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МЕТОД ФРАКТАЛЬНО-КЕРОВАНОЇ РЕГУЛЯРИЗАЦІЇ АВТОЕНКОДЕРІВ  
ДЛЯ НАПІВКЕРОВАНОГО НАВЧАННЯ В ЗАДАЧАХ КЛАСИФІКАЦІЇ  

МЕДИЧНИХ ЗОБРАЖЕНЬ

Проблематика. Класифікація медичних зображень за допомогою глибокого навчання є критично важливою 
задачею, однак її ефективність обмежується дефіцитом розмічених даних, збір яких є дорогим. Методи 
напівкерованого навчання (НН) вирішують цю проблему, залучаючи нерозмічені дані. Поширені підходи, що 
ґрунтуються на автоенкодерах (АЕ), використовують реконструкцію як навчальний сигнал. Утім, стандартна 
мінімізація втрат реконструкції не гарантує, що отриманий латентний простір буде оптимально структурований 
для вирішення завдання класифікації, оскільки модель може фокусуватися на нерелевантних для діагностики 
ознаках.
Мета дослідження. Розробка та експериментальна перевірка нового методу регуляризації латентного простору – 
фрактально-керованої регуляризації (FDR). Мета полягає у покращенні метричних показників класифікації 
медичних зображень в умовах гострого дефіциту розмічених даних (5 %) за допомогою інтеграції фрактальної 
розмірності (ФР) як додаткового, апріорного навчального сигналу.
Методика реалізації. Запропонована модель FDR-AE ґрунтується на архітектурі АЕ, доповненій двома 
повнозв’язними шарами, що приєднані до латентного простору: класифікаційним та регресійним. Регресійний 
шар навчається прогнозувати ФР вхідного зображення, обчислену заздалегідь методом «box-counting». 
Загальна функція втрат є комбінацією трьох компонент: втрат класифікації на 5 % розмічених даних і втрат 
реконструкції та фрактальної регресії на 100 % даних. Ефективність методу перевірено на трьох наборах 
даних різної модальності (ISIC2024, COVID-19 Radiology, Brain Tumor MRI) порівняно з базовою згортковою 
мережею Base-CNN і стандартним напівкерованим АЕ SSL-AE.
Результати дослідження. Експерименти показали стабільну перевагу запропонованого методу. На датасеті 
ISIC2024 модель FDR-AE досягла F1-Score 0.508 для класу «malignant» проти 0.431 у SSL-AE та 0.304 у Base-
CNN. На датасеті COVID-19, F1-Score для класу «covid19» склав 0.722 для FDR-AE проти 0.695 для SSL-AE. 
У 4-класовій задачі Brain Tumor модель FDR-AE продемонструвала покращення F1-Score щодо всіх класів, 
причому найбільший приріст +0.079 та +0.054, відповідно, спостерігався для класів 0 та 3, що мали найбільшу 
взаємну статистичну відмінність у ФР.
Висновки. Фрактально-керована регуляризація доводить, що ФР є цінним апріорним сигналом для навчання 
більш якісних і структурно обґрунтованих представлень у задачах НН. Метод особливо ефективний на простих 
архітектурах в умовах сильного дефіциту даних. Перспективи подальших досліджень включають використання 
FDR як методу попереднього навчання (pre-training) або впровадження динамічного коефіцієнта для 
регресійного компонента функції втрат.
Ключові слова: напівкероване навчання; фрактальна розмірність; автоенкодер; регуляризація латентного 
простору; медичні зображення; класифікація зображень; box-counting.

Вступ

Автоматизований аналіз медичних зобра-
жень на основі глибоких нейронних мереж є 
важливим напрямом досліджень, оскільки може 

допомогти у ранній діагностиці патологій. Од-
нією з основних проблем у впровадженні таких 
систем є дефіцит розмічених даних, отримання 
й розмітка яких вимагає висококваліфікованих 
спеціалістів і суттєвих витрат грошей і часу. 

Offer a citation for this article: O.O. Zarytskyi, V.Y. Danilov, “A method for fractal-driven regularization of autoen-
coders in semi-supervised medical image classification”, KPI Science News, no. 4, pp. 31–39, 2025. doi: https://doi.
org/10.20535/kpisn.2025.4.343202

Пропозиція для цитування цієї статті: О.О. Зарицький, В.Я. Данилов, “Метод фрактально-керованої регу-
ляризації автоенкодерів для напівкерованого навчання в задачах класифікації медичних зображень”, Наукові 
вісті КПІ, № 4, с. 31–39, 2025. doi: https://doi.org/10.20535/kpisn.2025.4.343202 

© Автор(и).
Стаття поширюється на умовах ліцензії CC BY 4.0

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ



32 KPI Science News 2025 / 4

Для вирішення цієї проблеми активно розвива-
ються методи НН, що дають можливість вико-
ристовувати одночасно розмічені й нерозмічені 
дані для навчання моделей.

Поширеним підходом у НН є використан-
ня AE, які вивчають корисні ознаки через за-
дачу реконструкції вхідних зображень. Такий 
підхід довів свою ефективність у таких методах, 
як Adversarial Autoencoders та Ladder Networks. 
Утім, стандартна мінімізація втрат реконструк-
ції не гарантує, що латентний простір моделі 
буде оптимально структурованим для вирішення 
завдання класифікації. Наше припущення ґрун-
тується на тому, що його можна покращити, 
використовуючи апріорні знання про структуру 
і складність даних, на яких навчається модель.

Постановка задачі

Метою цієї роботи є розробка та експери-
ментальна перевірка нового методу НН – FDR. 
Ми пропонуємо використовувати ФР як додат-
ковий навчальний сигнал для покращення якості 
латентного простору в задачах НН. Ефективність 
методу продемонстровано на трьох медичних да-
тасетах в умовах гострого дефіциту розмічених 
даних (5 % вибірки), де запропонована модель 
АЕ із фрактальною регуляризацією FDR-AE по-
рівнюється з базовою керованою моделлю Base-
CNN і стандартним напівкерованим АЕ SSL-AE.

Фрактальна розмірність як класифікаційна 
ознака у медичних зображеннях

Виділення інформативних ознак, що опи-
сують складні біологічні структури, є ключовою 
проблемою під час аналізу медичних зображень. 
Фрактальна розмірність – це числовий показник, 
що оцінює структурну складність і нерегуляр-
ність об’єкта. Цей показник широко використо-
вують як ключову ознаку в багатьох медичних 
дослідженнях, оскільки доведено, що ФР коре-
лює з діагностичними станами [1–5]. Наприклад, 
у нейроонкології ФР корелює з показником агре-
сивності гліобластом [3], а в мамографії доведе-
но чітку кореляцію між злоякісністю утворення 
та його ФР [5]. Утім, у більшості досліджень ФР 
використовують як основну ознаку для аналізу. 
Відповідно, якщо статистичні розподіли значень 
ФР суттєво накладаються один на одного, – ви-
користання цього показника як основного сиг-
налу для класифікації є неможливим. У цьому 
дослідженні ми пропонуємо метод використання 
ФР як сигналу для НН (фрактальна регуляри-

зація латентного простору мережі) і покажемо, 
що навіть в разі суттєвого накладання статистич-
них розподілів ця ознака може суттєво покращу-
вати якість моделі.

Вибір та адаптація методу обчислення фрак
тальної розмірності

Є багато методів обчислення ФР зобра-
жень, що адаптовані під різні задачі та структуру 
самих зображень, зокрема основані на базовому 
методі box-counting [6–9], морфології об’єкта 
[10] чи навіть Фур’є-спектра [11–12]. Для цього 
дослідження було обрано один із найбільш по-
ширених методів визначення ФР: box-counting. 
Він полягає у накладанні на зображення сіток 
з різними розмірами комірок r та підрахунку 
кількості комірок Nr, що містять пікселі вимі-
рюваного об’єкта. Фрактальну розмірність Dbox 
вимірюють як нахил прямої графіка залежності 
Nr  від 1/r:

0
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На практиці вищезгаданий нахил графіка 
найчастіше вимірюють за допомогою лінійної 
регресії [9]. Вибір цього методу був зумовлений 
простотою обчислення. Також було експери-
ментально визначено, що у розглянутих нами 
наборах даних значення ФР, підраховані цим 
методом, мають найбільшу різницю у середніх 
значеннях для різних класів. Наприклад, для на-
бору даних ISIC2024 (див. «Опис наборів даних») 
box-counting показав ΔMean = 0.149, тоді як най-
ближчий за цим показником метод Minkovsky-
Bouligand [10] показав різницю всього у 0.084.

Стандартний метод підрахунку Nr вимагає 
бінаризованого зображення. Це є проблемою 
для медичних зображень, оскільки діагностич-
но важливою є інформація, що може міститися 
у відтінках сірого. Для вирішення цієї пробле-
ми у нашій роботі ми використовуємо адап-
тивну бінаризацію замість фіксованого порогу. 
Для кожного зображення пороговим значенням 
буде середнє (mean) по зображенню.

Статистичне обґрунтування фрактальної регу
ляризації

Основною гіпотезою запропонованого мето-
ду є те, що обчислена ФР може слугувати ефек-
тивним джерелом «слабкого» сигналу для регу-
ляризації латентного простору мережі. Для цього 
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потрібно, щоб середні значення ФР різнилися 
для різних класів. При цьому перевагою вико-
ристання сигналу саме як регуляризаційного, 
а не як основного сигналу, для класифікації по-
лягає в тому, що накладання розподілів ФР не є 
таким критичним для цієї задачі. Щоб підтвер-
дити вищезгадану гіпотезу, ми провели статис-
тичний аналіз на трьох обраних датасетах, щоб 
перевірити, чи існує статистично значуща різни-
ця між класами. З результатів дослідження, на-
ведених у табл. 1 та 2, можна побачити, що всі 
три набори даних мають статистично значущу 
різницю між класами (детальний опис набо-
рів даних та обґрунтування їх вибору викладено 
у розд. «Матеріали та методологія досліджень»). 
Наявність різниці між середніми значеннями 
вимірів ФР (ΔMean), а також співвідношення  
сигнал/шум (ΔMean/max(σ)), що не близькі до  
нуля, свідчать про релевантність застосування та-
кої ознаки.

Регуляризація за допомогою фрактальної 
регуляризації

Запропонований метод полягає у струк-
турній регуляризації латентного простору. Ми 
вводимо регресійний шар ffd, що приєднується 

до латентного вектора z і навчається прогнозу-
вати ФР зображення, порівнюючи свої прогнози 
ffd (z) із значеннями d , визначеними апріорним 
методом (у нашому випадку box-counting). Фор-
мулу для обчислення втрат регресії Lfd для батчу 
розміру N описують таким чином:
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 та di – прогнозоване та апріорне значення 
ФР для і-го вектора у батчі, а zi – латентне пред-
ставлення і-го вхідного зображення.

Оскільки статистичний аналіз підтвердив, 
що ФР є релевантною ознакою, її явне коду-
вання у латентному просторі може покращувати 
його структуру у наступній класифікації.

Щоб запобігти втраті іншої цінної інфор-
мації під час регресії ФР, ми застосуємо цей 
метод як модифікацію архітектури АЕ. Головне 
завдання АЕ – мінімізація функції втрат рекон-
струкції Lrec. Вона гарантує, що вектор z збері-
гатиме максимум інформації для відновлення 
зображення. Цю регуляризаційну властивість 

Таблиця 2. Статистичний аналіз фрактальної розмірності, підрахованої методом box-counting (датасети з чотирма 
класами) 

Набір даних Mean FD (class 0) Mean FD (class 1) Mean FD (class 2) Mean FD (class 3)

Brain Tumor MRI 
Dataset

1.88 518 1.88 538 1.8851 1.87 125

σ (class 0) σ (class 1) σ (class 2) σ (class 3)

0.0 188 859 0.0 211 904 0.0 318 129 0.0 140 467

Набір даних Клас Клас ΔMean max σ ΔMean/max σ

Brain Tumor MRI 
Dataset

0 1 0.0002 0.0 211 904 0.00 943 824

0 2 0.00 008 0.0 318 129 0.0 025 147

0 3 0.01 393 0.0 188 859 0.7 375 873

1 2 0.00 028 0.0 318 129 0.00 880 146

1 3 0.01 413 0.0 211 904 0.66 681 139

2 3 0.01 385 0.0 318 129 0.43 535 798

Таблиця 1. Статистичний аналіз фрактальної розмірності, підрахованої методом box-counting (датасети із двома 
класами)

Набір даних
Mean FD 
(class 0)

Mean FD 
(class 1)

ΔMean σ (class 0) σ (class 1)
ΔMean/
max σ

ISIC2024 Challenge 1.375 1.524 0.149 0.498 0.389 0.299

COVID-19 Radiology Database 1.851 1.828 0.023 0.024 0.023 0.941
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АЕ широко використовують у НН для навчання 
на нерозмічених даних, наприклад в adversarial 
autoencoders [13] та ladder network архітектурі 
[14]. Таким чином, оптимізація двох вищевка-
заних функцій втрат діє одночасно як регуляри-
зація повноти інформації (Lrec) і як структурна 
регуляризація (Lfd) у латентному просторі.

Для порівняння реконструйованого зобра-
ження з оригінальним ми використали MSE 
(mean squared error). Для навчання на розмічених 
даних було додано класифікаційний шар, що ви-
користовує cross-entropy loss функцію (LCE). За-
гальну функцію втрат можна описати так:

L = LCE + λrec Lrec + λfd Lfd.

Гіперпараметри λrec та λfd контролюють вне-
сок некерованого навчання. Оптимізація цієї 
функції втрат змушує енкодер створювати простір 
z, що є одночасно повним, структурно чутливим 
та оптимізованим для класифікації. На рис. 1 
зображено модель, що реалізує запропонований 
метод. Стрілками позначено звʼязки між компо-
нентами моделі, а пунктирними лініями – умов-
ні звʼязки, які демонструють, як обчислюються 
компоненти функції втрат.

Матеріали і методологія дослідження

Опис наборів даних
Для експериментальної демонстрації ефек-

тивності запропонованого методу було обра-
но три відкриті датасети медичних зображень, 
що різняться за типом діагностичної задачі, ві-
зуальними характеристиками, а також статис-

тичними властивостями значень ФР. У табл. 3 
надано опис кожного датасету із поясненнями 
трансформацій та обґрунтування вибору кожно-
го датасету.

Архітектура моделей для експериментів

Експериментальну частину було виконано 
у середовищі Python за допомогою бібліотеки 
Pytorch. Для практичної демонстрації результа-
тів дослідження було розроблено й реалізовано 
три архітектури нейронних мереж, кожна з яких 
відіграє певну роль у дослідженні.

Базова модель – класична згорткова ней-
ронна мережа Base-CNN, яка слугує еталонною 
моделлю для керованого навчання. Її архітек-
тура складається із чотирьох послідовних шарів 
Conv2d→ReLU. Після згорткових шарів подан-
ня передається послідовно у три повнозв’язні 
шари Linear. Усі інші моделі у цьому експе-
рименті були побудовані на основі цієї моделі 
з мінімальними модифікаціями, потрібними 
для реалізації відповідної архітектури. Цю мо-
дель навчали тільки на розміченій частині даних 
(5 % даних). Порівняння метрик інших моделей 
із базовою моделлю дають можливість відслід-
кувати, наскільки використання нерозмічених 
даних покращує класифікаційні якості моделі 
на тестовій вибірці, тобто наскільки запропоно-
ваний метод НН ефективний.

Для порівняння запропонованого методу 
з уже відомими методами НН було обрано базо-
вий АЕ як найближчу за структурою модель. Авто-
енкодери довели свою ефективність у цьому класі 
задач за рахунок їхньої здатності вивчати зміс-

товні ознакові подання (feature 
representations) з нерозмічених 
даних [19, 14]. У цій роботі модель 
напівкерованого АЕ (SSL-AE) 
включає енкодер, що повністю 
повторює архітектуру енкодера 
базової моделі, а також декодер, 
що дзеркально відтворює його 
структуру, використовуючи шари 
ConvTranspose2d→ReLU для ре-
конструкції зображення. Слід за- 
значити, що у відкритому досту-
пі не було знайдено публікацій, 
присвячених НН на обраних на-
борах даних з ідентичною екс
периментальною  конфігурацією 
(зокрема, 5  % розмічених да-
них). Через це для забезпечення 
коректного і чесного порівняння Рис. 1. Модель автоенкодера з фрактальною регуляризацією
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Набір даних Призначення Характеристики Попередня обробка

ІSIC2024 
Challenge

Бінарна 
класифікація 
уражень 
на шкірі для 
виявлення 
раку

Датасет містить 400 000 зображень 
уражень шкіри, що були отримані 
з 3d-знімків усього тіла (технологія 3d 
TBP) [15]

Цей датасет характеризується 
суттєвим дисбалансом класів. 
Клас «benign» становить більше 
99 % всіх даних, тому для 
ефективного навчання датасет 
був збалансований за рахунок 
видалення із навчальної вибірки 
більшості екземплярів. 
Усі зображення були 
нормалізовані, а також зменшені 
до розміру 96×96 для зниження 
витрат ресурсів в експерименті

Містить 
два класи, 
що познача
ють злоякісні 
та   доброякіс
ні  утворен
ня – «ma-
lignant» 
та «benign»

Класифікація 
і сегментація 
захворювань 
за радіологіч- 
ними 
знімками 
легень пацієн- 
тів

Набір даних, зібраний дослідниками 
з Університету Катару та Дакки [16, 17].
Датасет складається із трьох класів: 
1) 11 956 знімків пацієнтів із COVID-19,
2) 11 263 знімки вірусної пневмонії
(інші інфекції),
3) 10 701 знімок здорових легень.
Цей датасет є важливим ресурсом 
для демонстрації ефективності 
запропонованого методу, оскільки 
візуальні ознаки COVID-19 можуть бути 
менш помітними й вимагати аналізу 
складних текстурних особливостей 
знімку

Для спрощення експериментів 
у межах цьного дослідження 
було використано підмножину, 
що складається із класів 
«COVID-19 positive» та «Normal».  
Таким чином у нашому дослід
женні ми розглядали бінарну 
класифікацію. 
Усі зображення були нормалізо
вані, а також зменшені до розмі
ру 96×96 для зниження витрат 
ресурсів в експерименті

Brain Tumor 
MRI Dataset

Багатокласова 
класифікація 
пухлин мозку 
за МРТ-зобра
женнями

Цей набір даних є поєднанням трьох 
джерел (figshare, SPARTAJ, Br35H) і міс
тить 7023 знімки МРТ людського мозку 
[18]. Набір даних розподілено на чотири 
класи: гліома (glioma), менінгіома (me-
ningioma), гіпофізарна пухлина (pituitary) 
і відсутність пухлини (no tumor).
Класи подані у збалансованих 
пропорціях. 
Датасет було обрано для демонстрації 
застосування запропонованого методу 
на багатокласовому датасеті

Для спрощення експериментів 
у межах цьного дослідження 
було використано підмножину, 
що складається із класів 
«COVID-19 positive» та «Normal».  
Таким чином у нашому дослід
женні ми розглядали бінарну 
класифікацію. 
Усі зображення були нормалізо
вані, а також зменшені до роз
міру 96×96 для зниження витрат 
ресурсів в експерименті

Таблиця 3. Опис наборів даних, використаних для експериментів

базова модель SSL-AE була реалізована нами са-
мостійно з тією ж базовою архітектурою, що й за-
пропонована модель FDR-AE.

Третьою є запропонована модель АЕ із фрак
тальною регуляризацією FDR-AE. Вона роз
ширює архітектуру SSL-AE і включає регресій-
ну частину, що намагається на основі вихідного 
шару енкодера визначити фрактальну розмір-

ність початкового зображення. Регресор склада-
ється із двох послідовних повнозвʼязних шарів 
Linear→ReLU. Таким чином функція втрат фор-
мується як комбінація втрат класифікації, рекон-
струкції та втрат регресійної частини. На рис. 2 
зображено внутрішню структуру компонентів 
моделі, а також яким чином обчислюють різ-
ні компоненти функції втрат під час навчання 
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Рис. 2. Модель автоенкодера із фрактальною регуляризацією. 

Внутрішня структура компонентів моделі

(компоненти функції втрат на рис. 2 обведено 
еліпсами).

У табл. 4, 5 та 6 наведено метричні показ-
ники запропонованих моделей для трьох вище-
згаданих датасетів.

Результати експериментів (табл. 4–6) де-
монструють перевагу запропонованого мето
ду на всіх трьох наборах даних. На датасе-
ті ISIC2024 (табл. 4) FDR-AE модель досягла 
F1-Score 0.508 для малорепрезентованого класу 
«malignant», значно перевершивши як Base-
CNN (0.304), так і SSL-AE (0.431). Аналогіч-
на ситуація спостерігається також і в датасе-
ті COVID-19 (табл. 5), де FDR-AE покращив 
якість F1-Score для класу «covid-19» на 0.027 
та на 0.112 відносно моделей SSL-AE та Base-
CNN. Особливо показовими є результати на ба-
гатокласовому датасеті Brain Tumor (табл. 6), 
де метод суттєво покращив F1-score для всіх 
класів, причому найбільший приріст відносно 
SSL-AE отримали класи 0 (0.079) та 3 (0.054), 
які мали найбільшу взаємну статистичну від-
мінність у ФР (ΔMean/max(σ) = 0.738). Таким 
чином, у всіх трьох сценаріях фрактальна ре-
гуляризація виявилася ефективнішою за стан-
дартну реконструкцію (SSL-AE), підтверджую-
чи, що ФР є цінним сигналом для навчання 
більш якісних представлень у задачах НН.

Висновки

Наявні рішення для класифікації медичних 
зображень в умовах дефіциту даних ґрунтуються 
на НН (SSL), зокрема на АЕ. Утім, стандартна 
реконструкція не гарантує створення латентного 
простору, оптимального для класифікації. У цій 
статті запропоновано новий метод – фракталь-
но-керовану регуляризацію (FDR-AE) – для 
вирішення цієї проблеми. На відміну від ві-
домих AE, наш метод вводить додатковий на-
вчальний сигнал – регресійний шар, який 
навчається прогнозувати фрактальну розмір-

Таблиця 4. Метричні показники моделей, навчених на 5 % розмічених даних ISIC2024 

Модель
Precision 
(benign)

Precision 
(malignant)

Recall  
(benign)

Recall  
(malignant)

F1 Score 
(benign)

F1 Score 
(malignant)

Base-CNN 0.951 0.240 0.897 0.414 0.923 0.304

SSL-AE 0.596 0.524 0.737 0.367 0.659 0.431

FDR-AE 0.615 0.517 0.632 0.500 0.623 0.508

Таблиця 5. Метричні показники моделей, навчених на 5 % розмічених даних COVID-19 Radiology Database

Модель
Precision 
(normal)

Precision 
(covid19)

Recall  
(normal)

Recall 
(covid19)

F1 Score 
(normal)

F1 Score 
(covid19)

Base-CNN 0.799 0.682 0.873 0.552 0.834 0.610

SSL-AE 0.684 0.878 0.920 0.575 0.785 0.695

FDR-AE 0.702 0.896 0.930 0.605 0.800 0.722



37

ність зображення з його латентного вектора. 
Перевага цього методу полягає у примусовому 
збереженні структурно важливої інформації.

Експерименти з трьома наборами даних 
(ISIC2024, COVID-19, Brain Tumor) за умови 
5  % маркованих даних показали, що FDR-AE 
стабільно перевершує як базову повністю ке-
ровану модель (Base-CNN), так і стандартний 
АЕ (SSL-AE). Наприклад, у завданні з чотирма 
класами Brain Tumor (табл. 6) FDR-AE поліп-
шив показник F1-Score для всіх класів, причо-
му найбільше зростання (+0,079 і +0,054) було 
для класів 0 і 3. Сферою застосування методу 
є системи комп’ютерної діагностики на основі 
нейронних мереж. Конкретно цей метод може 
бути застосований як для НН, так і для перед
навчання моделей.

Також у процесі дослідження було виявлено 
суттєве обмеження – метод найбільш ефектив-
ний на відносно простих архітектурах та в разі 
сильного дефіциту даних. На складних моделях 
з великою кількістю даних ФР може погіршува-
ти кінцеві показники. Це відкриває шляхи для 
покращення, які стануть предметом наших на-
ступних робіт: використання FDR-AE як методу 
попереднього навчання (pre-training) і впровад
ження динамічного коефіцієнта, що автоматич-
но зменшуватиме вплив регуляризації зі зрос-
танням точності моделі. Практична реалізація 
цих підходів дозволить створити більш стабільні 
та ефективні моделі НН для підвищення точ-
ності автоматизованої діагностики в реальних 
клінічних умовах.

Таблиця 6. Метричні показники моделей, навчених на 5 % розмічених даних Brain Tumor MRI Dataset 

Модель Precision (class 0) Precision (class 1) Precision (class 2) Precision (class 3)

Base-CNN 0.683 0.447 0.703 0.598

SSL-AE 0.720 0.500 0.848 0.716

FDR-AE 0.704 0.560 0.848 0.797

Модель Recall (class 0) Recall (class 1) Recall (class 2) Recall (class 3)

Base-CNN 0.460 0.359 0.773 0.833

SSL-AE 0.447 0.572 0.810 0.927

FDR-AE 0.570 0.549 0.867 0.940

Модель F1 Score (class 0) F1 Score (class 1) F1 Score (class 2) F1 Score (class 3)

Base-CNN 0.550 0.399 0.736 0.696

SSL-AE 0.551 0.534 0.828 0.808

FDR-AE 0.630 0.554 0.857 0.862

References

1. C.S. Fortin et al., “Fractal dimension in the analysis of medical images”, IEEE Engineering in Medicine and Biology Magazine,

Vol. 11, no. 2, pp. 65–71, 1992. Retrieved from doi: https://doi.org/10.1109/51.139039

2. S. Kisan et al., “Fractal dimension in medical imaging: a review”, IRJET, Vol. 5, pp. 1102–1106, 2017. [Online]. Available:

https://www.irjet.net/archives/V4/i5/IRJET-V4I5363.pdf. Accessed: Oct. 11, 2025.

3. S. Liu et al., “Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity

analyses using magnetic resonance imaging”, Scientific reports, Vol. 7, no. 1, p. 8302, 2017. Retrieved from doi: https://doi.

org/10.1038/s41598-017-08862-6

4. M.Z.C. Azemin et al., “Robust methodology for fractal analysis of the retinal vasculature”, IEEE Trans Med Imaging, Vol. 30,

no. 2, pp. 243–250, 2011. Retrieved from doi: https://doi.org/10.1109/TMI.2010.2076322

5. R.M. Rangayyan and T. M. Nguyen, “Fractal analysis of contours of breast masses in mammograms”, Journal of digital imaging,

Vol. 20, no. 3, pp. 223–237, 2007. Retrieved from doi: https://doi.org/10.1007/s10278-006-0860-9

6. K. Falconer, “Fractal geometry: mathematical foundations and applications. Chichester: John Wiley”, 1990, pp. 38–47. [On-

line]. Available: www.wiley.com/en-us/Fractal+Geometry%3A+Mathematical+Foundations+and+Applications%2C+3rd+Edi-

tion-p-9781119942399#description-section. Accessed: Oct. 11, 2025.

СИСТЕМНИЙ АНАЛІЗ ТА НАУКА ПРО ДАНІ



38 KPI Science News 2025 / 4

7. S. Buczkowski et al., “Measurements of fractal dimension by box-counting: a critical analysis of data scatter”, Physica A: Sta-

tistical Mechanics and its Applications, Vol. 252, no. 1–2, pp. 23–34, 1998. Retrieved from doi: https://doi.org/10.1016/S0378-

4371(97)00581-5

8. J. Li et al., “An improved box-counting method for image fractal dimension estimation”, Pattern recognition, Vol. 42, no. 11,

pp. 2460–2469, 2009. Retrieved from doi: https://doi.org/10.1016/j.patcog.2009.03.001

9. C. Panigrahy et al., “Fractal dimension of synthesized and natural color images in lab space”, Pattern Analysis and Applications,

Vol. 23, no. 2, pp. 819–836, 2020. Retrieved from doi: https://doi.org/10.1007/s10044-019-00839-7

10. R.D.O. Plotze et al., “Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a

study with Passiflora (Passifloraceae)”, Canadian Journal of Botany, Vol. 83, no. 3, pp. 287–301, 2005. Retrieved from doi:

https://doi.org/10.1139/b05-002

11. H. Ahammer, “Higuchi dimension of digital images”, PLoS One, Vol. 6, no. 9, p. e24796, 2011. Retrieved from doi: https://

doi.org/10.1371/journal.pone.0024796

12. J.B. Florindo and O. Martinez Bruno, “Fractal descriptors in the Fourier domain applied to color texture analysis”, Chaos: An

Interdisciplinary Journal of Nonlinear Science, Vol. 21, no. 4, 2011. Retrieved from doi: https://doi.org/10.1063/1.3650233

13. A. Makhzani et al., “Adversarial autoencoders”, arXiv preprint arXiv:1511.05644, 2015. Retrieved from doi: https://doi.

org/10.48550/arXiv.1511.05644

14. H. Rasmus et al., "Semi-Supervised Learning with Ladder Networks”, in NIPS'15: Proceedings of the 29th International Con-

ference on Neural Information Processing Systems, Vol. 2, pp. 3546–3554, 2015. Retrieved from doi: https://doi.org/10.48550/

arXiv.1507.02672

15. N.R. Kurtansky et al., “The SLICE-3D dataset: 400,000 skin lesion image crops extracted from 3D TBP for skin cancer detec-

tion,” Scientific Data, Vol. 11, no. 1, p. 884, 2024. Retrieved from doi: https://doi.org/10.1038/s41597-024-03743-w

16. M.E. Chowdhury et al., “Can AI help in screening viral and COVID-19 pneumonia?”, IEEE Access, Vol. 8, pp. 132665–
132676, 2020. Retrieved from doi: https://doi.org/10.1109/ACCESS.2020.3010287

17. T. Rahman et al., “Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray im-

ages”, Computers in biology and medicine, Vol. 132, p. 104319, 2021. Retrieved from doi: https://doi.org/10.1016/j.comp-

biomed.2021.104319

18. M. Nickparvar, “Brain Tumor MRI Dataset”, Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/masoudnick-

parvar/brain-tumor-mri-dataset. Accessed: Oct. 11, 2025.

19. D.P. Kingma et al., “Semi-supervised  learning with deep generative models”, in Advances in neural information processing

systems, Vol. 27, 2014. [Online]. Available: https://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-genera-

tive-models. Accessed: Oct. 11, 2025.

V.Y. Danilov, O.O. Zarytskyi

METHOD FOR FRACTAL-DRIVEN REGULARIZATION OF AUTOENCODERS FOR SEMI-SUPERVISED LEARNING IN 
MEDICAL IMAGE CLASSIFICATION TASKS

Background. Medical image classification using deep learning is a critical task, yet its effectiveness is constrained by the scarcity of 
labelled data, which is expensive to acquire. Semi-supervised learning (SSL) methods address this by leveraging unlabelled data. Common 
autoencoder (AE)-based approaches use reconstruction as a training signal. However, standard reconstruction loss minimisation does not 
guarantee that the resulting latent space will be optimally structured for the classification task, as the model may focus on diagnostically 
irrelevant features.

Objective. The paper aims to develop and experimentally validate a novel latent space regularisation method: fractal-driven 
regularisation (FDR). The goal is to improve classification metrics for medical images under conditions of severe labelled data scarcity 
(5 %) by integrating fractal dimension (FD) as an additional, a priori training signal.

Methods. The proposed model (FDR-AE) is based on an autoencoder architecture, augmented with two heads attached to the 
latent space: a classification head and a regression head. The regression head is trained to predict the input image’s FD, which is pre-
calculated using the “box-counting” method. The total loss function is a combination of three components: classification loss (on 5 % 
labelled data) and both reconstruction and fractal regression losses (on 100 % of data). The method’s efficac was validated on three 
datasets of different modalities (ISIC2024, COVID-19 Radiology, Brain Tumor MRI), comparing it against a baseline convolutional network 
(Base-CNN) and a standard semi-supervised autoencoder (SSL-AE).

Results. The experiments demonstrated a consistent advantage for the proposed method. On the ISIC2024 dataset, FDR-AE 
achieved an F1-Score of 0.508 for the “malignant” class, compared to 0.431 for SSL-AE and 0.304 for Base-CNN. On the COVID-19 
dataset, the F1-Score for the “covid19” class was 0.722 for FDR-AE versus 0.695 for SSL-AE. In the 4-class Brain Tumor task, FDR-AE 
showed improved F1-Scores across all classes, with the most significan  gains (+0.079 and +0.054) observed for classes 0 and 3, which 
also had the greatest mutual statistical difference in their FD values



39

Conclusions. Fractal-driven regularisation demonstrates that FD is a valuable a priori signal for learning higher-quality, 
structurally grounded representations in SSL tasks. The method is particularly effective on simple architectures under severe data 
scarcity. Prospects for future research include utilising FDR as a pre-training method or implementing a dynamic coefficien for the 
regression component of the loss function.

Keywords: semi-supervised learning; fractal dimension; autoencoder; latent space regularisation; medical images; image 
classification; box-counting
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