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LINEAR-ACCURACY ONE-BULLET SILENT DUEL
WITH PROGRESSING-BY-ONE-THIRD SHOOTING MOMENTS

Background. A finite zero-sum game is considered, which models competitive interaction between two
subjects. The subject, referred to as the duelist, must take an action (or, metaphorically, shoot the single
bullet) during a standardized time span, where the bullet can be shot at only specified time moments. The
duelist benefits from shooting as late as possible, but only when the duelist shoots first.

Objective. The objective is to determine optimal behavior of the duelists for a pattern of the duel dis-
crete progression, by which the tension builds up as the duel end approaches and there are more possibilities
to shoot.

Methods. Both the duelists act within the same conditions, and so the one-bullet silent duel is sym-
metric. Therefore, its optimal value is 0 and the duelists have the same optimal strategies. The shooting
accuracy is linear being determined by an accuracy proportionality factor.

Results. Depending on the factor, all pure strategy solutions are found for such duels, whose possi-
ble-shooting moments comprise a progression pattern. According to this pattern, every next possible-shoot-
ing moment is obtained by adding the third of the remaining span to the current moment. The solutions for
this pattern are compared to the known solutions for the geometrical-progression pattern and the pattern
whose possible-shooting moments progress in a smoother manner.

Conclusions. The proved assertions contribute another specificity of the progressing-by-one-third
shooting moments in linear-accuracy one-bullet silent duels to the games of timing. Compared to duels for
other duel discrete progression patterns, the specificity consists in that the duel with progressing-by-one-
third shooting moments has a constant interval of lower (weaker) shooting accuracies, at which the duelist

possesses an optimal pure strategy. This interval is {%,g} that symmetrically breaks the low-accuracy

interval (0; 2).
Keywords: one-bullet silent duel; linear accuracy; matrix game; pure strategy solution; progressing-by-
one-third shooting moments.

1. Introduction

A one-bullet silent duel is a timing zero-sum
game, in which it is unknown to the player (also re-
ferred to as the duelist) whether and when the other
duelist has fired its bullet until the end of the duel
time span [1, 2]. The span is usually interval [0; 2].
The bullet is a metaphor for an option to make a de-
cision or take an action [3, 4]. In fact, shooting (or
firing) a bullet means making a decision or taking an

action during interaction between the two duelists
(decision-makers, consumers, entrepreneurs, users,
etc.) [5, 6]. The duelist may not fire the bullet until
the very last (final) moment to shoot, but then it is
nonetheless fired at the final moment, because the
action must be taken anyway [2, 7, 8]. The duelist
is also featured with an accuracy function which is a
nondecreasing function of time [1, 9, 10].

To more realistically simulate interaction be-
tween the two duelists, discrete silent duels are
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considered, in which the duelist can shoot only at
specified time moments [1, 3, 4, 11, 12]. The num-
ber of such possible shooting moments is finite. The
moments of the duel beginning and duel end are
included in this number [7, 13, 14]. So, in a discrete
duel with possible shooting moments the players’
pure strategy sets are

N N N
Xy={xlo =Yy :{y./}j:] =1y ={tq}q:1
by
t,<t,, Vg=1,N-landf=0,17,=1
for Ne N\{l}.

c[0;1] (1)

It is presumed that both the duelists act within
the same conditions, and so the one-bullet silent
duel is symmetric. Therefore, its optimal value is
0 and the duelists have the same optimal strate-
gies, although they still can be non-symmetric [3,
11, 13, 15]. The duelist benefits from shooting as
late as possible, but only when the duelist shoots
first [2, 16, 17]. This is modeled, in particular, by a
skew-symmetric payoff matrix [1, 7, 18]

Ky= [kfj ]NXN - [_kﬁ :|N><N - _KITV )
whose entries
k; =ax,—ay, +a’x,y;sign(y,-x,) (3

for
i=1,N and j=1,N bya>0.

The accuracy proportionality factor a defines
the duelists’ linear accuracy functions [7, 16, 19]

px(x)=ax, p,(y)=ay,
through which entry kij can be generally given as

“

ky=py (x,)—py (yj)+
+px (%) py (v, )sign(y, - x,). ()

Hence, the global objective is to find pure
strategy solutions of linear-accuracy one-bullet si-
lent duel (LAIBSD)

N

<XN, YN,KN>:<{xi}i]il ) {yj}jzl K

by (1)-(3).

LA1BSD (6) is called progressive if the density
of the duelist’s pure strategies between 7, = 0 and
ty = 1 progressively grows (in accordance with a
definite pattern) as the duelist approaches to the duel
end 7, = 1[I, 7,9, 10, 12, 13]. The duel’s shoo-

) ©

ting-moment progression is quite natural because
the tension builds up as the duel end approaches,
and thus the duelist must have more possibilities to
shoot [6, 11, 20, 21]. A particular interest of ap-
plying LA1BSDs exists in advertising, where com-
petitiveness and waiting to attract and harvest more
audience data are modeled [22, 23].

2. Known results

The first particular case of the progressive
LA1BSD was considered in [15], where

g-1 -1
297 —1
_ -1 _
=) 2" = o
I=1

for ¢ =2, N—1 and pure strategy solutions had been
obtained for any a > 1, and specific conditions had
been found for a € (0;1) such, at which the duel has
a pure strategy solution. Thus, situation

11
X ==, = 8

{27%} {2’2} @®)
is single optimal in duel (6) by (1)—(3), (7), and a > 1
for N e N\{l,2}. Situation (8) is non-optimal by
a €(0;1) However, situation (8) remains single op-
timalby a=1for N e N\{l, 2,3}. The duelby a=1
for N = 3 has four optimal situations (8),

(7

(x5, »s ) =1{L 1}, 9)
1
{2} ={1.51 1)
1
{xz,y3}:{5,l}. (11)
Situation
(. » =1L 1 (12)

is single optimal by any a > 0 in the most trivial
case, when N = 2 (and thus the duelist can shoot
only either at the duel beginning or duel end, which
annuls the progressiveness). Situation (9) is the single
solution to 3x3 duels by a€(0;1). For the gene-
ral case of N = 2 article [15] proves that only one

ne {3, N —1} exists such that situation

2n71 _1 2n71 _1
{xn’yn}:{ }

2)1—1 2 2}1—1
is optimal by

(13)

ae L. Zil c(0;1) (14)
Zn—l_l’ (2,’71—1)'(2”72—1) >
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and situation

syt =111 (15)
is optimal by
1
for NeN\{1,2,3}. If
1
4=y (17)
then situations (15),
2N—2 _1 2N—2 _1
{leale}:{ N2 TN [ (18)
2N 1
{xN—layN}:{zN—z,l}’ (19)
2V 1
{Xy> Yy} = {L W} (20)

are optimal; apart from situations (15), (18)-(20),
there are no other pure strategy solutions in the duel

by (17). If
1
then optimal situation (15) is the single one. If
1
a+ W (22)

and (14) holds, optimal situation (13) is the single
one. Finally, if neither (14) nor (16) holds, then the
duel does not have a pure strategy solution.

The second particular case of the progressive
LAIBSD was considered in [13], where

&S g-1
{ = =
1 Zn(n+l) q

n=1

(23)

for g=2,N-1.

This case was motivated by that the density of
the duelist’s pure strategies between 7, = 0 and 7, = 1
grows too quickly if the geometrical progression by
(7) is used. Progression (23) is smoother providing
a sort of compactification of shooting moments.
Meanwhile, article [13] proves that the solutions in
the progressive LA1BSD (6) by (1)—(3), (23) for N =3
are the same as the solutions in the progressive
LAIBSD (6) by (1)-(3), (7) for N = 3. Besides,
the progressive LAIBSD (6) by (1)-(3), (23) for
N eN\{l1,2,3} and a > [ has the single optimal si-

tuation (8), which coincides with the solution in the
case of (7). Another coincidence is that in the case
of (23) situation (8) is non-optimal by a (0;1)
for NeN\{L,2}. The remaining results for (23)
were proved [13] for a €(0;1) and N e N\{l, 2, 3}.

Situation
2 2
(w2} = (53]

E’ E (24)

is optimal only if a =—. Except for the third and

1
25
last shooting momenss ¢, =3 and 7, = 1, there are
no other optimal pure strategies. The 4x4 duel with
has four optimal pure strategy situations: situ-

ation (24) and situations

X v =111}, (25)
2
{x3,y4}:{§,1}, (26)
2
(X4 v3} :{1’ E} . 27)

Finally, situation (15) is single optimal for
N eN\{l,2,3,4} and

1
al———. (28)
)
In the 4x4 duel with
a <;:l (29)
N-2 2

situation (15) is single optimal as well.

Despite progression (23) is smoother than pro-
gression (7), it still lacks a reasonable last-to-penul-
timate ratio

LV (30)
thl thl
which is
1 _ N1 (31)
ty, N-=2
for (23), whereas ratio (30) is
-2
2 (32)
ty, 2V7-1

for (7). Indeed,

N-1 2"  N-2+41 2"72-1+41_
N-2 2"7?-1 N-=2 2M 2
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L ST S S S
N-2 = 2"*-1 N-2 2"
2" o1-N+2 2V N+
C(N=2)(2"7 1) (N-2)(2V7 )

=1

>0 (33)

for N e N\{l,2,3}, where difference (33) between
last-to-penultimate ratios (31) and (32) is 0 only
at N = 3. So, in a duel with (23) the duelist gets
a huge gap between the penultimate and last mo-
ment of possible shooting. Hence, another pattern
of possible-shooting-moment progression is to be
considered. According to this pattern, every next
possible-shooting moment is obtained by adding the
third of the remaining span to the current moment:

1- ly
q q— 3
for g=2,N—-1.
Herein, the local objective is to find pure strate-

gy solutions of progressive LAIBSD (6) by (1)-(3),
(34) for NeN\{L,2}.

(34)

3. Trivia and convention

Clearly, the most trivial duel size is 3x3. Its
possible-shooting-moment progression is trivially a
triple

T3={t1,t2,t3}={0,%,1}. (39)

It is worth noting that the middle of the 3x3
duel time span is as twice as closer to the duel be-
ginning than to the duel end.

Inasmuch as a pure strategy solution of duel
(6) corresponds to a saddle point of skew-symmet-
ric matrix (2) with entries (3), only a zero entry of
this matrix can be a saddle point [7]. Therefore, a
row containing a negative entry does not contain
saddle points; neither does the respective column
containing the positive entry. Hence, it is conven-
tionally possible to conclude only on saddle points
in definite rows of matrix (2), which imply the same
conclusions on saddle points in respective columns.

It is rather trivial, but inasmuch as

k,=-ay;<0 Vvj=2 N

then the first row of matrix (2) with entries (3) is
not an optimal strategy of the first duelist, and thus

situation
{x, »1=1{0,0}

is never optimal in the duel. Another trivial remark is
that a nonnegative row of matrix (2) with entries (3)

contains a saddle point on the main diagonal of the
matrix [7]. If a row contains only positive entries,
except for the main diagonal entry, all the other
N — 1 rows of the respective column contain nega-
tive entries, and thus this row contains a single sad-
dle point which is the single one in the duel.

To study the duel in an easier way, pattern (34)
of possible-shooting-moment progression ought to
be represented similarly to (7) and (23), having the
right-hand side term that depends only on gq.

Theorem 1. Sequence (34) for (1) can be rep-
resented as

1-¢
— g1 _
t, =1, ;-
g1 471 -1 -1
2 3 =21
= 7 = R (36)
i=1
for g=2,N-1.
Proof. First, re-write (34) as
1+2¢
— q-1
t, = T (37
for g=2,N-1.

Equality (36), considered without its last term,

can be proved by induction. In the base case, ¢ = 2
and

1

(38)

=1

which is true by (35). By the inductive hypothesis it
is assumed that equality (36), considered without its
last term, holds for any ¢ = k:

k-l 571
2

Kl

=1

t, = (39)

By the inductive step, it is about to show that
equality (36), considered without its last term, holds
for g=k+1:

, B 2[—1
k+1 — ]
1=1 3

(40)

Moment £, can be given by using (37):

142, 1 2 <=2
t :—k=—+—- _ =
o3 303 ; 3
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k-1

:%4-23,“: Z3l+l 22] 1

The last term in (41) coincides with the right-
hand side term in (40). This proves equality

(41)

(42)

for ¢ =2, N-1 by induction with (38) and (39), for
the middle term in (36).
Equality

g1 -] g-1 _~g-1
2 _ 3 2 43)
3 37!

I=1

for g=2, N-1 is proved in the same way. In the
base case, ¢ = 2 and

ERE R

which is true by (38). By the inductive hypothesis

it is assumed that equality (43) holds for any ¢ = &:
1 21—1 3k—1 _ 2k—l

3 = = . (45)

I=1

By the inductive step, it is about to show that
equality (43) holds for g = k + 1:

I-1 k Ak
232 »
3 3
The sum in the left-hand side of (46) can be
represented as the sum of the right-hand side term
in (45) and the k-th summand in the left-hand side
of (46):

ol-1 k1 oIl . k-1
3 =t 3 3
= 3k—l + 3k = 3k +
2k71 3k _ 2 . 2k*1 3k _ 2k
+ 3k = 3k = 3k . (47)

The last term in (47) coincides with the right-
hand side term in (46). This proves equality (43) by
induction with (44) and (45). O

4. Three moments to shoot

Is the duel solution the same as for those two
patterns of possible-shooting-moment progression,
when the duelist has the fewest number of moments
to shoot? The answer follows.

Theorem 2. Progressive LAIBSD (6) by (1)-(3),
(36) for three moments to shoot (N = 3)

ol

has a single optimal situation (9) by a<€(0;2), a
single optimal situation

il

by a > 2. At a = 2 this 4x4 duel has four optimal
situations (49),

(X3, 7, K,

(49)

1
{x23y3}={§91}a (50)
1
{x37y2}:{1>§}7 (51)

and (9).
Proof. Upon plugging elements of (35) into (3)
for N = 3, the respective payoff matrix is

0 . —a
3
a a
Ki=[k ], = 3 0 5(0—2) . (52)
a
a —(a-2 0
L 3( ) _

If ae(0;2), matrix (52) has a single saddle
point (9) due to the last row is positive except for
main diagonal entry k;; = 0. If @ = 2, the second and
third rows are nonnegative, where

ky = ky3 = k3, = ky3 = 0,
and matrix (52) has four saddle points: (49)-(51)
and (9). If a > 2, matrix (52) has a single saddle
point (49) due to the second row is positive except
for main diagonal entry k,, = 0. O

Theorem 2 reads the difference between pattern
(36) and patterns (7), (23), which lies in different

. . .. I, .
second possible-shooting moments: it is ¢, :E being

the middle of the duel time span for patterns (7), (23),
whereasitis ¢, = % being the first third of the duel time
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span for pattern (36). Subsequently, duel solutions
for pattern (36) differ from those for patterns (7),
(23) in the boundary value of accuracy proportiona-
lity factor a, at which the solution changes. It is
a = 2 for pattern (36), whereas it is @ = 1 for patterns
(7), (23). Structurally, however, all the three patterns
have similar solutions for progressive 3x3 LA1BSDs:
the last possible-shooting moment is the single opti-
mal strategy for the accuracy proportionality factor
below the boundary value; the second and last pos-
sible-shooting moments are only optimal strategies
at the boundary value; the second possible-shooting
moment is the single optimal strategy for the accura-
cy proportionality factor above the boundary value.

5. Second possible-shooting moment optimality

It is natural to conjecture that the boundary
value of accuracy proportionality factor ¢ = 2 must
separate two cases of the duel solution just like value
a = 1 separates those for patterns (7), (23). So, right
below, 4x4 and bigger duels are considered by a > 1.

Theorem 3. Progressive LAIBSD (6) by (1)-(3),
(36) for NeN\{1,2,3} and a > 2 has the single
optimal situation (49)

Proof. Consider the second row of matrix (2),
where

a
k21 = E >0 5 3)

and
2

a a a
ky; :g— y +?yj :E-(1—3yj +ayj). (54)

If a = 2 then
1-3y,+ay;=1-y, 20
and (54) is nonnegative:

2
ks, :%'(1_33’1+ayj):§'(l_yf)>0
(35)

Vj=3N,
where k,, = 0 is the second zero entry after k,, in
the second row. Due to (53) and (55), situation (49)
is a saddle point. However,

N-2 N-2
kN,N—l =2-1-2- > 31\/—3
N-2 _AN-2 N-2 _AN-2
I . S
3 3
2N—2 2N—2
=2—6+6~3N72 =—4+6~3N72 =

(56)

due to

N-3 N-2

2
<1 and 3.3N_’2<2 for N e N\{l1,2,3}.

3N73

Inequality (56) implies that the last row and
last column of matrix (2) do not contain saddle
points. So, situation (49) is single optimal by a = 2.

If a > 2 then it is sufficient to prove that

1-3y,+ay, >0 Vj=3,N. (57)

Inequality (57), implying that the second row
is positive except for main diagonal entry k,, = 0, is
equivalent to inequality

3y.—1
> 3L vis3N )
Y Vi
by
1 .
§<yj<1 vV j=3,N. (59)
As (59) is true, then
3>L>1,
Vi
—3<—L<—1,
Vi
1
0<3-—<2<a, (60)

Vi

whence inequality (60) directly implies that ine-
quality (58) holds and situation (49) is single opti-
mal by a > 2.

6. Second possible-shooting moment non-opti-
mality

It was proved in [13, 15] that the second pos-
sible-shooting moment is not an optimal strategy by
0 < a <1 in progressive LA1BSDs (6) by (1)—(3)
and N e N\{l,2} for patterns (7) and (23). In those
duels, noticeably, the second possible-shooting mo-
ment is the middle of the duel time span, unlike
for pattern (36). See whether the similar property
keeps for the LAIBSD with progressing-by-one-
third shooting moments by (36), only by 0 < a < 2
and the second possible-shooting moment being the
first third of the duel time span.
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Theorem 4. Situation (49) is never optimal
in progressive LAIBSD (6) by (1)-(3), (36) for
NeN\{L,2} and 0 < a < 2.

Proof. For NeN\{1,2} consider the second
row of matrix (2) whose last column entry

2
a a a
kyy =——a+—==-(a=2)<0
" —-(a-2)

61
3 (61)

by 0 <a<2.

Inequality (61) directly implies that the second
row of matrix (2) does not contain saddle points by
0<a<2.0O

7. Third possible-shooting moment optimality

In a 3x3 duel by 0 < @ < 2 it is optimal to shoot
at the very last (third) possible-shooting moment
(Theorem 2). The last possible-shooting moment is
optimal for duelists in LA1BSDs for patterns (7) and
(23) as well, but just by a (0;1). See whether the
third possible-shooting moment in bigger LAIBSDs
can be an optimal strategy for pattern (36).

Theorem 5. Progressive LAIBSD (6) by (1)-(3),
(36) for N € N\{1,2,3} has an optimal pure strat-
egy situation

55
={— — 62
{x37y3} {979} ( )
b
' ae[i'é} (63)
5’5

Proof. Due to Theorem 4, situation (49) is not
optimal, so the first two rows of matrix (2) do not
contain saddle points. If situation

3n—1 _ 2n—1 3n—1 _ 2n—1
{xn’yn}:{ > (64)

311—1 3n71

by ne {(3, N —1} is optimal, then, in the n-th row of
matrix (2), inequalities

k. =ax,—ay,—a’x,y, >0
Y J J (65)

Vy <x, (Vj=1n-1)
and

_ 2
k,=ax,—ay,+a’x,y, 20 (66)

Vy;>x, (Vj=n+lN)
must hold. From inequality (65) it follows that

X

—2y, Vy<x, (Vj=1n-1) (67)
1+ax,

3n—2 _ 2n—2 3n—1 _ 2n—1
3”72 3}171 = xn

Vji=Ln-1

v, <
(68)

then inequality (67) is transformed into

3n—2 _ 2n—2
311—2 9

3)1—1 _ 2n—l 1
31171 ) 3n71 _2n71 =
3n—1
3n—l _ 2n—1
=
3n—1 +a- (3}1—1 _ 2}1—1 )

1+a-

3n—2 _ 2)1—2
3n—2 ’

3n—1 .3n—2 _ 2n—1 _3n—2 2 3n—1 _3n—2 _3n—1 . 2n—2 +
+a- (3n—1 B 2n—1 )(3n—2 B 2n—2 )’

311—1 . 2n—2 _ 211—1 . 3n—2 2 a '(3n—1 _ 2n—1 )(3n—2 _ 2n—2 )’
3;1—2 X 2)1—2 . (3 _ 2) 2 a- (3n—l _ 2n—1 )(3}1—2 _ 2n—2 ) ’

3n72 . 2;’172 > a- (3n71 _ 2n71 )(3n72 _ 2n72 )’

whence

3}’1—2 . 2n—2
a< . 69
(3/171 _ 2:171 )(3:172 _ 2n72 ) ( )
From inequality (66) it follows that
B>y Vy >x, (Vj=n+LN) . (70)
1-ax, !
As
3n—1 __An-1
1>yj 7 =x, Vj=n+1,N. (71)
then inequality (70) is transformed into
3n71 _ 2n71 1
3n—1 ) 3n—1 _ 2n—1 2 1 ’
l—a— 5
3
3n—1 _ 2}1—1
>1 (72)
3n71 —a- (3n—l _ 2n71)
If
3" —a-(3""=2"")>0, (73)

i.e.



14 KPI Science News 2025/ 4

3l quality (69) holds along with inequality (75), i.e. if
a< 31171 _2n71 ’ (74) 2n71
ae n-1 n-1 )
then inequality (72) is written as 3 -2
3 -2 23 g (3 -2, 3.
n— n— n— n— . 80
whence (3 -2 l)(3 ) 2) (50)
n—1
_2m <a. (75) The difference between the right and left end-
3t ot points of the interval in membership (80) is:
Therefore, situation (64) is optimal if inequality 312 pn-2 -l
(69) holds along with inequalities (74) and (75). i — =
However, (3"_1 -2 )(3"_2 - 2"_2) 3ot
371 ~ 3n-2 . pn2 _ ~ 312 g2 _on-l gn=2  gn-l on-2 ~
3}171 _ 2}171 (3}171 _ 2}171 )(3}172 _ 2n—2) - (3,1,1 _ 2,171 )(3”72 _ 2"[*2 )
n—1 n-2 n—1 n-2 n-2 n-2
=3 3 1 _3 1.2 2_3 2.2 _ _2n—l-2n—2+3n—2‘2n—2_(1_2)_
(3 -2 )(3 -2 ) (3n71 _2n71)(3n—2_2n—2)
n—1 n-2 n—-2 n-2
= 3 n—1 . 3 n—l_ 4 .}13—2 . 2n—2 = = 2n_1 : 2n_2 — 3n_2 : 2n_2 =
(3 =2"") (3" -2"2) T
3n_2 ) (3n_1 B 2” ) n-2 n—1 n-2
= ] 1 2 7 >0 (76) 2 '(2 -3 )
(3n_ _2n_ )(3n_ _2n_ ) = n—1 n—1 n-2 n-2 : (81)
(31 -2"")(3"7-2"2)
due to
3l s on (77) Fraction (81) is nonnegative only for n = 3.
for n>3. Indeed, inequality ) B
Indeed, inequality (77) is true for n = 3: 27 >3 82)
32_958=2% holds for n = 3 as
2 1
Assume that inequality (77) holds for n = k: 2°=4>3=3,
3kl ok (78) but for n = k there is inequality
For n = k + 1 inequality (77) turns into M <3 (83)
3k 5 gkt turning into
’ 2’ =8<9=3,
3.3 >2.28
3 and, assuming that for n = k inequality (83) holds as
E 3 s 0k (79) 2k < 3k2 (84)
) ) ) ) for n = k + 1 inequality (83) turns into
whence inequality (79) holds due to inequality (78)
holds. Inequality (76) means that 2F <3+,
32 n-2 -1 2.2 3.3k
<
n—1 n—1 n-2 n-2 n—1 n—1
(3" -2") (32 -2"2) 3 -2 2k1<%3“, (85)

for n > 3 and thus it is sufficient to consider only
stronger inequality (69), upon which weaker inequa-
lity (74) holds. Hence, situation (64) is optimal if ine-

whence inequality (85) holds due to inequality (84)
holds. For n = 3 the interval in membership (80)
turns into:
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2> 3.2 _F_g}
3¥-27(32-2%)(3'-2") | Ls's)
Therefore, the duel has an optimal pure strate-
gy situation (62) by (63). O

8. Last possible-shooting moment optimality

A corollary from Theorem 5 is that 4x4 and
bigger LAIBSDs by

RCHRED

do not have optimal pure strategy situations corre-
sponding to all possible-shooting moments, except
for the last one. The optimality of last-moment sit-
uation (15) is ascertained below for 5x5 and bigger
LA1BSDs.

Theorem 6. In progressive LAIBSD (6) by (1)-
(3), (36) for N eN\{1,2,3,4} and

2N -2
ac (O; 3N-2 _oN-2 i|
situation (15) is single optimal.
Proof. Situation (15) is optimal only if the last
row of matrix (2) is nonnegative. Thus, the last, N-th,

row of matrix (2) contains a saddle point if inequality

(86)

87)

ky =a-ay;—a’y, >0

(88)
‘v’yj <1 (Vj=1,N-1)
holds. It is easy to see in (88) that if inequality
l=yy,—ayy, 20 (89)

is true, then inequality (88) is true as well. From
inequality (89) it follows that

s, 90)
Yo
3N*2 _2N72
1- 3N72
N2 _oN2 a, 1)
3N—2
2N72
Iz vz % ©2)

whence (87) implies optimality of situation (15).
Meanwhile, inequality

2V 8 4
s < =<~ 93
32 2% 79 s 02

holds for N € N\{l,2,3,4}. Indeed, from inequa-
lity (93) it follows that

1922 <8.3V2_8.2%2,
2727 8.3V,

33 ‘2N—2 < 23 .3N—2 ,

whence
2N—5 < 3N—5

for NeN\{l,2,3,4}.
Inequality (93) implies that

N-2
(0; —31\/-3 = } c (0; %} c (O; %) (94)

for NeN\{l,2,3,4}.

Membership (94) with the inclusion obeys mem-
bership (86), which implies that by (87) situation (15)
in 5x5 and bigger LA1BSD:s is single optimal. O

Inequality (93) is false for N = 4 as

2> 4

3222 5
Thisleadstoaspecificity of4x4 LA1BSDsby (87).

Theorem 7. In progressive 4x4 LAIBSD (6) by
(1)-(3), (36) for N = 4 and

ae(O;i)
5

situation (15) is single optimal. The 4x4 LA1BSD by

95)

4

a=— 96
s (96)

has four optimal pure strategy situations: (62),

5
{x35y4}: 5’1 ) (97)
5

{x4:y3}: 195 ) (98)

and (15).
Proof- Situation (15) is single optimal if the last,
fourth, row of matrix (2) is positive, except for entry
ky, = 0. In Theorem 6, it follows from (88)-(92) for
N = 4 that situation (15) is single optimal when
N2 4
=—>aq,

VN7 s 99)
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i.e. if membership (95) is true. If (96) is true, situa-
tion (15) is optimal as well owing to (88)-(92) hold
for N = 4. In addition, situation (62) is optimal in
accordance with Theorem 5 as membership (63) is
also true. This additionally implies optimality of si-
tuations (97) and (98).1

9. Non-solvability in pure strategies

Just like the LAIBSDs for patterns (7) and
(23), the LAIBSD for pattern (36) is not solved in
pure strategies within a subset of values of the accu-
racy proportionality factor. This is proved by the two
following assertions.

Theorem 8. Progressive 4x4 LA1IBSD (6) by
(1)-(3), (36) for N = 4 is not solved in pure stra-

tegies by
ac (é, 2) i
5

Proof. The 4x4 LAIBSD is solved in pure stra-
tegies by a > 2 (Theorem 3) and by (63) (Theorem 5)
and by (95) (Theorem 7). By the remaining interval
in (100), as the corollary from Theorem 35, the 4x4
LAIBSD does not have an optimal pure strategy
situation that would contain three possible-shooting
moments

(100)

15
Loty =40,—,—.
fhott =033

The last possible-shooting moment is non-op-
timal if, as a corollary from (88)—(93) in Theorem 6
and Theorem 7, inequality (92) for N = 4 is false, i.e.

2 ca (101)
5 b

which is true by (100). O

Theorem 9. Progressive LA1BSD (6) by (1)-
3), (36) for N € N\{l, 2,3, 4} is not solved in pure
strategies by

2N 4 (6

Proof. Once again, the LAIBSD is solved in
pure strategies by a > 2 (Theorem 3) and by (63)
(Theorem 5) and by (87) (Theorem 6). Then, the
corollary from Theorem 5 and the corollary from
Theorem 6, — particularly, with membership (94) and
its inclusions, — is that the LAIBSD does not have
optimal pure strategy situations by (102). [

It is easy to see that the subset in (102) of

pure-strategy-solution non-existence expands as the
duel becomes bigger.

Theorem 10. As the number of possible-shoo-
ting moments in progressive LA1IBSD (6) by (1)-
(3), (36) for N eN\{l1,2,3,4} is increased, the
last-moment-optimality interval by (87) shortens.
Proof. This assertion means that

2N72
}fl_l’)l'olO(O, W} =. (103)
Consider a function
2N—2
S(N) = (104)
The first derivative of function (104) is
df (11'12)‘2]\]72'(3N72_2N72)_2N72
- — X
dN (31\/—2 _oN-2 )2
((In3)-3"2 —(In2)-2"?)
x (3N72 _oN-2 )2 B
_ 2 (In 2)-3"2—(In2)-2"? —(In3) y
N . (3N—2 _2N—2 )2
3V +(In2)- 2"
X =
(3N—2 _ N2 )2
=2N—2.3N—2. ln2_ln3 2<0,
(3N—2 _2N—2)

which means that (104) is a decreasing function of
N. That is,

2N—2

lim £(N)= lim =0

N—soo Nosoo 2 (1 (ijv—z ’
3

whence (103) is true. O

Thus, as the duel becomes bigger, the non-con-
stant interval in (102) becomes wider, expanding the
accuracy subset of pure-strategy-solution non-exis-

tence towards
4 6
0; 2 U(—;2j
[5)u(3

for LA1BSDs with five and more possible-shooting
moments.

(105)

10. Discussion and conclusion

Compared to the LAIBSDs for patterns (7)
and (23), the LAIBSD with progressing-by-one-
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third shooting moments has a different boundary
value of the accuracy proportionality factor, which
separates two major cases of the duel solution. The
LA1BSD for pattern (36) with four and more pos-
sible-shooting moments by a > 2 has the single op-
timal situation (49), according to which the duelist
must shoot at the second moment being the first
third of the duel time span (Theorem 3). When there
are only three possible-shooting moments, the se-
cond moment is single optimal if @ > 2, the last mo-
ment is single optimal if a €(0;2), the second and
last moments are both optimal if a = 2 (Theorem 2).

When a€(0;2) and there are three or more
possible-shooting moments, the second moment
is never optimal for the duelist (7heorem 4). This
is the case, where LA1BSD with progressing-by-
one-third shooting moments significantly differs (in
terms of its solution) from the LA1BSDs for patterns
(7) and (23). Thus, in LAIBSDs for pattern (36)
with four and more possible-shooting moments third

moment ¢, = g is optzimal by (63) (Theorem 5), whereas
third moment ¢, =3 is optimal in the LA1BSD f(}r
compactified-moments pattern (23) only if a=5
[13]. In the LAIBSD for geometrical-progression
pattern (7) third moment ¢, :% is particularly opti-

mal if

although optimality of later possible-shooting mo-
ments is also possible [15].

Just like for patterns (7) and (23), the last mo-
ment can be optimal in LA1BSDs for pattern (36)
with four and more possible-shooting moments by
sufficiently low values of the accuracy proportio-
nality factor. The last moment is optimal if (87) is
true (Theorems 6 and 7), where the length of the
interval in (87) exponentially-like shortens as the
number of possible-shooting moments (the size of
the duel) is increased (Theorem 10). This last-mo-
ment-optimality interval shortening exists for pat-
terns (7) and (23) as well, whose right endpoints in
the interval are

1
2V
and
b
N-2~

respectively. Last-moment-optimality solutions of
LAI1BSD:s for patterns (7), (23), and (36) with exactly

four possible-shooting moments cannot be seamless-
ly surveyed. The 4x4 LA1BSD for geometrical-pro-
gression pattern (7) is not specifically distinguished
from bigger LA1BSDs. Unlike LA1BSDs with the
faster converging possible-shooting moments by (7),
the duelist in the 4x4 LAIBSD with compactified

shooting moments by (23) and a e(O; %) has the
single optimal strategy to shoot at the duel very end.
If the accuracy proportionality factor is equal to %,
then the duelist in the 4x4 LA1BSD for pattern (23)
possesses two optimal pure strategies ¢, = % and z, = 1.

This resembles the optimal behavior of the duelist in
the 4x4 LA1BSD for pattern (36) and (96), where

it is optimal to shoot at either ¢, =§ ort,=1.If(95) is

true, the last moment remains single optimal (7he-
orem 7).

Unlike the LA1BSD for pattern (23), which is
not solved in pure strategies if

ae(zvl—zglj\{%}

for N eN\{l,2,3} and the interval in (106) ap-
proaches to open interval (0;1) as the number of pos-
sible-shooting moments is increased, the LA1BSD
for pattern (36) does not have a pure strategy solu-
tion by (102) (Theorem 9), i.e. there is a stable in-
finite subset of values of the accuracy proportionali-
ty factor below the boundary value a = 2 such that a
pure strategy solution exists — see (63) and Theorem 5.

(106)

This subset, whose length is 3 comprising 20 % of

the below-boundary-value interval, changes into interval

3]

in a 4x4 LAIBSD for pattern (36) (Theorems 7
and &). Interval (107) comprises 60 % of the be-
low-boundary-value interval (0;2).

The proved assertions contribute another speci-
ficity of the progressing-by-one-third shooting mo-
ments in LAIBSDs to the games of timing. Com-
pared to LA1BSDs for patterns (7) and (23), the
specificity consists in that the LA1BSD for pattern
(36) has a constant interval of lower (weaker) shoo-
ting accuracies, at which the duelist possesses an

that

(107)

. .. . |46
optimal pure strategy. This interval is {g,g}

symmetrically breaks the low-accuracy interval (0;2).
LA1BSDs with progressing-by-one-third shoo-
ting moments can be further studied for some
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nonlinearities in the accuracy function. For in- cy. Besides, the case of a value of the jitter added to
stance, it can be the quadratic accuracy as a case progressing-by-one-third shooting moments, apart
of the low-accurate duelist [10]. For a case of the from the duel beginning and end time moments,
high-accurate duelist, it is the square-root accura- can be considered [18].
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B.B. PomaHtok

BE3LIYMHA OYEINb 3 OAHIEIO KYNEK NIHIMHOI BIYYHOCTI TA NMPOMPECYOUUMW HA OLHY TPETUHY MOMEHTAMU
NOCTPUTY

MNpo6nemaTtuka. Po3rnsHyTo CKiHYEHHY rpy 3 HYyNIbOBOK CyMO, Sika MOAENIOE KOHKYPYHOYy B3aEMOAi0 MK ABOMa Cy6’ekTamu.
Cy6’eKT, SIKOTO LLie Ha3nBaloTb AyeNsHTOM, Mae BUKOHATW AKyCb Aito (abo, BUCMNOBMIOYNCL MeTaopunyHO, 34IMCHUTM NOCTPIN OfHieo
Kyrnero) NpoTArom CTaHAapTU30BaHOrO MPOMIKKY Yacy, Ae Kyns moxe OyTu BunyllueHa nuile y 3a3HadeHi MoMeHTM yacy. [ina GinbLlu
peanicTU4HOro CUMYIIOBaHHSA B3aeMogii MK AyensHTaMu KinbKiCTb TakMX MOMEHTIB MOXMMBOrO MOCTPiNYy NpUAMaoTb CKiHYEHHO!O,
BHacnigok Yoro rpa (abo x Ayenb) cTae AUCKpeTHO. [Ans AyensHTa 3anvwaeTbCs HEBIGOMUM [0 KiHLSA Ayerni, YW iHLINA yensHT 34iNCHNB
nocTpin i konu BiH BiadyBcsA. [lyensHT Moxe He CTPINATM ax A0 CaMOro KiHUS Ayeni, ane ToAi NoCTpin oAHaye 3A4iNCHIOETbCA aBTOMATUYHO
y Liel KiHLEBUIA MOMEHT Yacy, OCKifbku Ais mae 6yTu BukoHaHa y 6yab-skomy Bunagky. [lyensHt Burpae Big 34iliCHEHHSI MOCTPiNy skoMora
nisHilwe, ane nuie ToAi, KONW BiH BUNEPeanTb iHLWOro AyensHTa.

MeTa pocnigaxeHHs. Meta nonsirae y Tomy, o6 Ans Aeskoi moaeni AVCKPeTHOI Nporpecii Ayeni BU3Ha4YMT1 onTrMansHy NoBeaiHKy
OyensHTIB, 3a siKoi Hanpyra 36inbLUyeTbcA 3 HABNMXKEHHAM KiHUSA Ayeni Ta 3'ABNsSeTbCs Ginblue MOXIMBOCTEN A NOCTPiny.

MeTtoauka peanisauii. O6uasa AyensHTU AiloTe 3a TUX CaMUX YMOB, TOMY Lt 6e3LliyMHa Ayenb 3 OOHIE0 Kynet € CUMETPUYHOI0.
Bigtak onTumanbHe 3HauveHHsi rpu AopiHoe 0, | AyensHTU MalTb OAHaKOBI onTMMarnbHi cTpaterii. BnyyHicTe mocTpiny € mniHinHo0
i BU3HaYaeTbCA koediLlieHTOM NPONOpPLiMHOCTI TOYHOCTI.

Pe3ynbTaTtn gocnigXeHHs. YCi po3B’aA3kM y YNCTWX CTpaTerisax Ans Takux Ayenen 3HanaeHi 3anexHo Bif Lboro koedilieHTa, ae
MOMEHTN MOXIVBOrO MOCTPINy CKNagalTb MoAenb Aeskoi nporpecii. 3rigHo 3 Lielo MOAENo KOXHWIA HaCTYMHUIA MOMEHT MOXIMBOTO
nocTpifly OTPUMYIOTb [0AaBaHHAM TPETMHU YacoBOro MPOMiXKY, WO 3anuwaeTbca A0 KiHUA ayeni. Po3s’asku ans uiei mopeni
NMOPIBHIOKOTLCS 3 BiJOMUMW PO3B’si3kKaMU ANs MOAENi reoMeTpUYHOI NPOrpecii, a TakoX MoAeri, B SKil MOMEHTV MOXIUBOIO MOCTPINy
nporpecyoTb 6inbLl NOMipHO.

BucHoBku. [loBefeHi TBepaKeHHs1 po3KpuBaloTb Lie OAHY OCOONMBICTL MPOrpecyroyMx Ha OAHY TPEeTUHY MOMEHTIB MocTpiny
y 6e3wymMHUX ayensx 3 ogHieto Kyneto NiHiHOI BYYHOCTI y Kraci YacoBuX irop. AKLLO NopiBHOBaTH Ayeni 3 iHWXMU MOAENSIMU ANCKPETHOI
Nporpecii, Lisi 0COBNUBICTL NoMnsArae y Tomy, Lo Ayerb i3 NPOrpecytounMm Ha oaHy TPeTUHY MOMEHTaMuM NOCTPiNy Mae NocTiHUIA iHTepBan

5

. . . i ) 46 .
HWXKHIX (criabLlumx) BRyYHOCTEN, 3a sIKMX OyenicT Mae onTuManbHy YMcTy cTpaTterito. Lium iHTepBanom e [—'— , SIKUA CUMETPUYHO

po3busae iHTepBan (0; 2) cnabkoi Bry4YHOCTI.
KnrouyoBi cnoBa: 6e3wymHa ayernb 3 OfHIE Kyneto; MiHiiHa BIy4YHICTb; MaTpUYHa rpa; po3B’sa30K y YACTUX CTpaTErisix; Nporpecyoyi
Ha OfHY TPETMHY MOMEHTU MOCTpIny.

Pexomennosana Panoro Haniiiiuna no pemaxuit
akyapTeTy NMPUKIATHOI MaTEMaTUKKU 18 cepniHs 2025 poky
KIII im. Iropst Cikopcbkoro
IMpuitHdra no my6mikartii
08 rpyans 2025 poky



