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LINEAR-ACCURACY ONE-BULLET SILENT DUEL  
WITH PROGRESSING-BY-ONE-THIRD SHOOTING MOMENTS

Background. A finite zero-sum game is considered, which models competitive interaction between two 
subjects. The subject, referred to as the duelist, must take an action (or, metaphorically, shoot the single 
bullet) during a standardized time span, where the bullet can be shot at only specified time moments. The 
duelist benefits from shooting as late as possible, but only when the duelist shoots first.

Objective. The objective is to determine optimal behavior of the duelists for a pattern of the duel dis-
crete progression, by which the tension builds up as the duel end approaches and there are more possibilities 
to shoot.

Methods. Both the duelists act within the same conditions, and so the one-bullet silent duel is sym-
metric. Therefore, its optimal value is 0 and the duelists have the same optimal strategies. The shooting 
accuracy is linear being determined by an accuracy proportionality factor.

Results. Depending on the factor, all pure strategy solutions are found for such duels, whose possi-
ble-shooting moments comprise a progression pattern. According to this pattern, every next possible-shoot-
ing moment is obtained by adding the third of the remaining span to the current moment. The solutions for 
this pattern are compared to the known solutions for the geometrical-progression pattern and the pattern 
whose possible-shooting moments progress in a smoother manner.

Conclusions. The proved assertions contribute another specificity of the progressing-by-one-third 
shooting moments in linear-accuracy one-bullet silent duels to the games of timing. Compared to duels for 
other duel discrete progression patterns, the specificity consists in that the duel with progressing-by-one-
third shooting moments has a constant interval of lower (weaker) shooting accuracies, at which the duelist 

possesses an optimal pure strategy. This interval is 
4 6;
5 5
 
  

 that symmetrically breaks the low-accuracy

interval (0; 2).
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one-third shooting moments.
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1. Introduction

A one-bullet silent duel is a timing zero-sum 
game, in which it is unknown to the player (also re-
ferred to as the duelist) whether and when the other 
duelist has fired its bullet until the end of the duel 
time span [1, 2]. The span is usually interval [0; 2]. 
The bullet is a metaphor for an option to make a de-
cision or take an action [3, 4]. In fact, shooting (or 
firing) a bullet means making a decision or taking an 

action during interaction between the two duelists 
(decision-makers, consumers, entrepreneurs, users, 
etc.) [5, 6]. The duelist may not fire the bullet until 
the very last (final) moment to shoot, but then it is 
nonetheless fired at the final moment, because the 
action must be taken anyway [2, 7, 8]. The duelist 
is also featured with an accuracy function which is a 
nondecreasing function of time [1, 9, 10].

To more realistically simulate interaction be-
tween the two duelists, discrete silent duels are 
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considered, in which the duelist can shoot only at 
specified time moments [1, 3, 4, 11, 12]. The num-
ber of such possible shooting moments is finite. The 
moments of the duel beginning and duel end are 
included in this number [7, 13, 14]. So, in a discrete 
duel with   possible shooting moments the players’ 
pure strategy sets are

{ } { } { } [ ]1 1 1
0;1= = =

= = = = = ⊂
N NN

N i N j N qi j q
X x Y y T t  (1)

by

1+<q qt t  1, 1∀ = −q N  and t1 = 0, tN = 1 

for { }\ 1∈N .

It is presumed that both the duelists act within 
the same conditions, and so the one-bullet silent 
duel is symmetric. Therefore, its optimal value is 
0 and the duelists have the same optimal strate-
gies, although they still can be non-symmetric [3, 
11, 13, 15]. The duelist benefits from shooting as 
late as possible, but only when the duelist shoots 
first [2, 16, 17]. This is modeled, in particular, by a 
skew-symmetric payoff matrix [1, 7, 18]

	  
T

× ×
= = − = −      N ij ji NN N N N

k kK K       (2)

whose entries

( )2 sign= − + −ij i j i j j ik ax ay a x y y x      (3)

for

     1,=i N  and 1,=j N  by a > 0.	

The accuracy proportionality factor a defines 
the duelists’ linear accuracy functions [7, 16, 19]

        ( ) =Xp x ax ,    ( ) =Yp y ay ,	 (4)

through which entry kij can be generally given as

	

(5)

Hence, the global objective is to find pure 
strategy solutions of linear-accuracy one-bullet si-
lent duel (LA1BSD)

	  	 (6)

by (1)‒(3).
LA1BSD (6) is called progressive if the density 

of the duelist’s pure strategies between t1 = 0 and  
tN = 1 progressively grows (in accordance with a 
definite pattern) as the duelist approaches to the duel 
end tN = 1 [1, 7, 9, 10, 12, 13]. The duel’s shoo- 

ting-moment progression is quite natural because 
the tension builds up as the duel end approaches, 
and thus the duelist must have more possibilities to 
shoot [6, 11, 20, 21]. A particular interest of ap-
plying LA1BSDs exists in advertising, where com-
petitiveness and waiting to attract and harvest more 
audience data are modeled [22, 23].

2. Known results

The first particular case of the progressive 
LA1BSD was considered in [15], where

(7)

for 2, 1= −q N and pure strategy solutions had been 
obtained for any а ≥ 1, and specific conditions had 
been found for ( )0;1∈a  such, at which the duel has 
a pure strategy solution. Thus, situation

	  	 (8)

is single optimal in duel (6) by (1)‒(3), (7), and a > 1 
for { }\ 1, 2∈N . Situation (8) is non-optimal by  
          . However, situation (8) remains single op- 
timal by a = 1 for { }\ 1, 2, 3∈N . The duel by a = 1 
for N = 3 has four optimal situations (8),

	                                  ,	 (9)

	                                   ,	 (10)

	      { } { }2 3
1, ,1
2

=x y .                (11)

Situation

	  	 (12)

is single optimal by any a > 0 in the most trivial 
case, when N = 2 (and thus the duelist can shoot 
only either at the duel beginning or duel end, which 
annuls the progressiveness). Situation (9) is the single 
solution to 3×3 duels by ( )0;1∈a . For the gene-
ral case of N = 2 article [15] proves that only one

{ }3, 1∈ −n N exists such that situation

	  	 (13)

is optimal by

	  	 (14)

( ) ( )
( ) ( ) ( )sign .

ij X i Y j

X i Y j j i

k p x p y
p x p y y x
= − +

+ −

{ } { }1 1
, , , ,= =

=
NN

N N N i j Ni j
X Y x yK K

1 1

1
1

2 12
2

− −
−

−
=

−
= =∑

q q
l

q q
l

t

{ } { }2 2
1 1, ,
2 2

=x y

( )0;1∈a

{ } { }3 3, 1,1=x y

{ } { }3 2
1, 1,
2

=x y

{ } { }2 2, 1,1=x y

{ }
1 1

1 1
2 1 2 1, ,

2 2

− −

− −

− − 
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n n
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−

− − −
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∈ ⊂ − − ⋅ − 

n

n n na

( ) ( )
( ) ( ) ( )sign .

ij X i Y j

X i Y j j i

k p x p y
p x p y y x
= − +

+ −
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and situation
	  { } { }, 1,1=N Nx y                  (15)

is optimal by

	  	 (16)

for { }\ 1, 2, 3∈N . If
	  	

(17)

then situations (15),
	  	

    ,    (18)

	                                          ,	 (19)

	  	 (20)

are optimal; apart from situations (15), (18)‒(20), 
there are no other pure strategy solutions in the duel 
by (17). If

	  	 (21)

then optimal situation (15) is the single one. If

	  	 (22)

and (14) holds, optimal situation (13) is the single 
one. Finally, if neither (14) nor (16) holds, then the 
duel does not have a pure strategy solution.

The second particular case of the progressive 
LA1BSD was considered in [13], where

	                                                       (23)

for 2, 1= −q N .	
This case was motivated by that the density of 

the duelist’s pure strategies between t1 = 0 and tN = 1 
grows too quickly if the geometrical progression by 
(7) is used. Progression (23) is smoother providing 
a sort of compactification of shooting moments. 
Meanwhile, article [13] proves that the solutions in 
the progressive LA1BSD (6) by (1)‒(3), (23) for N = 3  
are the same as the solutions in the progressive 
LA1BSD (6) by (1)‒(3), (7) for N = 3. Besides, 
the progressive LA1BSD (6) by (1)‒(3), (23) for  

{ }\ 1, 2, 3∈N and а ≥ 1 has the single optimal si- 

tuation (8), which coincides with the solution in the 
case of (7). Another coincidence is that in the case 
of (23) situation (8) is non-optimal by ( )0;1∈a  
for { }\ 1, 2∈N . The remaining results for (23) 
were proved  [13]  for ( )0;1∈a and { }\ 1, 2, 3∈N . 
Situation 

	  { } { }3 3
2 2, ,
3 3

=x y                 (24)

is optimal only if 
1
2

=a . Except for the third and

last shooting moments 3
2
3

=t and tN = 1, there are

no other optimal pure strategies. The 4×4 duel with

 has four optimal pure strategy situations: situ-

ation (24) and situations

	                                  ,	 (25)

	                                   ,	 (26)

	                                   .	 (27)

Finally, situation (15) is single optimal for
{ }\ 1, 2, 3, 4∈N  and

	                               .	 (28)

In the 4×4 duel with

	  	 (29)

situation (15) is single optimal as well.
Despite progression (23) is smoother than pro-

gression (7), it still lacks a reasonable last-to-penul-
timate ratio

	                               ,	 (30)

which is

	  	 (31)

for (23), whereas ratio (30) is

	  	 (32)

for (7). Indeed,
  
	               

( )2
10; 0;1

2 1−
 ∈ ⊂ − Na

2
1

2 1−=
−Na

{ }
2 2

1 1 2 2
2 1 2 1, ,

2 2

− −

− − − −

− − 
=  
 

N N

N N N Nx y

{ }
2

1 2
2 1, ,1

2

−

− −

− 
=  
 

N

N N Nx y

{ }
2

1 2
2 1, 1,

2

−

− −

− 
=  
 

N

N N Nx y

2
10;

2 1−
 ∈ − Na

2
1

2 1−≠
−Na

( )

1

1

1 1
1

−

=

−
= =

+∑
q

q
n

qt
n n q

{ } { }4 4, 1,1=x y

{ } { }3 4
2, ,1
3

=x y

{ } { }4 3
2, 1,
3

=x y

1 1
2 2

< =
−

a
N

1
2−

a
N



1 1

1

− −

=N

N N

t
t t

1

1 1
2−

−
=

−N

N
t N

2

2
1

1 2
2 1

−

−
−

=
−

N

N
Nt

2 2

2 2
1 2 2 1 2 1 1
2 2 1 2 2 1

− −

− −

− − + − +
− = − =

− − − −

N N

N N
N N
N N
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  2 2
1 1 1 11 1

2 2 1 2 2 1− −= + − − = − =
− − − −N NN N

  

( )( ) ( )( )
2 2

2 2
2 1 2 2 1 0

2 2 1 2 2 1

− −

− −

− − + − +
= = >

− − − −

N N

N N
N N

N N
  (33)

for { }\ 1, 2, 3∈N , where difference (33) between 
last-to-penultimate ratios (31) and (32) is 0 only 
at N = 3. So, in a duel with (23) the duelist gets 
a huge gap between the penultimate and last mo-
ment of possible shooting. Hence, another pattern 
of possible-shooting-moment progression is to be 
considered. According to this pattern, every next 
possible-shooting moment is obtained by adding the 
third of the remaining span to the current moment:

	
1

1

1
3

−
−

−
= + q

q q

t
t t                 (34)

for 2, 1= −q N .
Herein, the local objective is to find pure strate- 

gy solutions of progressive LA1BSD (6) by (1)‒(3), 
(34) for { }\ 1, 2∈N .

3. Trivia and convention

Clearly, the most trivial duel size is 3×3. Its 
possible-shooting-moment progression is trivially a 
triple

{ } { }3 1 2 3
1, , 0, ,1
3

= =T t t t .          (35)

It is worth noting that the middle of the 3×3 
duel time span is as twice as closer to the duel be-
ginning than to the duel end.

Inasmuch as a pure strategy solution of duel 
(6) corresponds to a saddle point of skew-symmet-
ric matrix (2) with entries (3), only a zero entry of 
this matrix can be a saddle point [7]. Therefore, a 
row containing a negative entry does not contain 
saddle points; neither does the respective column 
containing the positive entry. Hence, it is conven-
tionally possible to conclude only on saddle points 
in definite rows of matrix (2), which imply the same 
conclusions on saddle points in respective columns.

It is rather trivial, but inasmuch as

   
then the first row of matrix (2) with entries (3) is 
not an optimal strategy of the first duelist, and thus 
situation

 
is never optimal in the duel. Another trivial remark is 
that a nonnegative row of matrix (2) with entries (3) 

contains a saddle point on the main diagonal of the 
matrix [7]. If a row contains only positive entries, 
except for the main diagonal entry, all the other    
N – 1 rows of the respective column contain nega-
tive entries, and thus this row contains a single sad-
dle point which is the single one in the duel.

To study the duel in an easier way, pattern (34) 
of possible-shooting-moment progression ought to 
be represented similarly to (7) and (23), having the 
right-hand side term that depends only on q.

Theorem 1. Sequence (34) for (1) can be rep-
resented as

1
1

1 1 1 1

1
1

1
3

2 3 2
3 3

q
q q

q l q q

l q
l

t
t t −

−

− − − −

−
=

−
= + =

−
= =∑              (36)

for 2, 1= −q N .	

Proof. First, re-write (34) as

	                                                (37)

for 2, 1= −q N .	
Equality (36), considered without its last term, 

can be proved by induction. In the base case, q = 2 
and

           

1 1

2
1

2 1
3 3

−

=

= =∑
l

l
l

t ,                 (38)

which is true by (35). By the inductive hypothesis it 
is assumed that equality (36), considered without its 
last term, holds for any q = k:

	   

1 1

1

2
3

− −

=

=∑
k l

k l
l

t .                   (39)

By the inductive step, it is about to show that 
equality (36), considered without its last term, holds 
for 1= +q k :

	
1

1
1

2
3

−

+
=

=∑
k l

k l
l

t .                  (40)

Moment tk+1 can be given by using (37):
 

1 0= − <j jk ay 2,∀ =j N

{ } { }1 1, 0, 0=x y

11 2
3

−+
= q

q

t
t

1
1

1 1 1 1

1
1

1
3

2 3 2
3 3

q
q q

q l q q

l q
l

t
t t −

−

− − − −

−
=

−
= + =

−
= =∑

1 1

1
1

1 2 1 2 2
3 3 3 3

− −

+
=

+
= = + ⋅ =∑

k l
k

k l
l

tt
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1 10 1

1 1 1
1 1 1

1 2 2 2 2
3 3 3 3 3

− − −

+ +
= = =

= + = + =∑ ∑ ∑
k k kl l j

l l j
l l j

.  (41)

The last term in (41) coincides with the right-
hand side term in (40). This proves equality

	     

1 1

1

2
3

− −

=

=∑
q l

q l
l

t                     (42)

for 2, 1= −q N  by induction with (38) and (39), for 
the middle term in (36).

Equality

	
1 1 1 1

1
1

2 3 2
3 3

− − − −

−
=

−
=∑

q l q q

l q
l

          (43)

for 2, 1= −q N  is proved in the same way. In the 
base case, q = 2 and

1 1 2 1 2 1

2 1
1

2 1 3 2 3 2
3 3 3 3

− − −

−
=

− −
= = =∑

l

l
l

,    (44)

which is true by (38). By the inductive hypothesis 
it is assumed that equality (43) holds for any q = k:

	     

1 1 1 1

1
1

2 3 2
3 3

− − − −

−
=

−
=∑

k l k k

l k
l

.	 (45)

By the inductive step, it is about to show that 
equality (43) holds for q = k + 1:

	
1

1

2 3 2
3 3

−

=

−
=∑

k l k k

l k
l

.               (46)

The sum in the left-hand side of (46) can be 
represented as the sum of the right-hand side term 
in (45) and the k-th summand in the left-hand side 
of (46):

 

                                                .	 (47)

The last term in (47) coincides with the right-
hand side term in (46). This proves equality (43) by 
induction with (44) and (45).  

4. Three moments to shoot

Is the duel solution the same as for those two 
patterns of possible-shooting-moment progression, 
when the duelist has the fewest number of moments 
to shoot? The answer follows.

Theorem 2. Progressive LA1BSD (6) by (1)‒(3), 
(36) for three moments to shoot (N = 3)

	  	{ } { }3 3 3 3
1 1, , 0, ,1 , 0, ,1 ,
3 3

=X Y K K     (48)

has a single optimal situation (9) by ( )0; 2∈a , a 
single optimal situation

                        	 	 (49)

by a > 2. At a = 2 this 4×4 duel has four optimal 
situations (49),

{ } { }2 3
1, ,1
3

=x y ,                 (50)

                                     ,	 (51)

and (9).
Proof. Upon plugging elements of (35) into (3) 

for N = 3, the respective payoff matrix is

                                           .   (52)

If ( )0; 2∈a , matrix (52) has a single saddle 
point (9) due to the last row is positive except for 
main diagonal entry k33 = 0. If a = 2, the second and 
third rows are nonnegative, where

k22 = k23 = k32 = k33 = 0,

and matrix (52) has four saddle points: (49)‒(51) 
and (9). If a > 2, matrix (52) has a single saddle 
point (49) due to the second row is positive except 
for main diagonal entry k22 = 0.   

Theorem 2 reads the difference between pattern 
(36) and patterns (7), (23), which lies in different

second possible-shooting moments: it is 2
1
2

=t  being

the middle of the duel time span for patterns (7), (23),

whereas it is 2
1
3

=t  being the first third of the duel time

11 1 1

1 1

2 2 2
3 3 3

−− − −

= =

= + =∑ ∑
k kl l k

l l k
l l

1 1 1 1 1 1

1
3 2 2 3 3 2 2 3 2 2 3 2

3 3 3 3 3 3

− − − − − −

−

− − ⋅ − ⋅ −
= + = + = =

k k k k k k k k k k

k k k k k k

1 1 1 1 1 1

1
3 2 2 3 3 2 2 3 2 2 3 2

3 3 3 3 3 3

− − − − − −

−

− − ⋅ − ⋅ −
= + = + = =

k k k k k k k k k k

k k k k k k

{ } { }2 2
1 1, ,
3 3

=x y

{ } { }3 2
1, 1,
3

=x y

( )

( )

3 3 3

0
3

0 2
3 3

2 0
3

×

 − − 
 
 = = −    
 
 − −
 

ij

a a

a ak a

aa a

K
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span for pattern (36). Subsequently, duel solutions 
for pattern (36) differ from those for patterns (7), 
(23) in the boundary value of accuracy proportiona- 
lity factor a, at which the solution changes. It is  
a = 2 for pattern (36), whereas it is a = 1 for patterns 
(7), (23). Structurally, however, all the three patterns 
have similar solutions for progressive 3×3 LA1BSDs: 
the last possible-shooting moment is the single opti-
mal strategy for the accuracy proportionality factor 
below the boundary value; the second and last pos-
sible-shooting moments are only optimal strategies 
at the boundary value; the second possible-shooting 
moment is the single optimal strategy for the accura-
cy proportionality factor above the boundary value.

5. Second possible-shooting moment optimality

It is natural to conjecture that the boundary 
value of accuracy proportionality factor a = 2 must 
separate two cases of the duel solution just like value 
a = 1 separates those for patterns (7), (23). So, right 
below, 4×4 and bigger duels are considered by а ≥ 1.

Theorem 3. Progressive LA1BSD (6) by (1)‒(3), 
(36) for { }\ 1, 2, 3∈N  and а ≥ 2 has the single 
optimal situation (49)

Proof. Consider the second row of matrix (2), 
where

	  	 (53)

and

                                      	    . (54)

If a = 2 then

 1 3 1 0− + = −j j jy ay y 
and (54) is nonnegative:

	

(55)

                                  ,	

where k2N = 0 is the second zero entry after k22 in 
the second row. Due to (53) and (55), situation (49) 
is a saddle point. However,

 

 

	  	
(56)

due to

3

3
2 1
3

−

− <
N

N  and 
2

2
23 2
3

−

−⋅ <
N

N  for { }\ 1, 2, 3∈N .

Inequality (56) implies that the last row and 
last column of matrix (2) do not contain saddle 
points. So, situation (49) is single optimal by a = 2.

If a > 2 then it is sufficient to prove that

1 3 0− + >j jy ay   3,∀ =j N .          (57)

Inequality (57), implying that the second row 
is positive except for main diagonal entry k22 = 0, is 
equivalent to inequality

	    	 (58)

by

	                                      .	 (59)

As (59) is true, then

      ,

       

             ,

 

                           ,                (60)

whence inequality (60) directly implies that ine
quality (58) holds and situation (49) is single opti-
mal by a > 2.

6. Second possible-shooting moment non-opti-
mality

It was proved in [13, 15] that the second pos-
sible-shooting moment is not an optimal strategy by 
0 < a < 1 in progressive LA1BSDs (6) by (1)‒(3) 
and { }\ 1, 2∈N  for patterns (7) and (23). In those 
duels, noticeably, the second possible-shooting mo-
ment is the middle of the duel time span, unlike 
for pattern (36). See whether the similar property 
keeps for the LA1BSD with progressing-by-one-
third shooting moments by (36), only by 0 < a < 2 
and the second possible-shooting moment being the 
first third of the duel time span.

21 0
3

= >
ak

( )
2

2 1 3
3 3 3

= − + = ⋅ − +j j j j j
a a ak ay y y ay

( ) ( )2
21 3 1 0

3 3
= ⋅ − + = ⋅ −j j j j

ak y ay y 

3,∀ =j N

2 2 2 2

, 1 2 2
3 2 3 22 1 2 4

3 3

− − − −

− − −

− −
= ⋅ − ⋅ − ⋅ =

N N N N

N N N Nk
2 2 2 2

2 2
3 2 3 24 2 6

3 3

N N N N

N N

− − − −

− −

− −
− ⋅ = − ⋅ =

2 2

2 2
2 22 6 6 4 6
3 3

N N

N N

− −

− −= − + ⋅ = − + ⋅ =

3 1 13
−

> = −j

j j

y
a

y y
3,∀ =j N

1 1
3
< jy  3,∀ =j N

13 1>
jy


13 1− < − −
jy


10 3 2< − <
j

a
y


2

2
22 3 2 0
3

N

N

−

−

 
= ⋅ ⋅ − < 

 
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Theorem 4. Situation (49) is never optimal 
in progressive LA1BSD (6) by (1)‒(3), (36) for 

{ }\ 1, 2∈N  and 0 < a < 2.

Proof. For { }\ 1, 2∈N  consider the second 
row of matrix (2) whose last column entry

( )
2

2 2 0
3 3 3

= − + = ⋅ − <N
a a ak a a       (61)

by 0 < a < 2.
Inequality (61) directly implies that the second 

row of matrix (2) does not contain saddle points by 
0 < a < 2.   

7. Third possible-shooting moment optimality

In a 3×3 duel by 0 < a < 2 it is optimal to shoot 
at the very last (third) possible-shooting moment 
(Theorem 2). The last possible-shooting moment is 
optimal for duelists in LA1BSDs for patterns (7) and 
(23) as well, but just by ( )0;1∈a . See whether the 
third possible-shooting moment in bigger LA1BSDs 
can be an optimal strategy for pattern (36).

Theorem 5. Progressive LA1BSD (6) by (1)‒(3), 
(36) for { }\ 1, 2, 3∈N  has an optimal pure strat-
egy situation

{ } { }3 3
5 5, ,
9 9

=x y                 (62)

by

	                                 . 	 (63)

Proof. Due to Theorem 4, situation (49) is not 
optimal, so the first two rows of matrix (2) do not 
contain saddle points. If situation 

{ }
1 1 1 1

1 1
3 2 3 2, ,

3 3

− − − −

− −

− − 
=  
 

n n n n

n n n nx y     (64)

by { }3, 1∈ −n N  is optimal, then, in the n-th row of 
matrix (2), inequalities

                                        

(65)

	
and

(66)
	

must hold. From inequality (65) it follows that

                                           .   (67)

As

 
2 2 1 1

2 1
3 2 3 2

3 3

− − − −

− −

− −
< =

n n n n

j nn ny x  

(68)

1, 1∀ = −j n                   

then inequality (67) is transformed into

1 1 2 2

1 1 1 2

1

3 2 1 3 2
3 3 2 31

3

n n n n

n n n n

na

− − − −

− − − −

−

− −
⋅

−
+ ⋅

 ,   

( )
1 1 2 2

1 1 1 2
3 2 3 2

3 3 2 3

n n n n

n n n na

− − − −

− − − −

− −
+ ⋅ −

 ,

                                                             

                                        ,    

                                                                ,

                                                                ,  

                                                     ,

whence

( )( )
2 2

1 1 2 2
3 2

3 2 3 2

− −

− − − −

⋅
− −

n n

n n n na .          (69)

From inequality (66) it follows that

	                                .  (70)

As

.   (71)

then inequality (70) is transformed into

1 1

1 1 1

1

3 2 1 1
3 3 21

3

− −

− − −

−

−
⋅

−
− ⋅

n n

n n n

na
 ,

( )
1 1

1 1 1
3 2 1

3 3 2

− −

− − −

−
− ⋅ −

n n

n n na
  .          (72)

If

( )1 1 13 3 2 0− − −− ⋅ − >n n na ,           (73)

i.e.

4 6;
5 5
 ∈   

a

2 0= − +nj n j n jk ax ay a x y 

( 1, )j n N∀ = +∀ >j ny x

1+
n

j
n

x y
ax

 ∀ <j ny x ( 1, 1)j n∀ = −

1−
n

j
n

x y
ax

 ∀ >j ny x ( 1, )j n N∀ = +

1 1

1
3 21

3

− −

−

−
> =

n n

j nny x 1,∀ = +j n N

2 0= − −nj n j n jk ax ay a x y 

∀ <j ny x ( 1, 1)j n∀ = −

1 2 1 2 1 2 1 23 3 2 3 3 3 3 2n n n n n n n n− − − − − − − −⋅ − ⋅ ⋅ − ⋅ +

( )( )1 1 2 23 2 3 2n n n na − − − −+ ⋅ − −

( )( )1 2 1 2 1 1 2 23 2 2 3 3 2 3 2− − − − − − − −⋅ − ⋅ ⋅ − −n n n n n n n na

( ) ( )( )2 2 1 1 2 23 2 3 2 3 2 3 2− − − − − −⋅ ⋅ − ⋅ − −n n n n n na

( )( )2 2 1 1 2 23 2 3 2 3 2− − − − − −⋅ ⋅ − −n n n n n na

ПРИКЛАДНА МАТЕМАТИКА



14 KPI Science News 2025 / 4

( )( )
2 2 1

1 1 2 2 1 1
3 2 2

3 2 3 2 3 2

− − −

− − − − − −

⋅
− =

− − −

n n n

n n n n n n

( )( )
2 2 1 2 1 2

1 1 2 2
3 2 2 3 2 2

3 2 3 2

− − − − − −

− − − −

⋅ − ⋅ + ⋅
= =

− −

n n n n n n

n n n n

( )
( )( )

1 2 2 2

1 1 2 2
2 2 3 2 1 2

3 2 3 2

− − − −

− − − −

⋅ + ⋅ ⋅ −
= =

− −

n n n n

n n n n

( )( )
1 2 2 2

1 1 2 2
2 2 3 2

3 2 3 2

− − − −

− − − −

⋅ − ⋅
= =

− −

n n n n

n n n n

( )
( )( )

2 1 2

1 1 2 2

2 2 3
3 2 3 2

− − −

− − − −

⋅ −
=

− −

n n n

n n n n

1

1 1
3

3 2

−

− −<
−

n

n na  , (74)

then inequality (72) is written as

( )1 1 1 1 13 2 3 3 2− − − − −− − ⋅ −n n n n na ,

whence
1

1 1
2

3 2

−

− −−

n

n n a . (75)

Therefore, situation (64) is optimal if inequality 
(69) holds along with inequalities (74) and (75).
However,

(76)

due to
13 2− >n n (77)

for 3n .

Indeed, inequality (77) is true for n = 3:
2 33 9 8 2= > = .

Assume that inequality (77) holds for n = k:
13 2− >k k . (78)

For n = k + 1 inequality (77) turns into
13 2 +>k k ,

13 3 2 2−⋅ > ⋅k k ,

13 3 2
2

−⋅ >k k , (79)

whence inequality (79) holds due to inequality (78) 
holds. Inequality (76) means that

( )( )
2 2 1

1 1 2 2 1 1
3 2 3

3 2 3 2 3 2

− − −

− − − − − −

⋅
<

− − −

n n n

n n n n n n

for n ≥ 3 and thus it is sufficient to consider only 
stronger inequality (69), upon which weaker inequa- 
lity (74) holds. Hence, situation (64) is optimal if ine- 

quality (69) holds along with inequality (75), i.e. if

( )( )
1 2 2

1 1 1 1 2 2
2 3 2;

3 2 3 2 3 2

− − −

− − − − − −

 ⋅
∈  − − −

n n n

n n n n n na

( )( )
1 2 2

1 1 1 1 2 2
2 3 2;

3 2 3 2 3 2

− − −

− − − − − −

 ⋅
∈  − − − 

n n n

n n n n n na .  (80)

The difference between the right and left end-
points of the interval in membership (80) is:

 

         .	 (81)

Fraction (81) is nonnegative only for n = 3. 
Indeed, inequality

 1 22 3− −>n n 82)

holds for n = 3 as

2 12 4 3 3= > = ,

but for n = k there is inequality

1 22 3− −<n n        (83)
turning into

3 22 8 9 3= < = ,

and, assuming that for n = k inequality (83) holds as

1 22 3− −<k k , (84)

for n = k + 1 inequality (83) turns into

           ,

                   ,

                  ,	 (85)

whence inequality (85) holds due to inequality (84) 
holds. For n = 3 the interval in membership (80) 
turns into:

12 3 −<k k

1 22 2 3 3− −⋅ < ⋅k k

1 232 3
2

− −< ⋅k k

( )( )
1 2 2 2

1 1 2 2
3 3 4 3 2
3 2 3 2

− − − −

− − − −

⋅ − ⋅ ⋅
= =

− −

n n n n

n n n n

( )
( )( )

2 1

1 1 2 2

3 3 2
0

3 2 3 2

− −

− − − −

⋅ −
= >

− −

n n n

n n n n

( )( )
1 2 2

1 1 1 1 2 2
3 3 2

3 2 3 2 3 2

− − −

− − − − − −

⋅
− =

− − −

n n n

n n n n n n

( )( )
1 2 1 2 2 2

1 1 2 2
3 3 3 2 3 2

3 2 3 2

− − − − − −

− − − −

⋅ − ⋅ − ⋅
= =

− −

n n n n n n

n n n n
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( )( )
2 1 1

2 2 2 2 1 1
2 3 2 4 6; ;

3 2 3 2 3 2 5 5
 ⋅  =   − − −   

.

Therefore, the duel has an optimal pure strate-
gy situation (62) by (63).   

8. Last possible-shooting moment optimality

A corollary from Theorem 5 is that 4×4 and 
bigger LA1BSDs by 

	  
4 60; ; 2
5 5

   ∈   
   

a                (86)

do not have optimal pure strategy situations corre-
sponding to all possible-shooting moments, except 
for the last one. The optimality of last-moment sit-
uation (15) is ascertained below for 5×5 and bigger 
LA1BSDs.

Theorem 6. In progressive LA1BSD (6) by (1)‒
(3), (36) for { }\ 1, 2, 3, 4∈N  and

	  
2

2 2
20;

3 2

−

− −

 
∈ − 

N

N Na               (87)

situation (15) is single optimal.
Proof. Situation (15) is optimal only if the last 

row of matrix (2) is nonnegative. Thus, the last, N-th, 
row of matrix (2) contains a saddle point if inequality

	     	 (88)

holds. It is easy to see in (88) that if inequality

	  1 11 0− −− −N Ny ay                 (89)

is true, then inequality (88) is true as well. From 
inequality (89) it follows that

1

1

1 −

−

− N

N

y a
y

 ,                   (90)

         

2 2

2

2 2

2

3 21
3

3 2
3

− −

−

− −

−

−
−

−

N N

N

N N

N

a ,              (91)

     
2

2 2
2

3 2

−

− −−

N

N N a ,                (92)

whence (87) implies optimality of situation (15). 
Meanwhile, inequality

2

2 2
2 8 4

3 2 19 5

−

− − <
−

N

N N                 (93)

holds for { }\ 1, 2, 3, 4∈N . Indeed, from inequa- 
lity (93) it follows that

                                            ,

                                      ,

                                        ,

whence

                        5 52 3− −N N            

for { }\ 1, 2, 3, 4∈N .

Inequality (93) implies that

2

2 2
2 8 40; 0; 0;

3 2 19 5

−

− −

     ⊆ ⊂    −     

N

N N
       (94)

for { }\ 1, 2, 3, 4∈N .	
Membership (94) with the inclusion obeys mem-

bership (86), which implies that by (87) situation (15) 
in 5×5 and bigger LA1BSDs is single optimal.   

Inequality (93) is false for N = 4 as
2

2 2
2 4

3 2 5
=

−
.

This leads to a specificity of 4×4 LA1BSDs by (87). 
      Theorem 7. In progressive 4×4 LA1BSD (6) by 
(1)‒(3), (36) for N = 4 and

4 60; ; 2
5 5

   ∈   
   

a                       (95)

situation (15) is single optimal. The 4×4 LA1BSD by

	  
4
5

=a                          (96)

has four optimal pure strategy situations: (62),
	  

    { } { }3 4
5, ,1
9

=x y ,                 (97)

	   
           { } { }4 3

5, 1,
9

=x y ,                 (98)

and (15).
Proof. Situation (15) is single optimal if the last, 

fourth, row of matrix (2) is positive, except for entry 
k44 = 0. In Theorem 6, it follows from (88)‒(92) for 
N = 4 that situation (15) is single optimal when

2

2 2
2 4

3 2 5

−

− − = >
−

N

N N a ,               (99)

2 2 219 2 8 3 8 2− − −⋅ ⋅ − ⋅N N N
2 227 2 8 3− −⋅ ⋅N N

3 2 3 23 2 2 3− −⋅ ⋅N N

2 0= − −Nj j jk a ay a y 

1∀ <jy ( 1, 1)j N∀ = −
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i.e. if membership (95) is true. If (96) is true, situa-
tion (15) is optimal as well owing to (88)‒(92) hold 
for N = 4. In addition, situation (62) is optimal in 
accordance with Theorem 5 as membership (63) is 
also true. This additionally implies optimality of si- 
tuations (97) and (98).   

9. Non-solvability in pure strategies

Just like the LA1BSDs for patterns (7) and 
(23), the LA1BSD for pattern (36) is not solved in 
pure strategies within a subset of values of the accu-
racy proportionality factor. This is proved by the two 
following assertions.

Theorem 8. Progressive 4×4 LA1BSD (6) by 
(1)‒(3), (36) for N = 4 is not solved in pure stra- 
tegies by

         
6 ; 2
5

 ∈ 
 

a .                  (100)

Proof. The 4×4 LA1BSD is solved in pure stra- 
tegies by a ≥ 2  (Theorem 3) and by (63) (Theorem 5) 
and by (95) (Theorem 7). By the remaining interval 
in (100), as the corollary from Theorem 5, the 4×4 
LA1BSD does not have an optimal pure strategy 
situation that would contain three possible-shooting 
moments

                    { } { }1 2 3
1 5, , 0, ,
3 9

=t t t .            

The last possible-shooting moment is non-op-
timal if, as a corollary from (88)‒(93) in Theorem 6 
and Theorem 7, inequality (92) for N = 4 is false, i.e.

	          
4
5
< a ,                     (101)

which is true by (100).   
Theorem 9. Progressive LA1BSD (6) by (1)‒

(3), (36) for { }\ 1, 2, 3, 4∈N  is not solved in pure 
strategies by

2

2 2
2 4 6; ; 2

3 2 5 5

−

− −

   ∈   −   


N

N Na .     (102)

Proof. Once again, the LA1BSD is solved in 
pure strategies by a ≥ 2 (Theorem 3) and by (63) 
(Theorem 5) and by (87) (Theorem 6). Then, the 
corollary from Theorem 5 and the corollary from 
Theorem 6, ‒ particularly, with membership (94) and 
its inclusions, ‒ is that the LA1BSD does not have 
optimal pure strategy situations by (102).   

It is easy to see that the subset in (102) of 
pure-strategy-solution non-existence expands as the 
duel becomes bigger.

Theorem 10. As the number of possible-shoo- 
ting moments in progressive LA1BSD (6) by (1)‒
(3), (36) for { }\ 1, 2, 3, 4∈N  is increased, the 
last-moment-optimality interval by (87) shortens.

Proof. This assertion means that

2

2 2
2lim 0;

3 2

−

− −→∞

 
= ∅ − 

N

N NN
.        (103)

Consider a function

 ( )
2

2 2
2

3 2

−

− −=
−

N

N Nf N .           (104)

The first derivative of function (104) is
 

 

 

( ) ( ) ( )
( )

2 2
2

22 2

ln 2 3 ln 2 2 ln 32
3 2

N N
N

N N

− −
−

− −

⋅ − ⋅ −
= ⋅ ×

−

                                                  ,

which means that (104) is a decreasing function of 
N. That is,

      ( )
2

2
2

2lim lim 0
23 1
3

−

−→∞ →∞
−

= =
  ⋅ −     

N

NN N
N

f N ,

whence (103) is true.   
Thus, as the duel becomes bigger, the non-con-

stant interval in (102) becomes wider, expanding the 
accuracy subset of pure-strategy-solution non-exis-
tence towards

4 60; ; 2
5 5

   
   
   

                (105)

for LA1BSDs with five and more possible-shooting 
moments.

10. Discussion and conclusion

Compared to the LA1BSDs for patterns (7) 
and (23), the LA1BSD with progressing-by-one-

( )
2 2

22 2

ln 2 ln 32 3 0
3 2

− −

− −

−
= ⋅ ⋅ <

−
N N

N N

( ) ( )
( )

( ) ( )( )
( )

2 2 2 2

22 2

2 2

22 2

ln 2 2 3 2 2

3 2
ln 3 3 ln 2 2

3 2

N N N N

N N

N N

N N

df
dN

− − − −

− −

− −

− −

⋅ ⋅ − −
= ×

−

⋅ − ⋅
× =

−

( ) ( ) ( )
( )

( )
( )

2 2
2

22 2

2 2

22 2

ln 2 3 ln 2 2 ln 32
3 2

3 ln 2 2
3 2

N N
N

N N

N N

N N

− −
−

− −

− −

− −

⋅ − ⋅ −
= ⋅ ×

−
+ ⋅

× =
−
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third shooting moments has a different boundary 
value of the accuracy proportionality factor, which 
separates two major cases of the duel solution. The 
LA1BSD for pattern (36) with four and more pos-
sible-shooting moments by a ≥ 2  has the single op-
timal situation (49), according to which the duelist 
must shoot at the second moment being the first 
third of the duel time span (Theorem 3). When there 
are only three possible-shooting moments, the se
cond moment is single optimal if a > 2, the last mo-
ment is single optimal if ( )0; 2∈a , the second and 
last moments are both optimal if a = 2 (Theorem 2).

When ( )0; 2∈a  and there are three or more 
possible-shooting moments, the second moment 
is never optimal for the duelist (Theorem 4). This 
is the case, where LA1BSD with progressing-by-
one-third shooting moments significantly differs (in 
terms of its solution) from the LA1BSDs for patterns 
(7) and (23). Thus, in LA1BSDs for pattern (36) 
with four and more possible-shooting moments third

moment 3
5
9

=t  is optimal by (63) (Theorem 5), whereas

third moment 3
2
3

=t  is optimal in the LA1BSD for

compactified-moments pattern (23) only if 
1
2

=a
[13]. In the LA1BSD for geometrical-progression

pattern (7) third moment 3
3
4

=t  is particularly opti-

mal if
1 2;
3 3
 ∈   

a ,

although optimality of later possible-shooting mo-
ments is also possible [15].

Just like for patterns (7) and (23), the last mo-
ment can be optimal in LA1BSDs for pattern (36) 
with four and more possible-shooting moments by 
sufficiently low values of the accuracy proportio- 
nality factor. The last moment is optimal if (87) is 
true (Theorems 6 and 7), where the length of the 
interval in (87) exponentially-like shortens as the 
number of possible-shooting moments (the size of 
the duel) is increased (Theorem 10). This last-mo-
ment-optimality interval shortening exists for pat-
terns (7) and (23) as well, whose right endpoints in 
the interval are

                           
2
1

2 1− −N

and
1

2−N
,

respectively. Last-moment-optimality solutions  of 
LA1BSDs for patterns (7), (23), and (36) with exactly 

four possible-shooting moments cannot be seamless-
ly surveyed. The 4×4 LA1BSD for geometrical-pro-
gression pattern (7) is not specifically distinguished 
from bigger LA1BSDs. Unlike LA1BSDs with the 
faster converging possible-shooting moments by (7), 
the duelist in the 4×4 LA1BSD with compactified 

shooting moments by (23) and 
10;
2

 ∈ 
 

a  has the

single optimal strategy to shoot at the duel very end. 

If the accuracy proportionality factor is equal to 
10;
2

 ∈ 
 

a ,

then the duelist in the 4×4 LA1BSD for pattern (23) 

possesses two optimal pure strategies 3
2
3

=t  and t4 = 1. 

This resembles the optimal behavior of the duelist in 
the 4×4 LA1BSD for pattern (36) and (96), where

it is optimal to shoot at either 3
5
9

=t  or t4 = 1. If (95) is

true, the last moment remains single optimal (The-
orem 7).

Unlike the LA1BSD for pattern (23), which is 
not solved in pure strategies if

{ }1 1;1 \
2 2

 ∈ − 
a

N
              (106)

for { }\ 1, 2, 3∈N  and the interval in (106) ap-
proaches to open interval (0;1) as the number of pos-
sible-shooting moments is increased, the LA1BSD 
for pattern (36) does not have a pure strategy solu-
tion by (102) (Theorem 9), i.e. there is a stable in-
finite subset of values of the accuracy proportionali-
ty factor below the boundary value a = 2 such that a 
pure strategy solution exists ‒ see (63) and Theorem 5.

This subset, whose length is 
2
5

 comprising 20 % of

the below-boundary-value interval, changes into interval

	
60;
5

 
  

                       (107)

in a 4×4 LA1BSD for pattern (36) (Theorems 7 
and 8). Interval (107) comprises 60 % of the be-
low-boundary-value interval (0;2).

The proved assertions contribute another speci- 
ficity of the progressing-by-one-third shooting mo-
ments in LA1BSDs to the games of timing. Com-
pared to LA1BSDs for patterns (7) and (23), the 
specificity consists in that the LA1BSD for pattern 
(36) has a constant interval of lower (weaker) shoo-
ting accuracies, at which the duelist possesses an 

optimal pure strategy. This interval is 
4 6;
5 5
 
  

 that

symmetrically breaks the low-accuracy interval (0;2).
LA1BSDs with progressing-by-one-third shoo

ting moments can be further studied for some 
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nonlinearities in the accuracy function. For in-
stance, it can be the quadratic accuracy as a case 
of the low-accurate duelist [10]. For a case of the 
high-accurate duelist, it is the square-root accura-

cy. Besides, the case of a value of the jitter added to 
progressing-by-one-third shooting moments, apart 
from the duel beginning and end time moments, 
can be considered [18].
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В.В. Романюк

БЕЗШУМНА ДУЕЛЬ З ОДНІЄЮ КУЛЕЮ ЛІНІЙНОЇ ВЛУЧНОСТІ ТА ПРОГРЕСУЮЧИМИ НА ОДНУ ТРЕТИНУ МОМЕНТАМИ 
ПОСТРІЛУ

Проблематика. Розглянуто скінченну гру з нульовою сумою, яка моделює конкуруючу взаємодію між двома суб’єктами. 
Суб’єкт, якого ще називають дуелянтом, має виконати якусь дію (або, висловлюючись метафорично, здійснити постріл однією 
кулею) протягом стандартизованого проміжку часу, де куля може бути випущена лише у зазначені моменти часу. Для більш 
реалістичного симулювання взаємодії між дуелянтами кількість таких моментів можливого пострілу приймають скінченною, 
внаслідок чого гра (або ж дуель) стає дискретною. Для дуелянта залишається невідомим до кінця дуелі, чи інший дуелянт здійснив 
постріл і коли він відбувся. Дуелянт може не стріляти аж до самого кінця дуелі, але тоді постріл одначе здійснюється автоматично 
у цей кінцевий момент часу, оскільки дія має бути виконана у будь-якому випадку. Дуелянт виграє від здійснення пострілу якомога 
пізніше, але лише тоді, коли він випередить іншого дуелянта.

Мета дослідження. Мета полягає у тому, щоб для деякої моделі дискретної прогресії дуелі визначити оптимальну поведінку 
дуелянтів, за якої напруга збільшується з наближенням кінця дуелі та з’являється більше можливостей для пострілу.

Методика реалізації. Обидва дуелянти діють за тих самих умов, тому ця безшумна дуель з однією кулею є симетричною. 
Відтак оптимальне значення гри дорівнює 0, і дуелянти мають однакові оптимальні стратегії. Влучність пострілу є лінійною 
і визначається коефіцієнтом пропорційності точності.

Результати дослідження. Усі розв’язки у чистих стратегіях для таких дуелей знайдені залежно від цього коефіцієнта, де 
моменти можливого пострілу складають модель деякої прогресії. Згідно з цією моделлю кожний наступний момент можливого 
пострілу отримують додаванням третини часового проміжку, що залишається до кінця дуелі. Розв’язки для цієї моделі 
порівнюються з відомими розв’язками для моделі геометричної прогресії, а також моделі, в якій моменти можливого пострілу 
прогресують більш помірно.

Висновки. Доведені твердження розкривають ще одну особливість прогресуючих на одну третину моментів пострілу 
у безшумних дуелях з однією кулею лінійної влучності у класі часових ігор. Якщо порівнювати дуелі з іншими моделями дискретної 
прогресії, ця особливість полягає у тому, що дуель із прогресуючими на одну третину моментами пострілу має постійний інтервал

нижніх (слабших) влучностей, за яких дуеліст має оптимальну чисту стратегію. Цим інтервалом є 4 6;
5 5
 
  

, який симетрично

розбиває інтервал (0; 2) слабкої влучності.
Ключові слова: безшумна дуель з однією кулею; лінійна влучність; матрична гра; розв’язок у чистих стратегіях; прогресуючі 

на одну третину моменти пострілу.
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