
18

© The Autor(s).
The article is distributed under the terms of the license CC BY 4.0

KPI Science News 2025 / 2

Offer a citation for this article: Vadim Romanuke, “Tall Array method efficiency in dataset dimensionality reduction
by principal component analysis”, KPI Science News, no. 2, pp. 18–29, 2025. doi: 10.20535/kpisn.2025.2.331279

Пропозиція для цитування цієї статті: В.В. Романюк, “Ефективність методу Tall Array у зниженні розмір-
ності наборів даних на основі методу головних компонентів”, Наукові вісті КПІ, № 2, с. 18–29, 2025.
doi: 10.20535/kpisn.2025.2.331279

DOI: 10.20535/kpisn.2025.2.331279
UDC 519.7

Vadim V. Romanuke*

Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Vinnytsia, Ukraine
*corresponding author: romanukevadimv@gmail.com

TALL ARRAY METHOD EFFICIENCY IN DATASET DIMENSIONALITY REDUCTION
BY PRINCIPAL COMPONENT ANALYSIS

Background. Exploratory data analysis has been extensively growing since the early 2000s. As of 2025, most real-practice
datasets are classified as Big Data. The Big Data analytics workflow includes the data preprocessing step, which is the
starting point of Big Data computational handling. At this step, the data are tried to get simplified as much as possible.
The main paradigm is dimensionality reduction allowing simplifying and visualizing high-dimensional datasets. Prin-
cipal component analysis (PCA) is a linear dimensionality reduction technique. The PCA can be sped up by applying
Tall Arrays, if the data are stored on disk. The Tall Array PCA (TAPCA) computes principal components incrementally
using a divide-and-conquer strategy.
Objective. The paper aims to determine when the TAPCA is factually efficient for dimensionality reduction. There are
two numeric types to be studied: double and single precision.
Methods. To achieve the said objective, random large datasets are generated as matrices of a specified numeric type.
Then computational time of the ordinary MATLAB PCA applied to generated matrices is measured. Next, computa-
tional time of converting in-memory arrays (generated matrices) into tall arrays is measured. Computational time of the
TAPCA applied to those generated matrices, to which the PCA is applied before, is measured as well.
Results. A comparative analysis of the averaged computational times reveals that computational time complexity of
both the PCA and TAPCA is rather polynomial than strictly quadratic or cubic. There is a nearly-hyperbolic margin,
which alternatively could be called the TAPCA efficiency threshold, in a plane of the number of dataset observations
and the number of dataset features, by which the TAPCA and the ordinary PCA take approximately the same time to
compute principal components.
Conclusions. In computing principal components for dimensionality reduction of large datasets stored on disk, the Tall
Array method becomes efficient by two parallel processor workers if a dataset has at least 5 to 6 million entries. The Tall
Array method is more efficient on datasets with double precision whose efficiency threshold is nearly 6 million entries,
whereas the efficiency threshold for datasets with single precision is between 5 to 15.2 million entries.
Keywords: dimensionality reduction; principal component analysis (PCA); Tall Arrays; efficiency threshold; double
precision; single precision.

Introduction

Exploratory data analysis has been raised into
likely the vastest and deepest domain encompassing
various scientific fields of information technology,
computer science, and applied mathematics for en-
gineering, econometrics, sociology, bioinformatics,
etc. [1, 2]. Meanwhile, datasets to be explored have
been extensively or even exponentially growing since
early 2000s. As of 2025, most real-practice datasets
are classified as Big Data [3, 4]. The Big Data an-
alytics workflow includes the data preprocessing
step, which is the starting point of Big Data com-

putational handling [5, 6]. At this point, before the
most valuable and decisive Big Data statistics are
computed, like mean and standard deviation values,
the data are tried to get simplified as much as pos-
sible [7, 8]. The main paradigm is dimensionality
reduction which allows simplifying and visualizing
high-dimensional datasets.

Principal component analysis (PCA) is a linear
dimensionality reduction technique, by which the
dataset is linearly transformed into a new coordinate
system such that the directions (principal compo-
nents) sorted in descending order capture the largest
variation in the data [3, 9]. The principal compo-

19ПРИКЛАДНА МАТЕМАТИКА

nents constitute an orthonormal basis in which dif-
ferent individual dimensions of the data are linearly
uncorrelated [10, 11]. If the dataset is an ×M N
matrix []mn M N

x
×

=X representing M observations
of N-dimensional objects, where usually M > N, the
PCA returns N principal components that are unit
vectors [9]. The n-th vector, 2,n N= , is the direc-
tion of a line that best fits the data while being or-
thogonal to the first n - 1 vectors [11]. A best-fitting
line minimizes the average squared perpendicular
distance from the points to the line [3, 12].

The first principal component of a dataset with
N variables represented by matrix []mn M N

x
×

=X is
constructed as a linear combination of the original
variables, and it explains the most variance of the
data. The first principal component is equivalently
defined as a direction that maximizes the variance of
the projected data. The second principal component
explains the most variance in what is left once the
effect of the first principal component is removed.
Thus every next principal component explains less
variance. Together the N principal components explain
all the variance. The n-th principal component,

2,n N= , can be taken as a direction orthogonal to
the first n - 1 principal components that maximizes
the variance of the projected data. Alternatively, the
PCA is defined as an orthogonal linear transformation
on a real inner product space that transforms the data
to a new coordinate system such that the greatest
variance by some scalar projection of the data comes
to lie on the first coordinate (being the first principal
component), the second greatest variance lies on the
second coordinate, and so on.

In practice, if the first N * principal components
explain sufficiently high amount of variance (say,
typically, 90 % or above), * {1, 1}N N∈ - , the re-
maining *N N- principal components are ignored.
Thus the initial dataset X is simplified to a dataset
represented as an *M N× matrix whose m-th row is
a vector of values of the first N * principal compo-
nents calculated by plugging the entries of the m-th
row of matrix X into the respective linear combina-
tions of the N original variables. Clearly, the simpli-
fied dataset is easily visualized if * 2N = or * 3N = .

If data are frequently updated (e. g., by adding
new observations), it is a challenge to compute prin-
cipal components timely, without delays or excessive
memory occupation. The reason is the dataset is ei-
ther constantly enlarged or updated, and thus the
PCA slows down. The PCA can be sped up by ap-
plying Tall Arrays, if the data are stored on disk. Tall
Arrays (operators and functions using the Tall Array
approach) are a feature used in MATLAB for work-

ing with datasets that are too large to fit in memory
[13, 14]. They allow performing computations on
large datasets using familiar MATLAB functions and
syntax without needing to manage low-level data
processing tasks like chunking, paging, or out-of-core
processing [14]. Tall Arrays handle large datasets that
exceed the available memory by keeping only a rela-
tively small portion of the data in memory at a time
[13, 15]. This is called deferred evaluation, by which
operations on an array are not computed immediately
but are successively recorded and only executed when
the data is explicitly requested [14, 16].

The Tall Array PCA (TAPCA) computes
principal components incrementally using a di-
vide-and-conquer strategy [17, 18]. First, the data
are standardized by processing it in chunks. Then
the covariance matrix is computed and normalized.
This is done incrementally by summing outer prod-
ucts of chunks of data. The principal components
are finally obtained by performing eigenvalue de-
composition of the covariance matrix.

For standardizing each column of matrix X,
the mean and standard deviation of the matrix X
column are computed as follows. The tall array
(capitalization is used when the Tall Array approach
is meant itself) representing the matrix X column is
divided into smaller chunks that can fit into mem-
ory. The local sum, count of elements, and local
sum of squares (sum of the squares of each element
in the chunk) are calculated and stored temporarily
for each chunk. And, once all chunks have been
processed, the local sums and counts are aggregated
to compute the global mean of the column as the
ratio of the total sum of the local sums to the to-
tal number of elements. Then, in the second pass,
for each chunk the local sum of squared differenc-
es from the global mean is calculated. These local
sums are added up and the resulting global sum of
squared differen ces is divided by the column length
(i. e., the total sum of local counts) decreased by 1.
The result is the global variance whose square root
is the standard deviation. The column mean is sub-
tracted from each entry of the column, whereupon
every entry of the centered column is divided by its
standard deviation.

Owing to the covariance matrix is smaller (its
size is N N×), the eigenvalue decomposition can be
performed in memory. As for the rest, the TAPCA
processes chunks sequentially, keeping memory
usage relatively low while still being able to com-
pute the correct coefficients of linear combinations
of the original variables to return the principal com-
ponents. Nevertheless, the sequential data chunking
and processing may slow down computation of

20 KPI Science News 2025 / 2

principal components. Parallelization partially re-
duces the slowdown, but it depends on the dataset
size and how it is chunked (although Tall Arrays
chunk data automatically) [18, 19]. The number of
parallel processor workers positively influences the
TAPCA efficiency as well – Tall Arrays are gene-
rally expected to be more efficient at more parallel
processor workers.

Problem Statement

The TAPCA is seemingly a very efficient me-
thod of dimensionality reduction, but there are two
key aspects that must be taken into account. First,
converting an in-memory (ordinary) array into a tall
array takes some computational time, which ought to
be added to the computational (operation) time ta-
ken by the TAPCA itself. Second, it is unclear when
an in-memory array is regarded as large enough to
apply the TAPCA rather than the (ordinary) PCA
[6, 8, 12, 18]. This means that it is unclear when the
TAPCA computes principal components faster than
the (ordinary MATLAB) PCA does.

Therefore, the objective is to determine when
the TAPCA is factually efficient for dimensionality
reduction. The two numeric types to be studied are
double and single precision. To achieve the objec-
tive, the following tasks are to be fulfilled:

1. To generate random large datasets as matri-
ces of a specified numeric type.

2. To measure computational time of the ordi-
nary MATLAB PCA applied to generated matrices.

3. To measure computational time of conver-
ting in-memory arrays (generated matrices) into tall
arrays (which could be conditionally called tall ma-
trices).

4. To measure computational time of the TAPCA
applied to those generated matrices, to which the
PCA is applied before.

5. To carry out a comparative analysis of the
averaged computational times.

6. To discuss obtained results and findings from
the comparative analysis.

7. To conclude on the TAPCA factual effi-
ciency for dimensionality reduction of large datasets
stored on disk.

8. To outline open questions and perspectives
of further research.

Random Matrices

A random matrix []mn M N
x

×
=X of a specified

numeric type is generated by using the standard nor-
mal distribution having zero mean and unit vari-

ance [11, 20]. Hence, each entry xmn in the matrix
modeling a large dataset is a value of the normally
distributed random variable with zero mean and unit
variance. The numeric types to be studied are dou-
ble and single precision for real numbers, so there
will be two series of random datasets. For these two
types the number of observations M is sequentially
set to an element of set

{ } { } { } { }{ }9 9 9 102 3 4 5

1 1 1 1
10 , 10 , 10 , 10

k k k k
k k k k

= = = =
⋅ ⋅ ⋅ ⋅ (1)

and the number of initial variables (i. e., original
features) N is sequentially set to an element of set

{ }2, 100 . (2)

At a given couple {M, N} 100 random matrices
[]mn M N
x

×
=X are generated at 100 different pseudo-

random number generator seeds [12, 16, 18]. This
is done to obtain statistically consistent and stable
operation speed results upon averaging over those
100 generations.

Computational time

The computational time is measured on the du-
al-core processor Intel Core i5-7200U@2.50GHz in
MATLAB R2018a. Firstly, computation of princi-
pal components is performed on the random matrix
whose size is determined by the couple of integers
from (1) and (2). The ordinary PCA computatio-
nal time is denoted by ()PCA , ,t M N i , where i is the
generation number at given {M, N}. Then, secondly,
the random matrix is converted to a tall array, which
can be called the random tall array (tall matrix). The
time of the conversion is denoted by ()TA , , .M N iτ
Thirdly, computation of principal components is
performed on the random tall array. The TAPCA
computational time is denoted by ()TAPCA , , .t M N i

The averaged computational time of the PCA is

() ()
100

PCA PCA
1

1
, , ,

100 i

t M N t M N i
=

= ⋅ ∑ (3)

at given {M, N}. The averaged computational time
of the TAPCA without taking into account the
array-to-tall-array conversion is

() ()
100

TAPCA TAPCA
1

1
, , , .

100 i

t M N t M N i
=

= ⋅ ∑ (4)

If the conversion is regarded, then the TAPCA total
time is calculated as

21ПРИКЛАДНА МАТЕМАТИКА

() () ()

() ()

TAPCA TA TAPCA

100

TA TAPCA
1

, , ,

1
, , , , .

100 i

M N M N t M N

M N i t M N i
=

θ = τ +

 = ⋅ τ + ∑ (5)

Estimations (3)–(5) are fulfilled separately for double
precision and single precision.

Analysis

The averaged computational time (3) of the
PCA for double precision is shown as a mesh in
Fig. 1, where some computational artifacts at

{ }5 57 10 , 8 10M ∈ ⋅ ⋅ and 30N > (6)

due to aliasing can be spotted. Obviously, the ra-
vine at 59 10M = ⋅ cannot be a computational ar-
tifact. Computational time (3) is an increasing sur-
face along each of its variables – both the numbers
of observations and original variables. It roughly
seems that surface (3) increases linearly. Neverthe-
less, the growth of computational time (3) is non-
linear, being close to quadratic or cubic. Averaged
time ()TA ,M Nτ of the array-to-tall-array conver-
sion for double precision is shown in Fig. 2, where

no significant trends are seen at all. Application of
anti-aliasing techniques does not work to see any
trend. Despite this, as the number of observations
increases, the array-to-tall-array conversion time
slowly grows.

Due to the array-to-tall-array conversion time
for double precision does not exceed 27 milliseconds
even for a million observations, averaged time (4) as
a surface looks very resembling to TAPCA averaged
time (5) that includes the array-to-tall-array con-
version time (Fig. 3). Surface (5) in Fig. 3 has the
same computational artifacts at (6) and the ravine
at 59 10M = ⋅ , although they appear to be a little bit
softer. Some additional computational artifacts are
visible at 510M < instead. At fewer original vari-
ables (N = 2) and fewer observations (M = 7000),
a huge surge is seen. It is not caused by the array-to-
tall-array conversion, though. Whereas the ordinary
PCA handles a million-observation double-preci-
sion dataset with 100 variables within 9 seconds, the
TAPCA takes no longer than just 1.9 seconds.

The averaged computational time (3) of the
PCA for single precision shown as a mesh in Fig. 4
does not have any major computational artifacts.
Compared to Fig. 1, this surface is much smoother.
The surface increases similarly to that in Fig. 1. The

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0

1

2

3

4

5

6

7

8

9

510
MN

()PCA ,t M N

Fig. 1. The averaged computational time (3) of the PCA for double precision

22 KPI Science News 2025 / 2

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

510
MN

()TA ,τ M N

Fig. 2. The averaged time of the array-to-tall-array conversion for double precision

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

510
MN

()TAPCA ,θ M N

Fig. 3. The averaged computational time (5) of the TAPCA for double precision

23ПРИКЛАДНА МАТЕМАТИКА

ordinary PCA handles a million-observation dou-
ble-precision dataset with 100 variables within 5.2
seconds. Overall, single-precision PCA is 1.5 to 2.1
times faster than double-precision PCA on average.
Averaged time ()TA ,M Nτ of the array-to-tall-array
conversion for single precision shown in Fig. 5 is
faster as well, but the speedup is averagely 5 to 7 %.
A single-precision matrix is converted into a tall ar-
ray within 18 to 25 milliseconds. As the number of
observations increases, the array-to-tall-array con-
version time in Fig. 5 slowly grows, but the growth
is more apparent than that in Fig. 2.

The averaged computational time (5) of the
TAPCA for single precision is shown in Fig. 6.
Compared to Fig. 3, the mesh is smoother at 105
observations and above, but it appears to have more
non-linearities. Some computational artifacts are
visible at fewer than 105 observations. The TAPCA
takes no longer than just 1.3 seconds to compute
100 principal components of a million-observation
single-precision dataset with 100 variables. Overall,
single-precision TAPCA is 1.09 to 1.27 times faster
than double-precision TAPCA on average.

Whichever precision or numeric type is, the
TAPCA factual efficiency can be explored via ratio

() ()
()

PCA
TAPCA

TAPCA

,
,

,

t M N
M N

M N
ρ =

θ
. (7)

Clearly, the TAPCA is efficient if

()TAPCA , 1.M Nρ > (8)

The TAPCA efficiency for double precision is vi-
sualized in Fig. 7 presented as a plane view on the
Cartesian product of sets (1) and (2) for abscissa and
ordinate axes, respectively, where light color corres-
ponds to (8), when the TAPCA is efficient; dark
color is when the TAPCA is inefficient, i. e. ine-
quality (8) is false. The TAPCA efficiency for single
precision in Fig. 8 resembling that in Fig. 7 has a
more dark color, i. e. single precision TAPCA has
vaster area of inefficiency.

The TAPCA efficiency area exists beyond a
nearly-hyperbolic margin (inside the hyperbola),
both for double and single precision. Generally
speaking, the TAPCA is inefficient at either fewer
observations or fewer original variables (features).
In more particular terms, it is inefficient at data-
sets having no more than about 50 000 observations.
On the other side, the dataset with fewer than 10

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0

1

2

3

4

5

6

510
MN

()PCA ,t M N

Fig. 4. The averaged computational time (3) of the PCA for single precision

24 KPI Science News 2025 / 2

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

510
MN

()TA ,τ M N

Fig. 5. The averaged time of the array-to-tall-array conversion for single precision

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

510
MN

()TAPCA ,θ M N

Fig. 6. The averaged computational time (5) of the TAPCA for single precision

25ПРИКЛАДНА МАТЕМАТИКА

features is more efficiently handled by the ordinary
PCA. The double precision TAPCA efficiency is ap-
proximately margined with hyperbola

4178585.7041
1.661N

M
= +

for 4 64 10 ; 10 .M  ∈ ⋅ 
 (9)

The single precision TAPCA efficiency is approxi-
mately margined with hyperbola

4919317.7503
10.2581N

M
= +

for 4 64 10 ; 10M  ∈ ⋅  . (10)

It is worth noting that the margin by (9) is about
six times as more accurate than the margin by (10).
It is also visible from Fig. 7 whose nearly-hyper-
bolic staircase margin is far less contorted than that
in Fig. 8. An efficiency threshold can be deduced
from (9) as the double-precision dataset size (the

number of its entries, i. e. M N⋅), at which apply-
ing the TAPCA is equivalent to applying the PCA,
whereas principal components for larger datasets are
better to compute by the Tall Array method. Thus,
the double-precision dataset threshold is nearly 4.5
to 5.9 million entries. There is a similar finding for
single-precision datasets whose threshold is nearly 5
to 15.2 million entries. The nearly-hyperbolic mar-
gins in Fig. 7 and 8 also allow concluding that the
thresholds are likely to become lower for too “thin”
datasets (having no more than 10 features or so) and
datasets having 105 observations or so.

Discussion

The obtained results visualized in Fig. 1, 3, 4,
6-8 reveal what Tall Arrays are factually capable of
and when they are efficient in computing principal
components for dimensionality reduction of large
datasets stored on disk. Computational time com-
plexity of both the PCA and TAPCA is rather poly-
nomial than strictly quadratic or cubic, although it

 1 2 3 4 5 6 7 8 9 10
2

10

20

30

40

50

60

70

80

90

100

Fig. 7. Efficiency of the TAPCA for double precision on the Cartesian product of (1) and (2)

26 KPI Science News 2025 / 2

seems to be quasilinear. Nevertheless, computation-
al time spans have been registered for the TAPCA
by two parallel processor workers, so it is naturally
expected that the TAPCA will be more efficient by
more parallel processor workers. However, as the
dataset size increases, whether in its number of ob-
servations or features, or both, the growth of ratio
(7) reaches its saturation (see it in Fig. 9 for double
precision) scarcely exceeding 5. Ratio (7) for the
TAPCA factual efficiency for single precision looks
similarly.

The nearly-hyperbolic margin, which alterna-
tively could be called the TAPCA efficiency thresh-
old, implies the size of a dataset (or the size of a Big
Data instance) as matrix []mn M N

x
×

=X , by which the
TAPCA and the ordinary PCA take approximately
the same time to compute N principal components.
For datasets whose size is above the threshold, the
TAPCA is faster. Here, it is necessary to remember
that starting parallel processor workers takes some
time, so applying the TAPCA to smaller datasets,
even if their size is above the threshold (but the

size is close to the margin inside the hyperbola),
is reasonable only for multiple times. Applying the
TAPCA just once is reasonable if the dataset (say, of
10 features at most) cannot be loaded into the work-
space. For instance, 10 principal components of a
dataset as matrix []550000 10mnx

×
=X of 550 000 ob-

servations and 10 features are computed by the PCA
within 370.4 milliseconds, whereas the TAPCA takes
about 375.5 milliseconds (i. e., it is 1.3789 % slower)
if to count time spent on converting this matrix into
a tall array. Without taking into account the array-to-
tall-array conversion, the TAPCA takes about 353.1
milliseconds (which is 4.6733 % faster). So, the con-
version taking here 22.4 milliseconds does not ruin the
TAPCA efficiency (and thus it may be conditionally
neglected) only if matrix X is converted into a tall
array once and then the TAPCA is applied at least
twice - to the tall array and its modification (such a
modification is expected to be a subdataset of the ini-
tial dataset, rather than an expansion of the dataset).

A large dataset (a Big Data instance) is usually
stored on disk by some privacy and security reasons.

 1 2 3 4 5 6 7 8 9 10
2

10

20

30

40

50

60

70

80

90

100

Fig. 8. Efficiency of the TAPCA for single precision on the Cartesian product of (1) and (2)

27ПРИКЛАДНА МАТЕМАТИКА

This is when Tall Arrays become useful as they do
not disclose factual data. In this comprehension, the
array-to-tall-array conversion can be considered as
a tradeoff (payment) for privacy and security along
with simplified interoperability and manageabili-
ty owing to dimensionality reduction by principal
components.

Conclusions

In computing principal components for dimen-
sionality reduction of large datasets stored on disk,
the Tall Array method becomes efficient by two pa-
rallel processor workers if a dataset has at least 5 to
6 million entries. The Tall Array method is more
efficient on datasets with double precision whose ef-
ficiency threshold is nearly 6 million entries, where-
as the efficiency threshold for datasets with single
precision is between 5 to 15.2 million entries. Both
the thresholds may become lower as the number of
dataset features is dropped below 10 or the number
of observations does not exceed 105.

The presented research is nearly the worst-case
scenario, in which only two parallel processor work-

ers are deployed. As the number of workers increases,
the TAPCA factual efficiency threshold is expected
to drop further. The computational time complexity
of both the PCA and TAPCA is polynomial, so the
drop will be significant even for four parallel pro-
cessor workers (it is also a commonly widespread
computational architecture), let alone batch compu-
tation of principal components on computer clusters
by using the Tall Array approach.

An open question is about the reasonability or
efficiency of storing a large dataset on disk (prior to
dimensionality reduction), when Big Data clusters
like Hadoop or cloud-based solutions are available
[21, 22]. The second open question, lying nearly in
parallel to the mentioned one, is about efficiently
using the MapReduce technique for dimensionality
reduction by principal component analysis. Another
open question is how to further speed up the PCA
by implementing it (or TAPCA) on graphic pro-
cessing units (GPUs). These questions are the per-
spective for further research. Furthermore, a general
methodology of efficient computation of principal
components for dimensionality reduction of large
datasets should be formulated and justified.

1

2
3

4
5

6
7

8
9

10

2
10

20
30

40
50

60
70

80
90

100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

510
MN

()TAPCA ,ρ M N

Fig. 9. Ratio (7) showing the TAPCA factual efficiency for double precision

28 KPI Science News 2025 / 2

References

[1] Ü. Demirbaga et al., Big Data Analytics. Theory, Techniques, Platforms, and Applications, Springer, Cham, 2024. Retrieved

from: doi: 10.1007/978-3-031-55639-5.

[2] A. Jamarani et al., “Big data and predictive analytics: A systematic review of applications”, Artificial Intelligence Review, 2024,

Vol. 57, no. 176. Retrieved from: doi: 10.1007/s10462-024-10811-5

[3] I. Si-ahmed et al., “Principal component analysis of multivariate spatial functional data”, in Big Data Research, 2025, vol. 39,

Art. no. 100504. Retrieved from: doi: 10.1016/j.bdr.2024.100504

[4] A. Meepaganithage et al., “Enhanced Maritime Safety Through Deep Learning and Feature Selection”, Advances in Visual

Computing. ISVC 2024. Lecture Notes in Computer Science, Vol. 15047, Springer, Cham, 2025, pp. 309–321. Retrieved from:

doi: 10.1007/978-3-031-77389-1_24

[5] W.J. Ewens and K. Brumberg, Introductory Statistics for Data Analysis, Springer, Cham, 2023. Retrieved from: doi: 10.1007/

978-3-031-28189-1

[6] S. Akter and S.F. Wamba, Handbook of Big Data Research Methods, Edward Elgar Publishing, 2023. Retrieved from:

doi: 10.4337/9781800888555

[7] V.V. Romanuke, “Fast Kemeny consensus by searching over standard matrices distanced to the averaged expert ranking

by minimal difference”, Research Bulletin of NTUU “Kyiv Polytechnic Institute”, 2016, no. 1, pp. 58–65. Retrieved from:

doi: 10.20535/1810-0546.2016.1.59784

[8] J. Cao, “Data Collection in the Era of Big Data”, E-Commerce Big Data Mining and Analytics. Advanced Studies in E-Commerce,

Springer, Singapore, 2023, pp. 19–28. Retrieved from: doi: 10.1007/978-981-99-3588-8_2

[9] W.K. Hдrdle et al., “Principal Component Analysis”, Applied Multivariate Statistical Analysis, Springer, Cham, 2024, pp. 309–345.

Retrieved from: doi: 10.1007/978-3-031-63833-6_11

[10] I.T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments”, Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, Vol. 374, Iss. 2065, no. 20150202. Retrieved from:

doi: 10.1098/rsta.2015.0202

[11] A.C. Olivieri, Principal Component Analysis, Introduction to Multivariate Calibration, Springer, Cham, 2024, pp. 71–87.

Retrieved from: doi: 110.1007/978-3-031-64144-2_4

[12] V.V. Romanuke, “Speedup of the k-means algorithm for partitioning large datasets of flat points by a preliminary partition

and selecting initial centroids”, in Applied Computer Systems, 2023, Vol. 28, no. 1, pp. 1–12. Retrieved from: doi: 110.2478/

acss-2023-0001

[13] S. Ekici et al., “Electricity Consumption Analysis with Matlab Tall Arrays”, 1st International Engineering and Technology

Symposium (1st IETS), May 2018, Batman University, Batman, Turkey, 2018. Retrieved from: https://www.researchgate.net/

publication/327987720_Electricity_Consumption_Analysis_with_Matlab_Tall_Arrays

[14] M. Paluszek and S. Thomas, “Data for Machine Learning in MATLAB”, MATLAB Machine Learning Recipes, Apress, Berkeley,

CA, 2024, pp. 21–48. Retrieved from: doi: 10.1007/978-1-4842-9846-6_2

[15] V.V. Romanuke, “Limitation of effectiveness in using MATLAB gpuArray method for calculating products of transpose-sym-

metrically sized matrices”, Herald of Khmelnytskyi national university. Technical sciences, 2015, no. 5, pp. 243–248. Retrieved

from: https://elar.khmnu.edu.ua/handle/123456789/4611

[16] V.V. Romanuke, “Maximum-versus-mean absolute error in selecting criteria of time series forecasting quality”, Bionics of intel-

ligence, 2021, no. 1, pp. 3–9. Retrieved from: doi: 10.30837/bi.2021.1(96).01

[17] C.L. Valenzuela and A. J. Jones, “Evolutionary divide and conquer (I): A novel genetic approach to the TSP”, Evolutionary

Computation, 1993, Vol. 1, Iss. 4, pp. 313–333. Retrieved from: doi: 10.1162/evco.1993.1.4.313

[18] V.V. Romanuke, “Deep clustering of the traveling salesman problem to parallelize its solution”, in Computers & Operations

Research, 2024, Vol. 165, no. 106548. Retrieved from: doi: 10.1016/j.cor.2024.106548

[19] T. Weinzierl, Principles of Parallel Scientific Computing: A First Guide to Numerical Concepts and Programming Methods,

Springer, Cham, 2021. Retrieved from: doi: 10.1007/978-3-030-76194-3

[20] V.V. Romanuke, “Optimal construction of the pattern matrix for probabilistic neural networks in technical diagnostics based

on expert estimations”, Information, Computing and Intelligent Systems, 2021, no. 2, pp. 19–25. Retrieved from: doi: 10.20535/

2708-4930.2.2021.244186

[21] R. Han and Y. Wang, “The Advance and Performance Analysis of MapReduce”, Proceedings of 2nd International Conference on

Artificial Intelligence, Robotics, and Communication. ICAIRC 2022. Lecture Notes in Electrical Engineering, Vol. 1063, Springer,

Singapore, 2023, pp. 205–213. Retrieved from: doi: 10.1007/978-981-99-4554-2_20

[22] S. Hedayati et al., “MapReduce scheduling algorithms in Hadoop: a systematic study”, Journal of Cloud Computing, 2023, Vol. 12,

no. 143. Retrieved from: doi: 10.1186/s13677-023-00520-9.

29ПРИКЛАДНА МАТЕМАТИКА

В.В. Романюк

ЕФЕКТИВНІСТЬ МЕТОДУ TALL ARRAY У ЗНИЖЕННІ РОЗМІРНОСТІ НАБОРІВ ДАНИХ НА ОСНОВІ МЕТОДУ ГОЛОВНИХ
КОМПОНЕНТІВ

Проблематика. Розвідковий аналіз даних швидко розвивається ще з початку 2000-х років. На 2025 рік більшість реальних
наборів даних класифікують як великі дані. Робочий процес аналітики великих даних включає етап попередньої обробки даних, який
є початковою точкою обробки великих даних. На цьому кроці дані намагаються максимально спростити. Основною парадигмою
є зниження розмірності, що дозволяє спростити та візуалізувати масиви даних великої розмірності. Метод головних компонентів
(PCA) є лінійним методом зниження розмірності. PCA можна прискорити, застосувавши Tall Arrays, якщо дані зберігаються на диску.
Tall Array PCA (TAPCA) обчислює головні компоненти поступово, використовуючи стратегію divide-and-conquer.

Мета дослідження. Мета полягає у тому, щоб визначити, коли TAPCA фактично ефективний для зниження розмірності.
Вивчаються два типи чисел – з подвійною та одинарною точністю.

Методика реалізації. Для досягнення зазначеної мети генеруються випадкові великі набори даних у вигляді матриць
певного числового типу. Потім вимірюється час обчислень звичайного PCA у середовищі MATLAB, застосованого до згенерованих
матриць. Далі вимірюється обчислювальний час перетворення масивів (згенерованих матриць) у пам’яті у tall-масиви. Також
вимірюється час обчислення TAPCA, застосованого до тих згенерованих матриць, до яких PCA застосовувався раніше.

Результати дослідження. Порівняльний аналіз усередненого часу обчислень показує, що часова складність обчислень
як PCA, так і TAPCA є радше поліноміальною, ніж строго квадратичною чи кубічною. Існує майже гіперболічна границя, яку
альтернативно можна назвати порогом ефективності TAPCA, у площині кількості спостережень набору даних і кількості ознак
набору даних, за якою TAPCA та звичайний PCA потребують приблизно однакового часу для обчислення головних компонентів.

Висновки. В обчисленні головних компонентів для зниження розмірності великих наборів даних, що зберігаються на диску,
метод Tall Array стає ефективним за двох паралельних процесорів, якщо набір даних містить принаймні 5-6 мільйонів записів.
Метод Tall Array більш ефективний для наборів даних з подвійною точністю, де його поріг ефективності становить майже
6 мільйонів записів, тоді як поріг ефективності для наборів даних з одинарною точністю становить від 5 до 15,2 мільйонів записів.

Ключові слова: зниження розмірності; метод головних компонентів (PCA); Tall Arrays; поріг ефективності; подвійна точність;
одинарна точність.

Рекомендована Радою Надійшла до редакції
факультету прикладної математики 30 січня 2025 року
КПІ ім. Ігоря Сікорського
 Прийнята до публікації
 30 червня 2025 року

