. Experimental data from molecular docking, cytotoxicity CD50, and antiviral activity IC50 were used in a mul-
ti-stage evaluation system with CTI ≥ 4 being the criterion for progression into further stages. Decision trees provided 
the explicit rules for advancement of the compounds, while Markov models added context for building sequential 
strategies under uncertainty and quantified the feasibility of movement to the next stage. Value of information analysis 
added the assessment of the expected benefit of additional data.
Results. The developed framework consistently produced reliable technical results. The decision used in CTI ≥ 4.0 
prediction stage demonstrated a conservative classification pattern, correctly identifying compounds with high thera-
peutic potential while missing some effective candidates. The Markov model showed steadily increasing state values in 
docking, cytotoxicity, and antiviral testing phases that confirmed the growth of expected utility. Based on the findings 
acquired, the most effective solutions were identified for the ongoing investigation into antiviral assays, while the ap-
plication of value of information analysis indicated that the largest gain occurred after antiviral activity testing, whereas 
the initial phases serve as filters.
Conclusions. The study showed that both decision trees and Markov models capture different but complementary as-
pects of the preclinical evaluation process. Decision trees provide an interpretable set of rules that formalise how mo-
lecular docking and cytotoxicity measurement influence the progression of compounds, while their limited sensitivity at 
the CTI threshold highlighted the complexity of predicting the final success of the evaluated compounds. The Markov 
model simulations showed that the full three-stage pipeline is justified and that progression decisions are influenced by 
both uncertainty and experimental cost. The value of information analysis clarifies the importance of each stage, helping 
to emphasise the role of antiviral activity data. These findings support the integration of analytic methods for improving 
the structure, transparency and efficiency of antiviral preclinical research.
Keywords: coronavirus; drug; preclinical evaluation; decision tree; Markov decision process; value of information.

Introduction

The optimisation of sequential decision-making 
in preclinical studies of antiviral compounds remains 
a highly relevant challenge due to the combination 

of uncertainty, high experimental costs, and limited 
predictability of candidate efficacy. At each stage 
of the preclinical pipeline – from in silico scree
ning to cytotoxicity assessment and antiviral activity 
tests – researchers must make a series of decisions, 
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where an inaccurate early-stage choice leads to the 
loss of time, resources, and potentially promising 
compounds. This creates the need for systematic 
approaches capable of increasing the rationality and 
economic efficiency of the preclinical process.

Despite significant progress in artificial intelli-
gence, current research mainly improves individu-
al steps of drug discovery rather than the full de-
cision-making pipeline. Modern machine learning 
techniques demonstrate substantial advances in vir-
tual screening, toxicity prediction, and target selec-
tion [1]. AI-based integration with organ-on-a-chip 
platforms and digital twins enhances the accuracy 
of pharmacokinetic and toxicological modelling 
[2]. Data-driven design of antiviral peptides using 
GANs, deep learning and explainable AI demon-
strates strong potential for optimising candidate 
properties [3]. Studies of DHODH inhibitors high-
light the complexity of translating promising in vitro 
results into clinical effects and emphasise the need 
for step-wise risk assessment [4]. Multi-omics deep 
learning pipelines accelerate early discovery and fa-
cilitate drug repositioning [5]. AI-based prediction of 
viral mutations supports personalised antiviral stra
tegies and shows the sequential, dynamic nature of 
decision-making in virology [6]. AI-driven derepli-
cation and classification of natural products further 
illustrate the need for structured transitions between 
preclinical stages [7].

However, these advances primarily address pre-
dictive accuracy rather than the principled optimi-
sation of decisions across multiple stages. Current 
research lacks integrated mathematical frameworks 
that would: formalise transitions between preclinical 
stages, quantify risks and probabilities of success, in-
corporate the cost and value of information, and de-
termine when experimental continuation is economi
cally justified. Decision trees and Markov processes 
are rarely applied specifically to antiviral preclinical 
pipelines, leaving a methodological gap in modelling 
sequential choices under uncertainty.

The study aims to develop and evaluate for-
malised approaches for optimising sequential deci-
sion-making in preclinical antiviral research using 
decision tree models and Markov decision processes. 
These models are applied to real-world experimental 
datasets to quantify transition probabilities, estimate 
costs, and compare the effectiveness of alternative 
strategies.

The scientific novelty of the work lies in the 
integration of an interpretable set of rules provided 
by the decision trees with globally optimal Markov 
strategies and value of information analysis. Unlike 
prior studies, in the proposed framework, predictive 

patterns, uncertainty quantification, experimental 
costs and utility maximisation are combined into a 
unified scheme that supports planning throughout 
the entire preclinical process.

Problem statement

The object of the study is the process of precli
nical evaluation of antiviral drugs, while the subject 
is mathematical methods for optimising sequential 
decision-making in this process, in particular deci-
sion trees and Markov models. The purpose of the 
work is to develop and test formalised approaches 
to assessing the effectiveness, risks and feasibility of 
transitions between stages of preclinical studies based 
on real experimental data. The end result is the 
construction and comparative analysis of two algo-
rithmic models – the decision tree and the Markov 
process – that demonstrate their ability to support 
rational, data-driven planning for preclinical testing 
of antiviral candidates.

Materials and methods

The study uses three interrelated methods: deci-
sion trees to formalise the process of selecting com-
pounds, Markov models to describe the sequence 
of experimental steps over time and value of infor-
mation analysis metrics to quantify the feasibility of 
doing additional measurements. This combination 
allows for moving from the description of individu-
al experiments to a systematic approach where each 
step is considered to be an element of an optimised 
decision-making process.

Decision trees act as interpreted classification 
models that reflect the relationship between a set 
of input parameters (docking parameters, concen-
tration characteristics, toxicity and antiviral activity 
indicators) and binary output events (e.g., reaching a 
chemotherapy index threshold). The decision tree is 
a hierarchical structure, where each inner node cor-
responds to a condition of the type “sign ≤ thresh-
old”, branches to alternative consequences of this 
condition, and leaf nodes to result classes. The con-
struction of the tree is carried out by sequentially 
dividing the feature space to minimise the degree of 
heterogeneity (for example, the Gini index) in the 
daughter nodes at each stage. As a result, a set of 
simple logical rules is formed that allows for expli
cit interpretation of which combinations of docking, 
CD50, ID50, and exposure.

Markov chains and Markov decision-making 
processes are used to describe the evolution of a sys-
tem in discrete states, taking into account the pro
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babilistic nature of transitions between them. In the 
simplest case, the Markov chain is given by a set of 
states and a matrix of transient probabilities, where 
the probability of moving to the next state depends 
only on the current state, and not on the complete 
history. In the context of planning the sequence of ex-
periments, this allows us to consider individual stages 
(docking, assessment of cytotoxicity, testing of anti-
viral activity, achievement or failure of therapeutic 
success) as states of the Markov process, and possible 
actions of the investigator (“to continue” or “stop” 
the study at a certain stage) as controlling influences 
that change the distribution of probabilities of further 
states. In this formulation, the Markov model of de-
cision-making is used, where each state-action pair 
corresponds not only to the probability of transition, 
but also to a certain instantaneous reward or cost, 
and the optimal strategy is determined by solving the 
Bellman equations for the value function.

Value-of-information analysis metrics are tools 
for evaluating the extent to which the anticipated 
utility of decisions can be enhanced through addi-
tional data. Conceptually, the value of information 
is defined as the difference between the expected 
utility of an optimal policy given the availability of 
additional information and the expected utility at the 
baseline level of uncertainty. The Total Value of Per-
fect Information (EVPI) reflects a hypothetical in-
crement if the results of the experiments were known 
in advance without errors; partial value of perfect 
information (EVPPI) characterizes a similar increase 
for certain groups of parameters (for example, only 
for cytotoxicity indicators or only for antiviral acti
vity); The expected value of the sample information 
(EVSI) assesses how much conducting a realistic in-
cremental experiment with a certain value is able to 
improve decision-making. In combination with the 
Markov model of the experimental process, these 
metrics enable a quantitative comparison of vari-
ous research design variants, determine the stages at 
which new measurements give the greatest increase 
in information about CTI, and justify the optimal 
balance between the costs of the experiment and the 
probability of obtaining therapeutically significant 
candidates.

The study used a multi-level methodology 
combining experimental data on docking, cyto-
toxicity, and antiviral activity with mathematical 
dose-response modelling, decision tree construc-
tion, and Markov experiment sequence modelling. 
The main target characteristic is the CTI chemo-
therapy index, calculated based on CD50 and ID50 
concentrations for each test sample and cell pro-
cessing regimen.

Baseline data included energy parameters of 
molecular docking of a series of candidate com-
pounds to the domains of the spike protein of the vi-
rus and the main protease, results of cytotoxicity tests 
on the cell line at two time points (24 and 48 h) and 
results of tests of antiviral activity in the therapeutic 
(L) and therapeutic-prophylactic (LP) modes. For 
the docking, numerical estimates of binding ener
gy (in conventional units of energy) with individual 
target sites were considered, which are represented as 
SP1 – SP5 for the spike protein and MP1 – MP3 for 
the main protease. For each compound, a docking 
parameter vector was obtained, which was further 
used as an input trait space in decision tree models.

Dose-effect modelling for cytotoxicity and an-
tiviral activity was carried out using a four-parame-
ter sigmoidal model. For each compound, exposure 
time, and treatment regimen, a set of concentrations 
was given x

i
 and the corresponding measured values 

of relative cell viability (for cytotoxicity) or relative 
viral activity (for antiviral action), normalised to 
control in the interval [0; 1]. As a model function, 
the expression
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where x is the concentration of the compound, f(x) is 
the expected relative value of the indicator (viability 
or activity), a, b, c, d are unknown parameters of 
the curve describing the amplitude of the effect, the 
steepness of the transition, the shift along the con-
centration axis and the baseline, respectively. The 
estimation of the parameters was carried out by the 
method of least squares by minimising the root mean 
square error
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where yi – experimental values of the relative viabi
lity of cells or the relative activity of the virus, N is 
the number of points of the curve. Optimisation was 
carried out by the numerical method of nonlinear 
regression with constraints on parameters to avoid 
unrealistic decisions; in cases where numerical op-
timisation did not match, stable heuristic initial ap-
proximations were used, providing a smooth mono-
tonic curve within the studied concentration range.

Based on the fit of the sigmoidal model, the 
characteristic concentrations of CD50 and ID50 were 
determined. The concentration of CD50 was deter-
mined as the solution of the equation
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( ) 0.5cytof x =                      (3)

that is, the concentration at which the relative via­
bility of cells is 50 % of the control. Similarly, the 
concentration of ID50 was defined as the solution

( ) 0.5virusf x =                      (4)

corresponding to a 50 percent level of residual virus 
activity. For a given four parameters (a, b, c, d), the 
analytical expression for such a concentration was 
obtained from the equation x*
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In cases where the expression under the loga­
rithm was incorrect (negative or zero) or the para­
meter b was close to zero, the value of CD50 or ID50 
was considered uncertain (no intersection with the 
level of 50 % in the studied range).

The chemotherapeutic index for each combina­
tion “compound – time – treatment regimen” was 
calculated according to the standard ratio

50

50

CDCTI=
ID                      (8)

which is interpreted as a safety margin: the larger 
the CTI, the wider the therapeutic interval between 
cytotoxic and antiviral concentrations. For further 
classification analysis, CTI was converted to a bi­
nary trait by threshold: the value of θ = 4,0 class 
1 denoted combinations with CTI ≥ 4, and class 
0 – CTI < 4, which made it possible to interpret 
the problem as a two-class problem of “promising / 
unpromising” candidates.

To investigate the relationship between the 
docking profile of compounds, cytotoxicity parame­
ters and the probability of obtaining a high CTI, the 
decision trees method of the CART (Classification 
and Regression Trees) type was used. In the first 

model, the decision tree described the probability 
of obtaining a determined CD50 based on docking 
indicators. The trait vector included energy para­
meters of interaction with different regions of the 
spike protein and the main protease (SP1 – SP5, 
MP1 – MP3), as well as a coded timestamp of cell 
exposure (time_class, where 0 corresponded to 24 
hours, 1 to 48 hours). The target variable class_CD50 
took a value of 1 if CD50 was defined for the cor­
responding compound-time combination, and 0 
in the opposite case. Thus, the first model evalua­
ted which docking profiles are associated with the 
presence of a correct dose-appropriate cytotoxicity 
curve.

In the second model, the decision tree modeled 
the dependence of the “connection-time-mode” 
combination belonging to the CTI class ≥ 4 on the 
combination of docking characteristics, CD50 and 
ID50 parameters, and the treatment regimen. In ad­
dition to SP1 – SP5, MP1 – MP3 and time_class, 
the numerical values of CD50, ID50, CTI itself, as 
well as the encoded trait treatment_type_class (0 for  
mode L and 1 for LP ≥ class_CTI) were added to 
the trait vector. Both models were built as binary 
trees with a Gini index division criterion that mini­
mises class heterogeneity in nodes.

Decision trees were trained according to the 
scheme of dividing the sample into training and test 
subsamples in the ratio of 70 % / 30 % with a fixed 
random number generator to ensure reproducibility. 
In the presence of both classes, a stratified division 
was carried out to preserve the proportions of the 
classes in the training and test parts. The depth of 
the trees was limited to a predetermined maximum 
to avoid overtraining, and the number of leaf nodes 
and the structure of the resulting rules were analy­
sed to control the complexity of the model. The text 
representation of the tree in the form of nested “if” 
rules was obtained by traversing the structure of the 
tree, where each inner node specifies a condition of 
the form “sign ≤ threshold”, and the leaf node – 
belonging to class 0 or 1.

Assessment of the quality of classification mo­
dels was carried out on test subsamples using a set 
of standard metrics. Accuracy was defined as the 
proportion of correctly classified examples:

TP+TN
TP+TN+FP+FN

Accuracy =            (9)

where TP (true positives) is the number of true 
positive classifications, TN (true negatives) is true 
negative, FP (false positives) is false positive, FN 
(false negatives) is false negative. Sensitivity (or re­
call for a positive class) was defined as
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TP
TP+FN

Sensitivity =                (10)

which reflects the model’s ability to detect positive 
cases. Specificity was calculated as

TN
TN+FP

Specificity =                (11)

characterising the ability of the model to correctly 
cut off negative cases. To assess the balance between 
sensitivity and accuracy of positive classifications, 
the F1 measure was used:

TPPrecision= ,
TP+FP

2 PrecisionF1 .
Precision

Sensitivity
Sensitivity

⋅ ⋅
=

+

        (12)

In the case of probabilistic model outputs (pre-
dict_proba), the area under the ROC curve (ROC-
AUC) was additionally calculated, which characteri
ses the trade-off between sensitivity and specificity 
when varying the classification threshold. In cases 
where all observations belonged to the same class 
and the ROC curve was incorrectly determined, the 
ROC-AUC was not interpreted.

Additionally, two complementary procedures 
were used to analyse the contribution of individual 
traits. First, standard estimates of the importance of 
traits in the tree were used based on a decrease in 
the Gini criterion when splitting according to the 
corresponding trait. Secondly, the sensitivity ana
lysis of the “drop-one-feature” sensitivity was per-
formed: for each feature, a new decision tree was 
built without this feature in the feature vector, and 
then the model metrics were compared with the base 
variant. A significant degradation of sensitivity or 
specificity in the exclusion of a certain trait was in-
terpreted as an indicator of its critical importance 
for decision-making.

To formalise the sequence of decision-making 
on the continuation or termination of laboratory 
tests at different stages (docking, assessment of cy-
totoxicity, testing of antiviral activity), the Markov 
Decision Process (MDP) was used. The state space 
described the main stages of the study: post-docking 
baseline (S0), post-doc status (S1), post-antiviral ac-
tivity (S2), post-doctrinal status, and two absorption 
states – success (Ssuccess, candidate acquisition with 
CTI ≥ 4) and completion without success (Sfail). In 
each of the non-absorption states, two actions were 
considered: “stop” – stop further experiments, and 
“continue” – move to the next stage of the study.

Transitions between states were described by 
probabilities that were estimated on the basis of em-
pirical frequencies in the population of the com-
pounds studied. For example, the probability of 
transition from SP(sʹǀs,a)0 to S1 under the action 
“continue” was estimated as the proportion of com-
pounds for which CD50 could be determined; the 
probability of transition from S1 to S2 as the pro-
portion of combinations for which CTI was deter-
mined; the probability of transition from S2 to Ssuccess 
as the proportion of cases with CTI ≥ 4 among those 
who have passed to the stage of antiviral activity 
tests. The reward system R(s, a) included negative 
contributions in the form of docking costs, cytotoxi
city and antiviral activity tests, as well as a positive 
reward for achieving a state of Ssuccess corresponding 
to obtaining a promising candidate. To assess the 
long-term usefulness of action policies, a discount 
factor γ ∈ (0;1)  was used, which takes into account 
the decrease in the “value” of time-distant results.

The optimal policy that maximizes the expec
ted discounted total reward was determined by the 
value iteration method. At each iteration, the value 
of the utility function π*(s)V(s) was updated accor
ding to the rule

1

,
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max ( , ) ( | , ) ( )

k

k
s a

V s

R s a P s s a V sγ

+ =

 
′ ′= + 

 
∑    (13)

until the changes in V(s) for all states become less 
than the predetermined error. The choice of action 
in state s was carried out as an argument to the 
maximum on the right side of the Bellman equation.

Interpretation of the supplementary experi-
ments as sources of information about the probabi
lity of success and the associated costs allowed us to 
integrate the concept of information value analysis 
into the Markov formulation. The total expected 
value of perfect information (EVPI) is the difference 
between the expected utility from having complete, 
error-free information about the outcome (e.g., CTI 
for each compound before the experiments were 
performed) and the expected utility at the current 
level of uncertainty. The expected value of partial 
perfect information about a subset of parameters 
(EVPPI) marks a similar difference, but only for in-
formation about a particular block of parameters (for 
example, only about CD50 or only about ID50). The 
expected value of sample information (EVSI) deter-
mines the increase in expected utility obtained by 
making additional, but not error-free measurements 
(for example, additional experiments on cytotoxicity 
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or antiviral activity). In mathematical formulation, 
these indicators are calculated as the difference be-
tween the maximum expected utility according to 
the refined probability distribution (after taking into 
account the new data) and the maximum according 
to the original distribution; within the framework of 
MDP, it comes down to comparing the values of 
V(s) under different assumptions about the informa-
tion state of the system.

Formally, let θ denote the vector of uncertain 
parameters (e.g., transition probabilities and success 
rates), d a decision or policy, and U(d, θ) the total 
discounted utility under this decision. The baseline 
expected value at the initial state s0 is

0 0( ) max [ ( , ) | ]base
d D

V s E U d Iθ θ
∈

=          (14)

where I0 denotes the current information set. The 
expected value of perfect information (EVPI) is de-
fined as

0 0EVPI [max [ ( , ) | ] ( )base
d D

E E U d I V sθ θ θ
∈

= − .  (15)

It quantifies the maximum gain in expected 
utility that could be achieved if θ were known with-
out uncertainty before any decision is made.

For a subset of parameters φ ⊂ θ (for example, 
only cytotoxicity or only antiviral activity parame-
ters), the expected value of partial perfect informa-
tion (EVPPI) is given by

0 0

VPPI( )

[max [ ( , ) | ]] ( )base
d D

E

E U d I V s

ϕ

θ

ϕ

θ
∈

= ×

× −

0 0[max [ ( , ) | ]] ( )base
d D
E U d I V sθ θ

∈
× −

Here, only the subset φ is assumed to be known 
perfectly, whereas the remaining parameters θ\φ re-
main uncertain.

The expected value of sample information 
(EVSI) associated with a realistic additional expe
riment y is defined as

0EVSI( ) [max [ ( , ) | ]]y
d D

y E E U d Iθ θ
∈

= −

0( ) ( )baseV s C y− − (17)

where y denotes the possible outcomes of the new 
experiment, and C(y) is the cost of collecting this 
information. Within the MDP formulation used in 
this work, all three quantities can be evaluated as 
differences between optimal state values V(s0) com-
puted under different information scenarios (baseline 
information, perfect information on θ or φ, and pos-
terior distributions updated by sample data y).

This approach provides a holistic methodological 
framework: sigmoidal dose-response modelling allows 
for stable estimates of CD50, ID50, and CTI; decision 
trees formalise the logic of the selection of compounds 
according to the profiles of docking, cytotoxicity and 
antiviral activity; The Markov model with associated 
information value metrics allows you to assess the fea-
sibility of continuing or stopping experiments at dif-
ferent stages, taking into account costs and the likeli-
hood of achieving chemotherapy success.

The study used a holistic experimental dataset 
which covered seven test samples (T1 – T7), each 
having obtained both in silico and in vitro characte
ristics. The generalised structure of this set is provided 
in Table 1.

Results of molecular docking to the spike protein 
and the main protease of the virus are available for each 
sample and presented in the form of binding energy 
ranges. In particular, for the spike protein, the mini-
mum and maximum values of the docking energy for 
a set of domains (SP1 – SP5) were taken into account, 
and for the main protease – the minimum and maxi

Таble 1. Generalised characteristics of the experimental dataset

Test 
Sample

Min. 
Docking 
energy 
(spike 

protein), 
kcal/mol

Max. 
Docking 
energy 
(spike 

protein), 
kcal/mol

Min. 
Docking 
energy 
(basic 

protease), 
kcal/mol

Max. 
Docking 
energy 
(basic 

protease), 
kcal/mol

Sum-
marised 

CTI in 24 
hours

Sum-
marised 

CTI in 48 
hours

Cytotoxi
city data 
(24/48 
hours)

Antiviral 
activity 
data (L, 

LP; 24/48 
hours)

T1 −6.26 −2.26 −5.68 −4.04 24 16 yes yes
T2 −6.32 −3.3 −7.34 −4.07 – 4 yes yes
T3 −5.24 −2.4 −7.12 −4.04 3 2 yes yes
T4 −5.74 −2.26 −7.34 −4.04 – – yes yes
T5 −4.96 −2.37 −7.34 −4.04 4 3 yes yes
T6 −6.26 −2.4 −7.34 −4.04 6 6 yes yes
T7 −5.64 −2.26 −7.34 −4.21 – – yes yes
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0 0

ϕ( )

[max θ ) (s )base
∈d D

EVPPI ϕ

θ

= E ×

× E [ (U d , | I ]] V− .    (16)



26 KPI Science News 2021 / 4

mum values of the interaction energy with individual 
functional regions (MP1 – MP3). Table 1 shows two 
aggregate intervals for each test sample: minimum and 
maximum docking energy for the spike protein and ma-
jor protease, reflecting the spectrum of possible binding 
configurations within the docking protocols used.

Results

The results obtained demonstrate a consistent 
chain of transition from in silico characteristics to 
integral assessment of the chemotherapeutic index 
and optimisation of the sequence of experiments. 
First of all, the analysis of the initial CD50, ID50 and 
CTI values for seven test samples showed significant 
inter-sample variability: for some of the sample-
time-mode combinations, CD50 or ID50 could not be 
correctly estimated at all within the studied concen-
tration range (the curve did not cross the 50 % le
vel), while others showed well-defined half-inhibition 
points and high CTI values. It is important to note 
that this variability turned out to be structured – it is 
related to the profile of the docking to the main pro-
tease and to the exposure mode, and is not random 
noise; This is confirmed by the construction of the 
first decision tree and the Markov model.

In the “docking → cytotoxicity” model, the 
decision tree gives a compact but meaningful struc-
ture (Fig. 1).

The root node separates all observations by 
the MP2 parameter, which characterises the binding 
energy of compounds to one of the functional areas 
of the main protease. If MP2 is found to be above 
the threshold value of approximately – 7.0 kcal/mol 
(i.e., binding is weaker), the model, without further 
branching, assigns the corresponding sample-time com-

Fig. 1. Decision tree for the transition “docking → cytotoxicity” 

using the parameters of interaction with the main protease 

(MP1, MP2) and exposure time (24/48 hours) as predictors 

of the presence of correctly determined CD50

bination to a class for which CD50 is not deter-mined: 
all cases where the dose-response of cytotoxicity re-
mains flat or monotonically low are concentrated in 
this leaf node. Instead, for compounds with a more 
favourable MP2 value (≤−7.0 kcal/mol), the tree
moves on to the second critical parameter – MP1. 
For MP1 values ≤−5.97 kcal/mol, all examples fall
into the sheet with the class “has CD50”, i.e. a suf-
ficiently strong interaction with two regions of the 
main protease is a reliable predictor of the presence 
of correctly defined CD50. In the intermediate zone, 
where MP2 still indicates a fairly strong binding, but 
MP1 is already closer to the threshold, the model 
additionally takes into account the incubation time: 
for 24 h, some of the combinations remain in the 
class without a defined CD50, while at 48 h the tree 
leans towards a class with a defined CD50. Thus, ex-
posure time acts as a secondary, modulating factor 
that can compensate for the insufficient “force” of 
docking, but only in a narrow sub-range of MP1 and 
MP2 values. On the test sample, this model demon-
strates classification performance with all metrics 
equal to 1.0, indicating that the hierarchical combi-
nation of MP2, MP1, and incubation time provides 
deterministic rules for predicting CD₅₀ availability. 
Trait weights and analysis of the exclusion of in-
dividual predictors confirm the dominance of MP2 
and MP1 parameters: they provide the main contri-
bution to the reduction of the Gini index, while the 
time factor affects the quality of classification much 
weaker.

The results for the “cytotoxicity → CTI ≥ 4.0” 
model turned out to be fundamentally different and 
highlighted the structural features of the existing 
dataset. Applying the decision tree to an extended 
trait vector that included docking scores, CD50 nu-
merical values, ID50, CTI itself, encoded treatment 
time and regimen, resulted in a moderately complex 
tree structure (Fig. 2).

Fig. 2. Decision tree for the transition “cytotoxicity → CTI ≥ 4.0”
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Unlike the first model, this tree exhibits bran
ching that attempts to separate compounds achieving 
CTI ≥ 4.0 from those with lower therapeutic indices. 
However, the classification performance reflects the 
challenging nature of this prediction task. The model 
achieved an overall accuracy of 0.89, indicating that 
89 % of test cases were correctly classified. Notably, 
sensitivity was substantially lower at 0.50, meaning  
that only half of the compounds that actually 
achieved CTI ≥ 4.0 were correctly identified by the 
model. In contrast, perfect specificity at 1.00 indi-
cates that all compounds predicted to have CTI < 4.0 
were indeed below this threshold – the model made 
no false positive predictions. This imbalance between 
precision and recall is reflected in the F1-score of 
0.67, while the ROC-AUC of 0.75 suggests mode
rate discriminative ability.

This performance pattern reveals an impor
tant characteristic of the current model: it adopts a 
highly conservative strategy and predicts high CTI 
rarely unless multiple favourable conditions are met. 
Although this approach does eliminate false opti-
mism, it often results in missed opportunities, as 
approximately half of promising compounds are not 
identified. The Markov model of the sequence of 
experiments made it possible to quantify how expe-
dient it is to continue the study at each stage, taking 
into account the costs and probability of obtaining 
at least one candidate with a CTI ≥ 4.0. For states S0

(after docking), S1 (after assessment of cytotoxicity), 
and S2 (after assessment of antiviral activity), values 
of the utility function V(s) were calculated, which 
increase from about 9.7 for S0 to 22.5 for S1 and 84.0 
for S2 as shown in Table 2.

Such monotonous growth means that each sub-
sequent block of experiments significantly increases 
the expected “cost” of the candidate portfolio: at 
the docking stage, information about the potential 
of compounds is still very uncertain; obtaining CD50 
adds an important layer of safety assessment and 
cuts off clearly toxic variants; completion of antiviral 
activity tests virtually determines whether a portfolio 
has a chance of containing at least one drug with 
an acceptable CTI. The calculated optimal policy 
of π*(s) turned out to be unambiguous: for all three 
non-absorption states, the action “continue experi

ments” is recommended, while in the absorption 
states of success or failure – “stop”. On the one 
hand, this is consistent with the high CTI values 
among the samples that have passed the previous fil-
ters: the projected benefit from the complete passage 
of all stages exceeds the total costs. On the other 
hand, such a policy indicates that the structure of 
the experimental program does not currently con-
tain “redundant” stages: each of them significantly 
changes the expected utility, and therefore makes 
a non-trivial contribution to reducing uncertainty 
about CTI.

Interpreting these results in terms of informa-
tion value shows that the greatest gain in utility is 
given by the transition from a post-cytotoxicity state 
to a post-antiviral state. This means that it is the 
ID50 results and the associated CTI values that are 
key to the final decision on the feasibility of promo
ting the compound; information about the docking 
profile and CD50 plays mainly the role of a pre-fil-
ter. The tree “docking → cytotoxicity” clearly shows 
that already at the stage of in silico evaluation, a 
combination of MP2 and MP1 parameters can be 
distinguished, which, with a high probability, leads 
to the formation of a correct CD50 curve. Further, 
the Markov model demonstrates that, despite the 
costs, continuing the studies to the stage of antiviral 
activity is economically justified, since the expec
ted gain from the potential detection of at least one 
candidate with a high CTI significantly exceeds the 
alternative of “stopping” in the early stages. At the 
same time, the moderate performance of the tree 
“cytotoxicity → CTI ≥ 4.0” (Table 3) signals that 
in the current dataset, predicting final therapeutic 
success from intermediate parameters remains chal-
lenging. While the model’s high specificity ensures 
that no unpromising compounds are incorrectly ad-
vanced, its lower sensitivity indicates that approxi-
mately half of actually promising candidates are not 
recognised by the current decision rules, suggesting 
that more sophisticated stratification approaches or 
additional predictive features may be needed to im-
prove early identification of therapeutic candidates.

Numerical evaluation of the information-value  
metrics within the MDP formulation yielded an ex-
pected value of perfect information (EVPI) equal 
to zero, as well as a zero partial value of perfect 
information (EVPPI) for the antiviral stage, while 
the expected value of sample information (EVSI) for 
an additional antiviral experiment was negative and 
equal to −10 in the adopted arbitrary utility units. 
This pattern indicates that, under the current esti-
mates of transition probabilities and reward struc-
ture, even hypothetically perfect knowledge of the 

Таble 2. The value of the utility function V(s) for Markov 
model states  and the optimal policy π*(s)

S0 S1 S2 Ssuccess Sfail

V(Si) 9.688 22.5 84 0 0

π(Si) continue continue continue stop stop

ПРИКЛАДНА МАТЕМАТИКА
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antiviral success probability would not change either 
the optimal policy or the expected value at the initial 
state, so that additional information of this type has 
no incremental decision value. At the same time, the 
negative EVSI reflects the fact that, in the simplified 
scenario considered, a realistic extra experiment on 
antiviral activity does not lead to a sufficient increase 
in the expected utility to compensate for its cost, 
implying that resources would be more efficiently al-
located to adjusting earlier-stage selection criteria or 
expanding the candidate set rather than intensifying 
measurements at the final antiviral stage.

The comparative values of classification met-
rics for both decision trees, as well as the utility 
functions of the states of the Markov model, are 
summarised in Table 3, allow you to quantitatively 
compare the accuracy of predictive decisions and 
the expected effectiveness of various strategies for 
conducting experiments.

Collectively, this indicates that further experi-
mental studies should be directed either to expand 
the sample set (to include more examples with inter-
mediate and low CTIs) or to clarify dosing regimens 
and time regimens, where the gap between efficacy 
and toxicity will be less obvious and, accordingly, 
will provide a richer structure for building more 
complex but informative decision trees.

Conclusions

This research shows that decision trees and 
Markov decision processes are used for comple-
mentary aspects in preclinical antiviral research op-
timisation, and their performance is fundamentally 
shaped by the structure of the available data. The 
decision-tree model linking docking parameters to 
the presence of a well-defined CD50 achieved classi-
fication success on the test set, with all metrics equal 
to 1.0. This indicates that strong binding to the main 
protease, in particular, favourable values of MP1 and 
MP2 combined with incubation time provides de-
terministic rules for predicting the formation of a 
stable dose-response curve. While these results imply 
robust predictive ability within the current dataset, 
the limited sample size requires validation on larger, 

more diverse compound libraries in order to confirm 
generalizability.

In contrast, the tree built for the transition from 
cytotoxicity parameters to CTI ≥ 4.0 exhibited sub-
stantially different performance characteristics. The 
model achieved 89 % overall accuracy but demon-
strated an asymmetric error profile: sensitivity of 
only 0.50 (correctly identifying half of compounds 
with CTI ≥ 4.0) combined with specificity of 1.00 
(no false positives). This classification strategy en-
sures that compounds predicted to achieve high CTI 
are indeed therapeutically promising. Still, it results 
in missed opportunities, as approximately half of 
actually promising candidates are not recognised 
by the current decision rules. The F1-score of 0.67 
and ROC-AUC of 0.75 show that the relationship 
between intermediate experimental parameters and 
final therapeutic success is more complex than can 
be captured by simple threshold-based rules with the 
current feature set and sample size.

The Markov decision process provided a glo
bal, quantitatively interpretable view of the same ex-
perimental pipeline, explicitly integrating transition 
probabilities, experimental costs and the probability 
of achieving at least one candidate with CTI ≥ 4.0. 
The estimated state values V(S0), V(S1) and V(S2) 
increased monotonically during the stage “after 
docking → after cytotoxicity → after antiviral test-
ing”, confirming that each successive block of ex-
periments substantially raises the expected utility of 
the candidate portfolio. The optimal policy consis-
tently recommended the continuation of the pre-
clinical program from docking through cytotoxicity 
to antiviral assays, and that the stop is required only 
in the absorbing states of success or failure. Despite 
the second decision tree performing the imperfect 
classification, the Markov model still indicated that, 
under the assumed costs and probabilities of suc-
cess, the full three-stage pipeline is an economically 
justified solution and does not contain redundant 
experimental steps.

The value of information analysis shows how 
much each stage of the pipeline contributes to redu
cing uncertainty and improving decision quality. The 
results suggest that the largest incremental gain in 

Таble 3. Comparative metrics of decision tree models and Markov model

Model Positive class Accuracy
Sensitivity 
(Recall)

Specificity F1-score ROC-AUC

Docking → CD50 (presence of
CD50 defined)

has CD50 1 1 1 1 1

Cytotoxicity → CTI ≥ 4.0 CTI ≥ 4.0 0.89 0.50 1.00 0.67 0.75
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expected utility appears when the compound moves 
from the state after cytotoxicity assessment to the state 
after antiviral activity testing. This highlights the deci-
sive role of ID50 and derived CTI values in confirming 
or rejecting candidates. Information on docking and 
CD50 acts primarily as a preliminary filter that shapes 
the distribution of outcomes that are observed at la
ter stages. Decision trees are most effective as local, 
interpretable tools for formalising the cut-off rules 
based on docking and toxicity profiles at the early 

stages, whereas the Markov model outperforms them 
in terms of providing a globally optimal, cost-aware 
strategy for navigating the entire preclinical pipe-
line. Together, these results show that further deve
lopment should focus on expanding and rebalancing 
the experimental dataset (to enable more informative 
tree-based models at the CTI level) and on refining 
Markov and value of information formulations to in-
corporate richer biological and economic parameters 
in the optimisation of antiviral preclinical programs.

References

[1]	 U.E. Ogbonna et al., “Advances in machine learning for optimizing pharmaceutical drug discovery”, Curr. Proteomics, Vol. 22, 

no. 2, p. 100015, Apr. 2025. Retrieved from doi: https://doi.org/10.1016/j.curpro.2025.100015

[2]	 A. Gangwal and A. Lavecchia, “Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to 

reduce animal testing”, Drug Discov. Today, Vol. 30, no. 5, p. 104360, May 2025. Retrieved from doi: https://doi.org/10.1016/j.

drudis.2025.104360

[3]	 M. Mashhadi Abolghasem Shirazi et al., “Next-generation antiviral peptides: AI-driven design, translational delivery platforms, 

and future therapeutic directions”, Virus Res., Vol. 361, p. 199642, Nov. 2025. Retrieved from doi: https://doi.org/ 10.1016/j.

virusres.2025.199642

[4]	 A. Luganini et al., “DHODH inhibitors: What will it take to get them into the clinic as antivirals?”, Antiviral Res., Vol. 236,  

p. 106099, Apr. 2025. Retrieved from doi: https://doi.org/10.1016/j.antiviral.2025.106099

[5]	 N. Vora et al., “Artificial intelligence and multi-omics in drug discovery: A deep learning-powered revolution”, Cure Care, 

p. 100011, Nov. 2025. Retrieved from doi: https://doi.org/10.1016/j.ccwv.2025.100011

[6]	 K.O. Oyediran et al., “Artificial intelligence in human immunodeficiency virus mutation prediction and drug design: Advan

cing personalized treatment and prevention”, Pharm. Sci. Adv., Vol. 3, p. 100080, Dec. 2025. Retrieved from doi: https://doi.

org/10.1016/j.pscia.2025.100080

[7]	 A. Gangwal and A. Lavecchia, “Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future 

Perspectives”, J. Med. Chem., Vol. 68, no. 4, pp. 3948–3969, Feb. 2025. Retrieved from doi: https://doi.org/10.1021/acs.jmed-

chem.4c01257

Д.С. Городецький, М.П. Сметюх, С.О. Соловйов

ПРИЙНЯТТЯ РІШЕНЬ У ПРОЦЕСІ ДОКЛІНІЧНОЇ РОЗРОБКИ ПРОТИВІРУСНИХ ПРЕПАРАТІВ ПРОТИ КОРОНАВІРУСУ: 
МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТА АНАЛІЗ ЦІННОСТІ ІНФОРМАЦІЇ

Проблематика. Доклінічне оцінювання кандидатів як противірусних препаратів – це багатоетапний процес, який 
супроводжується значною невизначеністю і потребує формальних інструментів підтримки прийняття рішень. Традиційні підходи 
до скринінгу сполук зазвичай не містять структурованих методів оптимізації для послідовного вибору, а також оцінювання 
доцільності й ризиків переходів між етапами. Це призводить до неефективності під час відбору перспективних молекул і підвищує 
ймовірність вибору субоптимальних дослідницьких траєкторій.

Мета дослідження. Розробити й обґрунтувати формалізований підхід, щоб оптимізувати переходи між етапами доклінічного 
тестування противірусних препаратів. Цей підхід інтегрує дерева рішень і марковську модель для оцінювання ефективності, 
ризиків і цінності додаткової інформації, що забезпечить раціональне планування послідовності доклінічних досліджень.

Методика реалізації. Експериментальні дані з молекулярного докінгу, цитотоксичності CD50 та антивірусної активності 
IC50 були інтегровані в каскадну систему оцінювання із критерієм переходу ХTI ≥ 4. Дерева рішень забезпечили інтерпретовані 
правила просування сполук, а за допомогою марковської моделі було змодельовано послідовні стратегії в умовах невизначеності 
та оцінено доцільність переходів між етапами. За допомогою аналізу цінності інформації було оцінено очікувану користь 
додаткових експериментальних даних.

Результати дослідження. Описаний підхід дав узгоджені технічні результати. Дерево рішень для прогнозування  
CTI ≥ 4,0 показало консервативний шаблон класифікації, правильно визначаючи сполуки з високим терапевтичним потенціалом, 
але пропускаючи частину ефективних кандидатів. Марковська модель допомогла оцінити стан системи на етапах докінгу, 
цитотоксичності й антивірусного тестування, що показало зростання очікуваної корисності. Ґрунтуючись на отриманих результатах, 
було визначено оптимальні рішення щодо продовження досліджень до антивірусних тестів, тоді як за допомогою аналізу цінності 
інформації було встановлено, що найбільший приріст очікуваної корисності досягають після тестування антивірусної активності, 
коли ранні етапи виконують роль фільтрів.
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Висновки. Дослідження показує, що дерева рішень і марковські моделі відображають різні, але взаємодоповнювальні 
аспекти доклінічного оцінювання. Дерева рішень допомагають структурувати правила на ранніх етапах дослідження, показуючи, 
як етапи докінгу та цитотоксичності впливають на просування сполук. Водночас їх обмежена чутливість підкреслює складність 
передбачення кінцевого противірусного успіху на основі проміжних показників. Марковський процес дає ширший погляд 
на послідовність експериментів і демонструє виправданість вибору повного трирівневого дослідження та впливу невизначеності 
й витрат на рішення щодо прогресії сполук. Результати аналізу цінності інформації уточнюють важливість кожного етапу, 
підкреслюючи ключову роль даних про антивірусну активність. Разом ці результати показують важливість впровадження методів 
прийняття рішень для підвищення структури, прозорості та ефективності доклінічних досліджень противірусних препаратів.

Ключові слова: коронавірус; препарат; доклінічне оцінювання; дерево рішень; марковський процес прийняття рішень; 
цінність інформації.
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