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METHOD FOR REFINING WEIGHTS IN MULTI-CRITERIA UTILITY FUNCTION IN MAUT

Background. In modern multi-criteria decision-making, a critical challenge is the determination of weight coefficients 
in the utility function. Classical MAUT (Multi-Attribute Utility Theory) methods often rely on subjective expert eval-
uations, leading to potential errors due to expert fatigue and the limited number of comparisons. Additionally, discrep-
ancies in the total weight sum can violate the axioms of linear convolution.
Objective. The paper aims to develop a method for refining weight coefficients in the multi-attribute utility function of 
MAUT, which reduces the influence of subjectivity and ensures analytically consistent values.
Methods. An approach based on the Lagrange method applied to a system of normalised weights is proposed. This 
method transforms relative (non-normalised) expert assessments into precise weights by solving a system of equations 
analytically. To minimise errors, only relative weight ratios are used, reducing the number of expert queries from qua-
dratic to linear complexity.
Results. A formula for refining weight coefficients is derived, preserving relative expert evaluations while ensuring ac-
curacy and normalisation. An example involving four criteria demonstrates the use of Lagrange multipliers to achieve 
refined weights with an error margin below 0.001. The method provides stable and analytically sound results without 
requiring complete pairwise comparisons.
Conclusions. The proposed method enables efficient refinement of weight coefficients in MAUT without overburdening 
experts. Analytical computation reduces error risks and enhances decision-making objectivity. The method is suitable 
for tasks with numerous criteria and offers a robust foundation for constructing utility functions in multi-criteria models. 
Keywords: MAUT; utility function; weight coefficients; Lagrange method; expert evaluation; multi-criteria deci-
sion-making.

Problem Statement

In the modern world, where decisions often 
require considering numerous factors, Multi-Attri-
bute Utility Theory (MAUT) has become a key tool 
for analysing complex simplex. This theory is an 
extension of classical utility theory, adapted to tasks 
where it is necessary to consider not one but multi-
ple criteria simultaneously.

MAUT allows for the formalisation of the de-
cision-making process by combining various aspects 
of choice into a singular analytical approach. It is 
based on the principles of rationality and assumes 
that the preferences of an individual or organisation 
can be expressed through a function that reflects the 
degree of satisfaction for each criterion.

The application of Multi-Attribute Utility 
Theory spans a wide range of fields: from strategic 
management and planning to environmental policy 

and engineering design. This article examines the 
theoretical foundations of MAUT, methods for its 
practical application, and its role in improving the 
quality of decisions in complex multi-criteria tasks. 
Multi-Attribute Utility Theory (MAUT) enables 
the following tasks to be addressed [1]:

– to construct a mathematically justified utility
function;

– to verify certain conditions that determine
the form of the function in dialogue with the deci-
sion-maker (DM);

– to rank all possible alternatives by quality and
evaluate them based on the identified decision rule.

The MAUT method is best suited for tasks 
with a large number of alternatives. Main Stages of 
the MAUT Method:

Let us outline the stages of solving a problem 
using Multi-Attribute Utility Theory:

1. To develop a list of criteria.
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2. To construct a utility function for each cri-
terion.

3. To verify the conditions that determine the
general form of the utility function.

4. To establish a relationship between the eva- 
luation of alternatives by criterion and the overall 
quality of alternatives.

5. Evaluate all available alternatives and select
the best one.

According to classical utility theory, Multi-At-
tribute Utility Theory is based on axiomatic prin-
ciples. The conditions that a utility function must 
satisfy are formulated as axioms. If a condition is 
met, it serves as proof of the existence of the utility 
function. In MAUT, these conditions can be divi- 
ded into two groups:

1. General axioms, which are used in utility
theory.

2. Independence axioms, specific to MAUT.
In this study, we focused on the axioms of the

second group [2].

Main approaches to verifying criteria inde-
pendence and refining weight coefficients in 
MAUT

Let us present several independence condi-
tions that belong to the second group of axioms.

1. Difference Independence: Preferences be-
tween two alternatives that differ only in their eva- 
luations on an ordinal scale for one criterion C1 do 
not depend on the identical evaluations for other 
criteria C2,…,Ct.

2. Utility Independence: A criterion C1 is said
to be utility independent of criteria C2,…,Ct if the 
preference order of lotteries, in which only the le- 
vels of criterion C1 vary, does not depend on the 
fixed values of the other criteria.

3. Preferential Independence: Two criteria C1

and C2 are preferentially independent of the other 
criteria C3,…,Ct  if the preferences between alter-
natives that differ only in their evaluations of C1 
and C2 do not depend on the fixed values of the 
other criteria.

The first two independence conditions pertain 
to the independence of one criterion from others, 
while the third condition pertains to the indepen-
dence of several criteria from others.

Main Theorem: If the axioms of the first 
group and some independence conditions are sat-
isfied, then it strictly follows that a multi-criteria 
utility function exists in a specific form.

We can formulate R. Keeney’s theorem [3], 
which underlies practical methods for evaluating 

alternatives: If the conditions of utility indepen-
dence and preferential independence are satisfied, 
then the utility function is additive:

1

( ) ( ),
N

i i
i

U x wU x
=

= ∑

with ( 1) 1N
i iw= =∑ , or multiplicative:

1 ( ) (1 )i i
i

kU x kwU+ = +∏
with ( 1) 1N

i iw= ≠∑ , where

– Let U and Ui be utility functions ranging
from 0 to 1;

– wi be the coefficients (weights) of the crite-
ria, where 0 < wi< 1;

– and k be a coefficient such that k > –1.
Thus, the multi-criteria utility function can be

defined if the values of the coefficients wi and the 
single-criterion utility functions Ui (x) are known.

Knowing the range of evaluations for each 
criterion, we construct a function that determines 
the utility for experts of each evaluation within this 
range. The maximum value of this function is set 
to one, and the minimum value to zero. To de-
termine intermediate values, deterministic lotteries 
are used, depending on the specific task. Examples 
of their construction are presented in [2].

To determine the overall utility function, 
it is necessary to verify the conditions of utility 
independence and preferential independence. 
The verification of utility independence can be 
combined with the preliminary stage of constructing 
single-criterion utility functions.

First, the expert is informed that when 
determining equivalent values for certainty, they 
should consider that the other criteria have better 
values. Then, the expert is presented with the 
same task but assumes that the other alternative 
has the worst value (similar to the procedure 
for verifying utility independence [2, 4]). If the 
certainty equivalent is the same in both cases, it 
can be concluded that the given criterion is utility 
independent of the other criteria.

Note that to fully verify the utility 
independence condition, this check should be 
performed for all lotteries. However, it is usually 
sufficient to perform an approximate check using 
the first lottery, which is used only during the 
construction of the single-criterion utility function.

During the verification of the independence 
condition, the main consideration is to draw a 
plane along the axis of two evaluated criterion 
values.

8



For a complete verification of the preferential 
independence condition, all pairs of criteria should 
be considered. However, during an approximate 
check, one or two of the most important criteria 
are selected, and the other criteria are considered 
only in combination with them [2, 5].

Strictly speaking, intermediate values should 
also be taken into account, but in general, such a 
check is considered sufficient [2, 6].

MAUT relies largely on the concept of weights 
(importance coefficients) for criteria. It is assumed 
that experts can determine the coefficients –
numbers that reflect the importance of a criterion. 
The relationship between the weights of the 
criteria is established by identifying indifference 
points on the planes of two criteria. Unlike testing 
preferences for independence conditions, the axis 
ranks the criterion values from worst to best.

The main premise on which the classical 
methods of Keeney [7], Raiffa [3], and Fishburn 
[8] are based (explicitly or implicitly) is that
experts are not mistaken when providing estimates,
and the desired utility function should correspond
as closely as possible to their estimates. For this
purpose, an additive form of the utility function
was developed, which is a direct reflection of the
independence of the criteria for the case when the
sum of the weights is equal to one, as well as a
multiplicative form, which is essentially additive,
with the counterintuitive occurrence of weight
coefficients in the case when their sum is not equal
to one. That is, the second case is considered a
variant of the norm. This approach solves the
problem of constructing the utility function, but
it is difficult to consider it consistent. Because the
sum of the weight coefficients by definition is equal
to one, which is also the basis of the well-known
metamodel of multi-criteria decisions – the linear
convolution method. It is on this understanding
that the intuition of weight coefficients, including
among experts, is based. Then the fact of obtaining
estimates of weight coefficients whose sum is not
equal to one is not fundamental in nature, but is
a common consequence of the existence of errors
in expert assessment. Usually, experts answer a
large number of thematic questions, which leads
to their overload and fatigue, and as a result to
errors in assessments. Not to mention the fact that
infallibility is not inherent in human nature at all,
even in the nature of experienced specialists. In
this study, we adopt the stance that the multi-
criteria utility function, when the criteria are
independent, invariably takes an additive form.

In this case, it is not necessary to require experts 
that the sum of weight coefficients be unity. It is 
also not necessary to conduct a full set of pairwise 
comparisons, which will reduce the load on experts 
to a minimum sufficient: the number of calls drops 

from 
2( 1)

2
n −

 to n, which reduces the number of

errors both in general and due to fatigue:
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When a problem of adjusting coefficients was 
solved, we have the opportunity to more accurately 
and analytically identify the criteria that are im-
portant to us and eliminate the subjectivity of ex-
perts. The approach described below allows us to 
obtain refined weight estimates using the Lagrange 
method and a certain formalised collection of pri-
mary information from experts.

Method for refinement of weight estimates for 
multi-criterion utility function in MAUT

In most cases, when evaluating criteria, an 
expert can provide a relative assessment of the im-
pact of one alternative more confidently compared 
to another rather than an absolute one. Therefore, 
when forming a multi-criteria utility function, we 
focus on the relationship between the weights (in-
fluence) of each utility function. By default, we 
assume that the expert provides non-normalised 
estimates [2, 3, 9], meaning the sum of the weights 
does not equal one. However, these estimates can 
be adjusted to normalised values through a nor-
malisation procedure. Although Keeney’s theorem 
allows us to describe the utility function as multi-
plicative, this introduces more degrees of freedom 
and, consequently, accumulates errors in various 
types of evaluations. Therefore, it is desirable to 
obtain more accurate estimates derived analytically 
but based on real facts.

Suppose we do not know the exact estimates 
wi, but the expert can provide their subjective esti-
mates of the ratio of weights between criteria, i.e., 

i
ij

j

w
a

w
≈ , but 1ija ≠∏ . Our task is to standardise

these estimates so that the product equals 1.
Let us present the procedure for transitioning 

from non-normalised estimates to normalised ones 
[11]. Suppose our weights are as follows:

9Прикладна математика



KPI Science News    ISSN print  2617-5509, ISSN electronic 2663-7472 2025 / 3

(1)

To switch from multiplicative form, we need 
to redefine them like this:

(2)

To find them, we use the least squares me-
thod:
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To solve this problem, we use the Lagrange 
method [10]:

2
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w
L w

w =

= − α + λ −∑ ∑

where L – Lagrange function.
Next, we take the derivatives for each wi:

,k

i i

LL
w w

∂∂
= + λ
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where Lk – one of the appendices 2( )i
ij

j

w

w
− α .

To further simplify, multiply by the corre-
sponding variable for which we took the derivative:

2 ( ) ,i i
i ij i

i j j

w wL
w w

w w w
∂

= − α + λ
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where the sum is carried out over the remaining 
terms of the derivative, and the two appears from 
the square when taking the derivative.

The general system of partial derivatives will 

look like this ( )i
ij

j

w

w
b = :
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If we sum all the transformed partial deriva-
tives, it turns out that on the left side, all terms can-
cel each other out due to the alternating signs (plu-
ses and minuses) in the different partial derivatives. 
On the right side, the sum of the weights appears:

( ) ( )

( )

(1 )

(1 ) .
i i i

i

I I I M

M M M
− −

−

∆ = − = − −

− − = −

From this, it follows that all terms are equal 
to each other:

12 12 12( ) ... ( ) ... ( ).ij ij ij mn mn mnb b − α = = b b − α = = b b − α

Clarification. The indices must be cyclic, not 
equal to each other, and not symmetric, while 
covering all possible combinations of the available 
weights.

From the last equation, we can formulate a 
parametric quadratic equation for each

2

2

1,2 2
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4 ;

1
( 4 ).
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D

b b − α = µ

b − b α − µ =

= α + µ

b = α + µ

Two cases are considered:

А. 1, 0ij ij ijα > b < α ⇒ µ <∏ .

В. 1, 0ij ij ijα < b > α ⇒ µ >∏ .

In both cases, to solve the quadratic equation, 
we choose the option with a plus sign, because it 
will be much closer to aij than the option with a 
minus, and by formulating the problem, we try to 
adjust the available estimates analytically, rather 
than strictly correcting them.

Than:

(3)

where n – number of factors. The two is obtained 
from the roots of the quadratic equation with re-
spect to bij. Knowing bij we can express wi:
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1
1 ... ...i

ij jk kl jk kl vz

w =
+ b + b b + + b b b ,

where i, j, …, z are all combinations of indices ac-
cording to the number of weight coefficients.

So, with known aij, the previous equation, al-
though it turns out to be irrational, is an equation 
with one variable and can be solved using numerical 
methods on a computer.

Let’s give a small example. Suppose we need 
to build a multi-criteria utility function consisting 
of four criteria. Experts can provide us with relative 
estimates of the ratios for these criteria that satisfy 
conditions (1).

So it lets:

12 23 34 410,5; 2; 3; 0,4.α = α = α = α =

Then it means:

1,2.ijα =∏
This indicator is close to unity, but not equal 

to it, so it is necessary to run the procedure for 
correcting the weight estimates to use the additive 
loss function in the future.

Let’s write a condition for finding normalized 
estimates:

4
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2 2 2 2
12 12 23 23 34 34 41 41
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∑

Let’s write the Lagrange equation and sub-
stitute aij:

2 2 2 2
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1 2 3 4
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( ).

L

w w w w
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Next, we take the partial derivatives and set 
them equal to zero:

4
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2
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3 4 3

3
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
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Multiply each equation by the corresponding wi:
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We sum the equations and get:

1

0.
2

n

i
i

w
=

λ
− =∑

Which was to be proved.
So, we can use the results obtained in the 

general case (3):

2( 4 ) 2 ;+ + =∏ n
ij ijα α µ

2 2 2

2

(0,5 0,5 4 )(2 2 4 )(3 3 4 )

(0,4 0,4 4 ) 16.

+ + µ + + µ + + µ ×

× + + µ =

Using numerical methods and with the help 
of a computer, we obtain approximate values of 
μ. Of all the values found, μ = –0.015 suits us, 
because the others have positive values, and ac-
cording to condition (2), we need negative values.

So, the values of bij have the following values:

2 2

12 23

2 2

34 41

12 23 34 41

0,5 0,5 4 2 2 4
; ;

2 2

3 3 4 0,4 0,4 4
;

2 2
0,53; 2,01; 3,005; 0,43.

+ + µ + + µ
b = b =

+ + µ + + µ
b = b = ⇒

⇒ b = b = b = b =

Next, from the system of equations we find 
the normalized values of wi:

4

1

1 2

2 3

3 4

4 1

1;

0,53 ;

2,01 ;

3,005 ;

0,43 .

i
i

w

w w

w w

w w

w w

=


=


 =
 =
 =


=

∑

We solve the system and get:

1 2 3 10,217; 0,409; 0,093; 0,2805.w w w w= = = =

The weights are rounded to the third sign, 
since there are irrational solutions.
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Based on the obtained weights, we have the 
general form of the loss function for these esti-
mates:

1 2 3 40,217 0,409 0,093 0,2805 .U U U U U= + + +

Further, based on the utility functions for 
each alternative, we can obtain an analytical esti-
mate of the total utility from this combination of 
utility functions.

Conclusions

Existing methods in the field of multi-attrib-
ute utility theory (MAUT) often rely on subjective 
expert judgments and complete pairwise compari-
sons to determine weight coefficients, which results 
in increased cognitive load and a high risk of in-
consistency. While previous research has proposed 
heuristic or numerical approaches to mitigate expert 
errors, these methods typically lack mathematical 
rigor and offer limited analytical transparency.

This study presents a novel analytical solution 
based on the Lagrange method for refining weight 
coefficients in MAUT. Unlike conventional tech-
niques, the proposed method maintains the relative 

importance assigned by experts while transforming 
it into a normalized and consistent form. A signifi-
cant advantage of this approach lies in its reduction 
of the required number of expert inputs from quad-
ratic to linear scale, which minimizes cognitive fa-
tigue and enhances the practicality of expert-based 
decision models. Moreover, the method produces 
mathematically grounded results with high stability 
and repeatability, making it suitable for applications 
in strategic planning, public administration, tech-
nical systems design, and other domains involving 
complex multi-criteria evaluations.

The proposed technique opens the door to fur-
ther developments, such as the integration of fuzzy 
or linguistic inputs and the extension to nonlinear 
or group-based decision-making models. Future re-
search could focus on the incorporation of proba-
bilistic or Bayesian mechanisms for collective expert 
input refinement, as well as on the development of 
software tools to support practical implementation 
in decision support systems. These enhancements 
would further expand the applicability and robust-
ness of the method in real-world environments 
characterized by uncertainty and complexity.
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МЕТОД УТОЧНЕННЯ ВАГ У БАГАТОКРИТЕРІАЛЬНІЙ ФУНКЦІЇ КОРИСНОСТІ В MAUT

Проблематика. У задачах прийняття рішень (ПР) критичним моментом є визначення вагових коефіцієнтів 
у багатокритеріальній функції корисності. Класичні методи MAUT (багатокритеріальної теорії корисності) спираються 
на субʼєктивні оцінки експертів і не є стійкими до помилок через їх перевантаження і втому. Крім того, відхилення суми ваг 
надмірно впливає на значення й вигляд функції корисності.

Мета дослідження. Розробити метод уточнення оцінок значень вагових коефіцієнтів у багатокритеріальній функції 
корисності MAUT, що забезпечує їх аналітичну узгодженість і зменшує вплив помилок експертів.

Методика реалізації. Запропоновано підхід, оснований на МНК, застосовний до системи нормалізованих ваг. Цей 
метод перетворює експертні оцінки відношень ваг на нормалізовані ваги шляхом аналітичного розвʼязання системи рівнянь. 
Для зменшення помилок використано мінімальний набір відношень ваг, що мінімізує потрібну кількість експертних оцінок.

Результати дослідження. Формула для вагових коефіцієнтів на основі експертних оцінок їх відношень забезпечує 
найкращу точність і нормалізацію. Приклад із чотирма критеріями використовує метод множників Лагранжа для знаходження 
ваг із похибкою менше 0,001. Метод забезпечує стабільні та аналітично обґрунтовані результати за мінімальної кількості 
попарних порівнянь.

Висновки. Запропонований метод дозволяє ефективно знаходити вагові коефіцієнти MAUT з мінімальним 
навантаженням експертів. Результати зменшують вплив суб’єктивних помилок і підвищують якість прийняття рішень. Метод 
підходить для задач ПР з кількісними критеріями і пропонує надійну основу для побудови узагальненого критерію.

Ключові слова: MAUT; функція корисності; вагові коефіцієнти; метод Лагранжа; експертне оцінювання; бага- 
токритеріальне прийняття рішень.
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