
15

© The Autor(s).
The article is distributed under the terms of the license CC BY 4.0

ПРИКЛАДНА МАТЕМАТИКА

DOI: 10.20535/kpisn.2025.1.321883
UDC 519.833+519.833.3

Vadim Romanuke*

Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Vinnytsia, Ukraine
*Corresponding author: romanukevadimv@gmail.com

TIME-UNIT SHIFTING IN 3-PERSON GAMES IN FINITE AND UNCOUNTABLY 
INFINITE STAIRCASE-FUNCTION SPACES SOLVED IN PURE STRATEGIES

Background. Games played with staircase-function pure strategies can model discrete-time dynamics of rationalizing 
the distribution of some limited resources among players. Along with 2-person games, 3-person games are the most 
applicable models of rationalization in economics, ecology, social sciences, politics, government, and sports. There is 
a known method of finding an equilibrium in a 3-person game played in staircase-function pure strategy spaces. The 
time interval on which the game is defined consists of an integer number of time units. The equilibrium is stacked 
from time-unit equilibria. An open problem is a multiplicity of equilibria (on some time units) leading to a multiplicity 
of equilibrium stacks. Another open question is how to deal with a 3-person game in which the time interval can be 
changed or shifted by an integer number of time units.
Objective. The purpose of the paper is to expand and develop the tractable method of solving 3-person games played 
within players’ finite sets of staircase functions for the case when the length of the time interval on which the 3-person 
game is defined is varied by an integer number of time units.
Methods. To achieve the said objective, a 3-person game, in which the players’ strategies are staircase functions of time, 
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions. The time can 
be thought of as it is discrete due to the time interval is comprised of time units (subintervals). Then the set of possible 
values of the player’s pure strategy is discretized so that the player possesses a finite set of staircase functions.
Results. The known method is expanded to build a single pure-strategy equilibrium stack in a discrete-time stair-
case-function 3-person game. The criterion for selecting a single equilibrium solution is to maximize the players’ 
payoffs sum. In the case of a time-unit shifting, this criterion allows extracting the respective best staircase-function 
equilibrium pure strategy of the player in any “narrower” subgame from the player’s best staircase-function equilibrium 
pure strategy in the “wider” game.
Conclusions. A tractable and efficient method of finding the best pure-strategy equilibrium in a 3-person game played in 
finite or uncountably infinite staircase-function spaces is to solve a succession of time-unit 3-person games, whereupon 
their best equilibria are stacked into the best pure-strategy equilibrium. To deal with the case when not every time-unit 
3-person game is solved in pure strategies, an effective way is to put a staircase-function game on hold-up on those 
time units which do not have pure-strategy equilibria. The result of putting the staircase-function game on hold-ups is 
that the player will obtain one’s best staircase-function equilibrium pure strategy with gaps, whichever the time interval 
and time-unit shifting are.
Keywords: game theory; payoff functional; 3-person game; staircase-function strategy; trimatrix game; staircase-func-
tion equilibrium pure strategy.

Introduction

In practical tasks, noncooperative 3-person 
games are well-posed and easy-to-interpret models 
to rationalize the distribution of real-world resourc-
es, funds, energy, facilities, tools, etc. [1, 2]. Along 
with 2-person games, 3-person games are the most 
applicable models of rationalization in economics 

[2, 3], ecology [2, 4, 5], social sciences [6], politics 
[7], government [3, 8], sports [8, 9]. Even games in 
which players possess just two pure strategies have 
a good practical impact. For instance, a problem 
of rationalizing industrial wastewater treatment con-
sidered in [4, 5, 10, 11] is solved by using dyadic 
3-person games. As industrial enterprises may vi-
olate conventions about water treatment, they are 
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fined. The fines are directed to control water pol-
lution by measuring it and treating wastewater ad-
ditionally, if necessary. However, an enterprise may 
reduce or stop its manufacturing under threat of 
heavy fines. This results in a budget cut for water 
resources conservation and recirculation. The dyadic 
3-person game models a process of balancing the 
fines. As a result, the balancing allows industrial en-
terprises to keep functioning along with satisfactory 
water recovery.

In particular, the dyadic 3-person game solu-
tion in [4] was searched in the form of equilibrium 
on a regular finite lattice of situations obtained by 
sampling the continuous set of those situations. An 
approximate solution was found using concessions in 
the equilibrium, where the cost for water treatment 
system application was a conventional unit for each 
enterprise per a period of time (a day, a week, or a 
month). By that solution, the water treatment system 
is turned off for 3 periods of 10, and the 2-fine (a 
range of the fine for when only two enterprises do 
simultaneously not treat wastewater) is optimally set 
at 0.34 units, whereas the 3-fine (a range of the fine 
for when no one treats wastewater) is set at 1.394 
units. Obviously, switching from “clean” to “pollut-
ing” manufacturing and backwards can be controlled 
once per those 10 periods under the corresponding 
water treatment schedule. In such a schedule, the 
enterprise develops one’s metastrategy which, in fact, 
appears to be a primitive staircase function of time.

Games played with staircase-function pure 
strategies have been recently studied in [12, 13] 
and, in a more peculiar way, [14, 15]. Whereas an 
ordinary (“classical”) pure strategy of the player is 
a simple (point) action whose duration is usually 
negligible and represented as just a (time) point, a 
staircase-function pure strategy is a complex process 
comprising a series of simple actions (moves, de-
cisions, changes, strikes, etc.). The staircase-func-
tion pure strategy is defined on a time interval. The 
time interval is broken into a set of time subinter-
vals (units), on which the strategy is (approximately 
considered) constant. In fact, a pure staircase-func-
tion strategy can be considered as an ordinary mixed 
strategy unfolded over the time interval. A mixed 
staircase-function strategy is a far more complicated 
case, where at least a unit corresponds to an ordi-
nary mixed strategy. The composition of ordinary 
pure and ordinary mixed strategies that a player 
has to switch through time units is a model whose 
practical implementation requires a definitely great 
number of game repetitions [4, 5, 10, 11, 16, 17].

If each of the three players possesses a finite 
number of staircase-function pure strategies, the re-

spective 3-person game is finite. The finite 3-per-
son game can be represented as a trimatrix game, 
whichever pure strategy form is. If pure strategies 
are staircase functions (of time whose duration is 
broken into time subintervals or time units), the 
respective finite 3-person game can be called the 
trimatrix staircase-function game [1, 13]. Clearly, 
the number of pure-strategy situations in a trima-
trix staircase-function game grows immensely as the 
number of time units (“stair” subintervals) increas-
es, or the number of possible values of the player’s 
pure strategy increases, or they both increase [14, 
18, 19]. For instance, if the number of time units 
is just 4, and the number of possible values of every 
player’s pure strategy is 8, then there is a finite set of

48 4096=

possible pure strategies (i.e., 4-subinterval staircase 
functions of time) at this player. The respective tri-
matrix staircase-function game has a size of

4096 4096 4096,× ×

and so there are

4 4 48 8 8 4096 4096 4096 68 719 476 736⋅ ⋅ = ⋅ ⋅ =

pure-strategy situations (more than 68.7 billion ones) 
in this game. If an additional time unit is (somehow) 
included, the game size increases dramatically: there 
are

5 5 58 8 8 32768 32768 32768

35 184 372 088 832

⋅ ⋅ = ⋅ ⋅
=

pure-strategy situations (more than 35.1 trillion 
ones!) in the respective

trimatrix 32768 32768 32768× ×  game.

Obviously, solving 3-person games of such gigantic 
sizes is intractable, let alone that there is no univer-
sal algorithm for solving any finite 3-person game 
played with ordinary (“classical”) pure and mixed 
strategies [19, 20]. Solving 3-person games in stair-
case-function pure strategies is always possible, but 
it takes too much computational resources even if 
there are a few time units.

For the equilibrium solution type, a method of 
solving a 3-person game played in staircase-func-
tion pure strategy spaces was presented in [13]. The 
spaces can be finite and uncountably infinite (con-
tinuous). The method is based on stacking equilib-
ria of “short” 3-person games, each defined on a 
time unit where the pure strategy value is constant. 
In the case of finite 3-person games, the stack is 
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any interval-wise combination (succession) of the 
respective equilibria of the “short” trimatrix games 
(including equilibria in mixed strategies). Unlike 
the straightforward approach to solving directly 
the “long” 3-person game (finite or infinite), the 
presented method “breaks” the “long” game into 
a succession of “short” games, making thus its solv-
ing tractable. However, an open problem is a multi-
plicity of equilibria (on some time units) leading to 
a multiplicity of equilibrium stacks. Another open 
question is how to deal with a 3-person game in 
which the function-strategy can be redefined on a 
changed time interval (e.g., shifted by an integer 
number of time units) [21, 22]. For instance, if the 
pure staircase-function strategy is indeed considered 
as an ordinary mixed strategy unfolded over a time 
interval, but the number of game rounds is short-
ened, the time interval should become shorter [13, 
16, 18, 23, 24]. Such game-interval modifications 
may occur frequently, and respective game solutions 
must be found even faster.

Problem statement

Reasoning from the mentioned issues, the ob-
jective is to expand and develop the tractable meth-
od of solving 3-person games played within play-
ers’ finite sets of staircase functions [13, 14] for the 
case when the length of the time interval on which 
the 3-person game is defined is varied by an integer 
number of time units. The solution type is equilibri-
um in staircase-function pure strategies, where it is 
presumed that such an equilibrium exists. The case 
when the player possesses an uncountably infinite 
set (space) of staircase functions is to be considered 
as well. To meet the objective, the following eight 
tasks are to be fulfilled:

1. To formalize a 3-person game, in which the 
players’ strategies are functions (of time) defined 
on a time interval. In such a game, the set of the 
player’s pure strategies is a continuum of functions. 
Such function-strategies are presumed to be bound-
ed and Lebesgue-integrable.

2. To formalize a 3-person game, in which the 
players’ strategies are staircase functions defined on 
the time interval. In such a game, the set of the 
player’s pure strategies is a continuum of staircase 
functions (of time). The time can be thought of as 
it is discrete due to the time interval is comprised of 
time units (subintervals).

3. To discretize the set of possible values of the 
player’s pure strategy so that the game played with 
staircase-function strategies be defined on a product 
of staircase-function finite spaces.

4. To expand and develop the known meth-
od of solving 3-person games (the solution of the 
pure-strategy equilibrium type) played in stair-
case-function finite and uncountably infinite spaces 
by considering a possibility of narrowing the time 
interval on which the 3-person game is defined. In 
addition, a method of selecting a single pure-strate-
gy equilibrium should be suggested.

5. To suggest a way of solution when not every 
“short” 3-person game is solved in pure strategies.

6. To give an example of how the suggested 
method is applied.

7. To discuss practical applicability and scien-
tific significance of the method for the game theory 
and operations research.

8. To make an unbiased conclusion on the 
contribution to the game theory field. An outlook 
of how the study might be further developed is to be 
made as well.

3-person game played with pure strategies as 
functions of time

In a 3-person game, in which the player’s pure 
strategy is a function of time, each of the players 
uses time-varying strategies defined almost every-
where on interval [t1;  t2] by t2  >  t1. Pure strategies 
of the first, second, and third players denoted by 
x(t), y(t), and z(t), respectively, are presumed to be 
bounded. Besides, the square of the function-strate-
gy is presumed to be Lebesgue-integrable [25]. Thus, 
pure strategies of the player belong to a rectangular 
functional space of functions of time:

[ ]{
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 
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are the sets (sometimes referred to as action spaces) 
of the players’ pure strategies.

The player’s payoff in situation

{ }( ), ( ), ( )x t y t z t                    (4)
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is presumed to be an integral functional [12, 13, 14, 
15, 25]. Thus, the first, second, and third players’ 
payoffs in situation (4) are

( )
( )

[ ]1 2;

( ), ( ), ( )

( ), ( ), ( ), ( ),
t t

F x t y t z t

f x t y t z t t d t= µ∫          (5)

( )
( )

[ ]1 2;

( ), ( ), ( )

( ), ( ), ( ), ( ),
t t

G x t y t z t

g x t y t z t t d t= µ∫          (6)

( )
( )

[ ]1 2;

( ), ( ), ( )

( ), ( ), ( ), ( ),
t t

H x t y t z t

h x t y t z t t d t= µ∫          (7)

respectively, where

( )( ), ( ), ( ), ,f x t y t z t t                 (8)

( )( ), ( ), ( ), ,g x t y t z t t                 (9)

( )( ), ( ), ( ),h x t y t z t t                (10)

are functions of x(t), y(t), z(t), explicitly including 
time t. Therefore, a 3-person game

{ } ( ){
( ) ( )}

, , , ( ), ( ), ( ) ,

( ), ( ), ( ) , ( ), ( ), ( )

X Y Z F x t y t z t

G x t y t z t H x t y t z t  (11)

is uncountably infinite due to it is defined on product

[ ] [ ] [ ]2 1 2 2 1 2 2 1 2; ; ;X Y Z t t t t t t× × ⊂ × ×    (12)

of uncountably infinite rectangular functional spaces 
(1)–(3) of players’ pure strategies. An example of a 
situation in 3-person game (11) is given in Fig. 1. 
There are no restrictions to the strategy form the 
players can use. In the example, the first player uses 
a sinusoidal strategy with an exponential growth, 
the second player uses a curvilinear strategy, and 
the third player uses a close-to-straight ascending 
line strategy. Each of sets (1)–(3) is a continuum 
of functions including a subset of staircase functions 
(this subset is a continuum as well).

In general, the player’s payoff functional may 
have a terminal component. Thus, instead of (5)–(7), 
the players’ payoffs in situation (4) may be calcu-
lated as
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Fig. 1. A situation (4) in 3-person game (11) played in uncountably infinite functional spaces (1)–(3)



19ПРИКЛАДНА МАТЕМАТИКА

by some terminal functions [26]

( )2 2 2 2( ), ( ), ( ), ,fT x t y t z t t            (16)

( )2 2 2 2( ), ( ), ( ), ,gT x t y t z t t            (17)

( )2 2 2 2( ), ( ), ( ), ,hT x t y t z t t            (18)

depending on only the final state of the player’s 
strategy, but this case is not to be considered here.

3-person game played with staircase-function 
strategies through discrete time

Presume that the players’ pure strategies in 
game (11) can change their values only a finite num-
ber of times. Denote by N the number of time units 
(subintervals) at which the player’s pure strategy is 
constant, where { }\ 1N ∈  . Then the player’s pure 
strategy is a staircase function having at most N dif-
ferent values. Let there be a time-interval breaking

{
}

(0) (1) (2)
1

( 1) ( )
2 ,N N

t

t-

Θ = = t < t < t <

< t < t =



          (19)

where ( ) 1
1{ }i N

i
-

=t  are time points at which the stair-
case-function strategy can change its value. Generally 
speaking, time-interval breaking (19) is not equidis-
tant, although in most practical cases it is equidis-
tant, i.e.

( ) ( 1) 2 1i i t t

N
- -

t - t =   1, .i N∀ =          (20)

The staircase-function strategies are right-continu-
ous [12, 13, 14, 15, 25]:
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0
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t + ε = t              (22)
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for 1, 1,i N= -  whereas (if the strategy value 
changes)
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for 1, 1,i N= - . In the end time point, obviously,

( ) ( )( ) ( )

0
0

lim ,N Nx x
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ε→

t - ε = t             (27)

( ) ( )( ) ( )

0
0

lim ,N Ny y
ε>
ε→

t - ε = t             (28)

( ) ( )( ) ( )

0
0

lim .N Nz z
ε>
ε→

t - ε = t             (29)

A 3-person game played with staircase-function 
strategies through discrete time can be defined by 
using (1)–(12), (19)–(29).

Definition 1. 3-person game (11) defined on 
product (12) of rectangular functional spaces (1)–(3) 
is called a discrete-time staircase-function 3-person 
game by time-interval breaking (19), if (21)–(29) 
hold and

[ ]min max( ) ; ,ix t a a= a ∈
 

[ ]min max( ) ; ,iy t b b= β ∈
 

[ ]min max( ) ;iz t c c= γ ∈
 )( 1) ( );i it -∀ ∈ t t  
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the factual payoff of the second player in situation 
(31) is
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the factual payoff of the third player in situation 
(31) is
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Situation (4) in the discrete-time staircase-function 
3-person game is a stack of successive situations

{ } 1
{ , , }

N

i i i i=
a β γ                    (38)

in a succession of N (ordinary) 3-person games
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by (30)–(37). Stacks 1{ } ,N
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i i=β  1{ }N
i i=γ  are called 

staircase-function pure strategies of the respective 
players.

According to Definition 1, let a discrete-time 
staircase-function 3-person game by time-interval 
breaking (19) be denoted by
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Obviously, discrete-time staircase-function 3-person 
game (41) is uncountably infinite as each of sets 
(42)–(44) contains a continuum of function-strate-
gies. An example of situation (4) in a discrete-time 
staircase-function 3-person game played through 28 
time units (subintervals) is given in Fig. 2, where

( ) ( 1) 2 1

28
i i t t- -

t - t =   1, 28.i∀ =

The exemplified pure-strategy situation of three 
staircase functions can be also represented as a stack 
of 28 successive situations

{ }28

1
{ , , }i i i i=
a β γ

of 28 ordinary 3-person games (39), where each or-
dinary pure-strategy situation

{ }, ,i i ia β γ   for  1, 27i =

corresponds to a time unit (subinterval) )( 1) ( );i i-t t  
and ordinary pure-strategy situation
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{ }28 28 28, ,a β γ

corresponds to a time unit (subinterval) 

(27) (28) (27)
2; ; .t   t t = t   

Time-interval breaking (19) allows considering 
payoffs (5)–(7) in situation (4) equivalent to the sum 
of respective payoffs (32)–(37). The proof is built 
by an analogy to that in [14]. Another way to prove 
(based on 2-person games) can be found in [12].

Theorem 1. In a pure-strategy situation (4) of 
discrete-time staircase-function 3-person game (41), 
payoff functionals (5)–(7) are re-written as time-
unit-wise sums

( ) ( )

( )
)

( )

( 1) ( )

( 1) ( )

1

1

1 ;

;

( ), ( ), ( ) , ,

, , , ( )

, , , ( )

i i

N N

N

i i i i
i

N

i i i
i

N N N

F x t y t z t F

f t d t

f t d t

-

-

=

-

= t t

 t t 

= a β γ

= a β γ µ

+ a β γ µ

∑

∑ ∫

∫       (45)

and

( ) ( )

( )
)

( )

( 1) ( )

( 1) ( )

1

1

1 ;

;

( ), ( ), ( ) , ,

, , , ( )

, , , ( )

i i

N N

N

i i i i
i

N

i i i
i

N N N

G x t y t z t G

g t d t

g t d t

-

-

=

-

= t t

 t t 

= a β γ

= a β γ µ

+ a β γ µ

∑

∑ ∫

∫       (46)

and

( ) ( )

( )
)

( )

( 1) ( )

( 1) ( )

1

1

1 ;

;

( ), ( ), ( ) , ,

, , , ( )

, , , ( ),

i i

N N

N

i i i i
i

N

i i i
i

N N N

H x t y t z t H

h t d t

h t d t

-

-

=

-

= t t

 t t 

= a β γ

= a β γ µ

+ a β γ µ

∑

∑ ∫

∫      (47)

where situation (4) is a stack of successive situations 
(38) in a succession of N 3-person games (39).

Proof. Time interval 1 2[ ; ]t t  can be re-written as

[ ] )
1

( 1) ( ) ( 1) ( )
1 2

1

; ; ; .
N

i i N N

i

t t
-

- -

=

   = t t t t    




   (48)

Therefore, the property of countable additivity of 
the Lebesgue integral can be used:

( )
( )

[ ]

( )
)

( )
)

( )

1 2

1
( 1) ( ) ( 1) ( )

1

( 1) ( )

( 1) ( )

;

; ;

1

1 ;

;

( ), ( ), ( )

( ), ( ), ( ), ( )

( ), ( ), ( ), ( )

( ), ( ), ( ), ( )

( ), ( ), ( ), ( ).

N
i i N N

i

i i

N N

t t

N

i

F x t y t z t

f x t y t z t t d t

f x t y t z t t d t

f x t y t z t t d t

f x t y t z t t d t

-
- -

=

-

-

    t t t t     

-

= t t

 t t 

= µ

= µ

= µ

+ µ

∫

∫

∑ ∫

∫





 (49)

( )

 

y t( )x t

1t 2t

( )z t

maxa

mina

maxb

minb

maxc

minc
(2)τ (4)τ (6)τ (8)τ (10)τ (12)τ (14)τ (16)τ (18)τ (20)τ (22)τ (24)τ (26)

1t 2t(2)τ (4)τ (6)τ (8)
1t 2t(2)(10) (12) (14) (16) (18) (20) (22) (24) (26) (10)τ (12)τ (14)τ (16)τ (18)τ (20)τ (22)τ (24)τ (26)τ τ τ τ τ τ τ τ τ (4) (6) (8)τ ττ τ τ τ τ

Fig. 2. A situation (4) in discrete-time staircase-function 3-person game (41), where the strategies are “digitized” versions of those 
strategies in Fig. 1; the game is played in uncountably infinite functional spaces (42)–(44); the exemplified pure-strategy sit-
uation is a stack of 28 successive situations { }28

1
{ , , }i i i i =
a β γ
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Owing to (30), ( ) ix t = a  and ( ) iy t = β  and ( ) ,iz t = γ  
so (49) is simplified as

( )
)

( )

( )
)

( )

( )

( 1) ( )

( 1) ( )

( 1) ( )

( 1) ( )

1

1 ;

;

1

1 ;

;

1

( ), ( ), ( ), ( )

( ), ( ), ( ), ( )

, , , ( )

, , , ( )

, , .

i i

N N

i i

N N

N

i

N

i i i
i

N N N

N

i i i i
i

f x t y t z t t d t

f x t y t z t t d t

f t d t

f t d t

F

-

-

-

-

-

= t t

 t t 

-

= t t

 t t 

=

µ

+ µ

= a β γ µ

+ a β γ µ

= a β γ

∑ ∫

∫

∑ ∫

∫

∑      (50)

Consequently, in discrete-time staircase-function 
3-person game (41), time-unit-wise sum (45) holds 
in any pure-strategy situation (4) consisting of stair-
case-function strategies

( ) ( ),x t X∈ Θ   ( ) ( ),y t Y∈ Θ   ( ) ( ).z t Z∈ Θ

Obviously, time-unit-wise sums (46) and (47) are 
proved similarly to (48)-(50).   

Theorem 1 provides a fundamental decompo-
sition of the discrete-time staircase-function 3-per-
son game based on the time-unit-wise summing in 
(45)–(47), regardless of whether the player’s action 
space is finite or not. Although Theorem 1 itself does 
not provide a method of solving the game, it hints 
about how the game might be solved in a far easi-
er way [12, 13, 14]. The time-unit-wise decomposi-
tion allows us to try finding an ordinary pure-strategy 
equilibrium in each game (39) separately, whereupon 
these equilibria are stitched (stacked) together [13]. 
Nevertheless, even a finite game (39) may not have 
an equilibrium in pure strategies, let alone the case 
when game (39) is infinite. So, in further investiga-
tion, it is presumed that every time-unit game (39) 
has a pure-strategy equilibrium.

A presumption about discrete-time stair-
case-function 3-person game (41) has an equilib-
rium in staircase-function pure strategies (i.e., this 
equilibrium is a triple of staircase functions) is equiv-
alent to the presumption of that every time-unit 
game (39) has a pure-strategy equilibrium (which is 
a stack of time-unit equilibria). If this pure-strate-
gy equilibrium stack is single, then every time-unit 
game (39) has a single pure-strategy equilibrium and 
vice versa [13].

Trimatrix staircase-function game

In a discrete-time staircase-function 3-person 
game (41), let the set of possible values of every player 
be finite. This can be done, e.g., by forcing the player 
to act within a finite subset of possible values of its 
pure strategies. Formally, the player’s pure strategy 
set is discretized (sampled). The first player’s set of 
possible values of its pure strategies is discretized as

{
}

(0) (1) (2)
min

( 1) ( )
max

i i i

M M
i i

a a a a

a a a-

Α = = < < <

< < =



        (51)

and the second player’s set of possible values of its 
pure strategies is discretized as

{
}

(0) (1) (2)
min

( 1) ( )
max

i i i

Q Q
i i

b b b b

b b b-

Β = = < < <

< < =



        (52)

and the third player’s set of possible values of its 
pure strategies is discretized as

{
}

(0) (1) (2)
min

( 1) ( )
max

C i i i

S S
i i

c c c c

c c c-

= = < < <

< < =



       
(53)

by M ∈   and Q ∈   and ,S ∈   where

( 1) ( 1)m m
ia a- -=   1,i N∀ =   for  1, 1m M= +  (54)

and

( 1) ( 1)q q
ib b- -=   1,i N∀ =   for  1, 1q Q= +   (55)

and

( 1) ( 1)s s
ic c- -=   1,i N∀ =   for  1, 1.s S= +   (56)

This means that along with the discrete time units 
(subintervals), the players are forced (somehow) to 
act within finite subsets of possible values of their 
pure strategies

{ } 1( 1)

1

Mm

m
A a

+-

=
=                    (57)

and

{ } 1( 1)

1

Qq

q
B b

+-

=
=                    (58)

and

{ } 1( 1)

1
.

Ss

s
C c

+-

=
=                    (59)

Discretizations (51)–(56) allow defining a finite dis-
crete-time staircase-function 3-person game, which 
is a trimatrix staircase-function game.
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Definition 2. Discrete-time staircase-function 
3-person game (41) is called a trimatrix staircase-func-
tion game if it is played on a product of finite subsets

( )

{ }{ }
[ ]( )

1( 1)

1

1 2

,

( ) ( ) : ( )

( ) ;

Mm

m

X A

x t X x t a

X X t t

+-

=

Θ

= ∈ Θ ∈

⊂ Θ ⊂        (60)

and

( ) { }{ }
[ ]( )

1( 1)

1

1 2

, ( ) ( ) : ( )

( ) ;

Qq

q
Y B y t Y y t b

Y Y t t

+-

=
Θ = ∈ Θ ∈

⊂ Θ ⊂   (61)

and

( ) { }{ }
[ ]( )

1( 1)

1

1 2

, ( ) ( ) : ( )

( ) ;

Ss

s
Z C z t Z z t c

Z Z t t

+-

=
Θ = ∈ Θ ∈

⊂ Θ ⊂   (62)

of sets (42)–(44). The trimatrix staircase-function 
game is denoted by

{ }
( ) ( ){

( )}

( , ), ( , ), ( , ) ,

( ), ( ), ( ) , ( ), ( ), ( ) ,

( ), ( ), ( )

X A Y B Z C

F x t y t z t G x t y t z t

H x t y t z t

Θ Θ Θ

   (63)

by sets (42)–(44).
An example of finite sets (60)–(62) of stair-

case-function pure strategies in a trimatrix stair-
case-function game is presented in Fig. 3. The players 
can change their pure strategy value at most twice. 
Even such a pretty hard restriction grants 64 pure stra-

tegies to the first player, 27 pure strategies to the sec-
ond player, and 125 pure strategies to the third player.

Obviously, the exemplified trimatrix stair-
case-function game can be “broken” into a succes-
sion of three ordinary trimatrix 4 3 5× ×  games, each 
related to its time unit (of those three units). In [13], 
such ordinary games were called “short”. In general, 
“breaking” trimatrix staircase-function game (63) 
into a succession of “short” games can be defined 
as follows.

Definition 3. Trimatrix staircase-function game 
(63) is a succession of N trimatrix games can be 
defined as follows.

{ } { } { }{ } { }1 1 1( 1) ( 1) ( 1)

1 1 1
, , , , ,

M Q Sm q s
i i im q s

a b c
+ + +- - -

= = =
F G H

for  1,i N∀ =                     (64)

with the first player’s payoff matrices

( ) ( ) ( )1 1 1i imqs M Q S+ × + × +
 = ϕ F              (65)

whose elements are

( )
)( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( )
i i

m q s
imqs f a b c t d t

-

- - -

t t

ϕ = µ∫

for  1, 1i N= -                   (66)

and

( )
( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( ),
N N

m q s
Nmqs f a b c t d t

-

- - -

 t t 

ϕ = µ∫  (67)

with the second player’s payoff matrices

( 1) ( 1) ( 1)i imqs M Q S+ × + × +
 = ρ G              (68)

whose elements are

( )
)( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( )
i i

m q s
imqs g a b c t d t

-

- - -

t t

ρ = µ∫

for  1, 1i N= -                    (69)

and

( )
( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( ),
N N

m q s
Nmqs g a b c t d t

-

- - -

 t t 

ρ = µ∫  (70)

and with the third player’s payoff matrices

( 1) ( 1) ( 1)i imqs M Q S+ × + × +
 = θ H              (71)

whose elements are

( )
)( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( )
i i

m q s
imqs h a b c t d t

-

- - -

t t

θ = µ∫

for  1, 1i N= -                    (72)

and

( )
( 1) ( )

( 1) ( 1) ( 1)

;

, , , ( ).
N N

m q s
Nmqs h a b c t d t

-

- - -

 t t 

θ = µ∫  (73)

Situation (4) in the trimatrix staircase-function game 
is a stack of successive situations

{ }{ }( 1) ( 1) ( 1)

1
, ,

N
m q s

i i i
i

a b c- - -

=

              (74)

in the succession of N trimatrix games (64) by 
(54)–(56).

According to Definition 3, the assertion of 
Theorem 1 for trimatrix staircase-function game 
(63) can be re-written as
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( ),X AΘ   by  { }(0) (1) (2) (3), , ,A a a a a=  ( ),Z CΘ   by  { }(0) (1) (2) (3) (4), , , ,C c c c c c=  

 
 

( ),Y BΘ   by  { }(0) (1) (2), ,B b b b=  

  
 

Fig. 3. An example of finite sets (60)–(62) of staircase-function pure strategies in a trimatrix staircase-function game played with 
3-time-unit staircase functions of time, where the first, second, and third players have four, three, and five possible values of 
their pure strategies, respectively
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( )

( )
)

( )
( 1) ( )

( 1) ( )

1

1
( 1) ( 1) ( 1)

1 ;

( 1) ( 1) ( 1)

;

( ), ( ), ( )

, , , ( )

, , , ( ),

i i

N N

N

imqs
i

N
m q s

i

m q s

F x t y t z t

f a b c t d t

f a b c t d t

-

-

=

-
- - -

= t t

- - -

 t t 

= ϕ

= µ

+ µ

∑

∑ ∫

∫    (75)

( )

( )
)

( )
( 1) ( )

( 1) ( )

1

1
( 1) ( 1) ( 1)

1 ;

( 1) ( 1) ( 1)

;

( ), ( ), ( )

, , , ( )

, , , ( ),

i i

N N

N

imqs
i

N
m q s

i

m q s

G x t y t z t

g a b c t d t

g a b c t d t

-

-

=

-
- - -

= t t

- - -

 t t 

= ρ

= µ

+ µ

∑

∑ ∫

∫    (76)

( )

( )
)

( )
( 1) ( )

( 1) ( )

1

1
( 1) ( 1) ( 1)

1 ;

( 1) ( 1) ( 1)

;

( ), ( ), ( )

, , , ( )

, , , ( ).

i i

N N

N

imqs
i

N
m q s

i

m q s

H x t y t z t

h a b c t d t

h a b c t d t

-

-

=

-
- - -

= t t

- - -

 t t 

= θ

= µ

+ µ

∑

∑ ∫

∫    (77)

It is worth remembering that, owing to (54)-(56), 
the first player’s payoff in situation

{ }( 1) ( 1) ( 1), ,m q s
i i ia b c- - -                 (78)

is (66), (67), the second player’s payoff in situation 
(78) is (69), (70), and the third player’s payoff in 
situation (78) is (72), (73).

Pure-strategy equilibrium stack

In most practical problems, if time-unit game 
(39) is solved in pure strategies, there often are 
multiple equilibria (or even a continuum of equi-
libria). So, as it is presumed that every time-unit 
game (39) has at least a pure-strategy equilibrium, 
then some time-unit games may have multiple 
pure-strategy equilibria. The question is how to se-
lect a single equilibrium. To do this, the criterion 
of maximizing the sum of players’ payoffs is used 
[12, 14, 18, 19, 23].

Theorem 2. If

{ }* * *, ,i i ia β γ                      (79)

is an equilibrium situation in 3-person game (39), 
1,i N∀ = , and maximum

{ }
( ){

( ) ( )}
( ) ( )

( )

* * *

* * *

, ,

* * * * * *

** ** ** ** ** **

** ** **

max , ,

, , , ,

, , , ,

, ,

i i i
i i i i

i i i i i i i i

i i i i i i i i

i i i i

F

G H

F G

H

a β γ
a β γ

+ a β γ + a β γ

= a β γ + a β γ

+ a β γ       (80)

is reached at an equilibrium situation

{ }** ** **, ,i i ia β γ                     (81)

in this game for 1,i N∀ = , then the maximum of the 
players’ payoffs sum in a pure-strategy equilibrium 
stack of discrete-time staircase-function 3-person 
game (41) is reached at a stack

{ }{ }** ** **

1
, ,

N

i i i
i=

a β γ                   (82)

and this maximum is

( )

( ) ( )

** ** ** **
1,

1

** ** ** ** ** **

, ,

, , , , .

N

N i i i i
i

i i i i i i i i

p F

G H

=

= a β γ

+ a β γ + a β γ 

∑

    (83)

Proof. As (81) is an equilibrium in game (39), 
then stack (82), owing to Theorem 4 in [13], is an 
equilibrium in staircase-function pure strategies in 
game (41). Owing to Theorem 1, the first, second, and 
third players’ payoffs in equilibrium stack (82) are

( )** ** ** **
1,

1

, , ,
N

N i i i i
i

u F
=

= a β γ∑             (84)

( )** ** ** **
1,

1

, , ,
N

N i i i i
i

v G
=

= a β γ∑             (85)

( )** ** ** **
1,

1

, , ,
N

N i i i i
i

w H
=

= a β γ∑             (86)

respectively. Then

( )

( ) ( )

( )

( ) ( )

{ }
( ){

( )
* * *

** ** ** ** ** **
1, 1, 1,

1

** ** ** ** ** **

1 1

** ** **

1

** ** ** ** ** **

* * *

, ,1

* * * *

, ,

, , , ,

, ,

, , , ,

max , ,

, , ,

i i i

N

N N N i i i i
i

N N

i i i i i i i i
i i

N

i i i i
i

i i i i i i i i

N

i i i i
i

i i i i i i

u v w F

G H

F

G H

F

G H

=

= =

=

a β γ=

+ + = a β γ

+ a β γ + a β γ

= a β γ

+ a β γ + a β γ 

= a β γ

+ a β γ + a

∑

∑ ∑

∑

∑

( )}* *, ,i iβ γ   (87)

where (87) is the sum of all N maxima (80).   
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Theorem 2 suggests a method to select the 
best pure-strategy equilibrium stack. Clearly, the 
method is correct for both discrete-time stair-
case-function 3-person game (41) and trimatrix 
staircase-function game (63). Consider now the 
case when a discrete-time staircase-function 3-per-
son game is played through a lesser number of time 
units. Thus, instead of time-interval breaking (19), 
the game is played by a narrower time-interval 
breaking

{
}

( ) ( 1) ( 2)
* 1 1

( 1) ( )
2 2 ,

n n n

U U

t

t

+ +

-

Θ = t = t < t < t <

< t < t = t



      (88)

where

{ }0, 1 ,n N∈ -
  

{ }1, ,U N∈   ,n U<     (89)

and { } 1( )

1

Ui

i n

-

= +
t  are time points at which the stair-

case-function strategy can change its value. So, 

*Θ ⊂ Θ  in terms of the interval breaking.
Theorem 3. If (79) is an equilibrium situation in 

3-person game (39), 1,i n U= +  by (89), and max-
imum (80) is reached at an equilibrium situation 
(81) in this game for 1,i n U= + , then the maxi-
mum of the players’ payoffs sum in a pure-strategy 
equilibrium stack of discrete-time staircase-function 
3-person game

{ }
( ) ( ){

( )}

* * *( ), ( ), ( ) ,

( ), ( ), ( ) , ( ), ( ), ( ) ,

( ), ( ), ( )

X Y Z

F x t y t z t G x t y t z t

H x t y t z t

Θ Θ Θ

   (90)

by time-interval breaking (88) is reached at a stack

{ }{ }** ** **

1
, ,

U

i i i
i n= +

a β γ                 (91)

and this maximum is

( )

( ) ( )

** ** ** **
1,

1

** ** ** ** ** **

, ,

, , , , .

U

n U i i i i
i n

i i i i i i i i

p F

G H

+
= +

= a β γ

+ a β γ + a β γ 

∑
     (92)

Proof. As (81) is an equilibrium in game (39), 
then stack (91), owing to Theorem 4 in [13], is an 
equilibrium in staircase-function pure strategies in 
game (90). Owing to Theorem 1, whose assertion 
remains correct for game (90) by only changing the 
time interval endpoints to ( )

1
nt = t  and ( )

2 ,Ut = t  the 
first, second, and third players’ payoffs in equilibri-
um stack (91) are

( )** ** ** **
1,

1

, , ,
U

n U i i i i
i n

u F+
= +

= a β γ∑            (93)

( )** ** ** **
1,

1

, , ,
U

n U i i i i
i n

v G+
= +

= a β γ∑            (94)

( )** ** ** **
1,

1

, , ,
U

n U i i i i
i n

w H+
= +

= a β γ∑           (95)

respectively. Then

( ) ( )

( )

( ) ( )

( )

{ }
( )

* * *

** ** **
1, 1, 1,

** ** ** ** ** **

1 1

** ** **

1

** ** ** ** ** **

1

** ** **

* * * * *

, ,

, , , ,

, ,

, , , ,

, ,

max , , , ,
i i i

n U n U n U

U U

i i i i i i i i
i n i n

U

i i i i
i n

U

i i i i i i i i
i n

i i i i

i i i i i i i

u v w

F G

H

F G

H

F G

+ + +

= + = +

= +

= +

a β γ

+ +

= a β γ + a β γ

+ a β γ

= a β γ + a β γ

+ a β γ 

= a β γ + a β γ

∑ ∑

∑

∑

( ){
( )}

*

1

* * *, , ,

U

i
i n

i i i iH

= +

+ a β γ

∑

 (96)

where (96) is the sum of all U - n maxima (80).   
It is quite obvious that

{ }{ } { }{ }** ** ** ** ** **

1 1
, , , ,

U N

i i i i i i
i n i= + =

a β γ ⊂ a β γ     (97)

regardless of whether it is a discrete-time stair-
case-function 3-person game (41) or a trimatrix 
staircase-function game (63). That is, the best 
pure-strategy equilibrium stack (82) in a “wider” 
game contains the best pure-strategy equilibrium 
stack (91) in a “narrower” game. Therefore, Theo-
rem 3 along with Theorem 4 in [13] imply that the 
time-unit shifting does not change the structure and 
number of pure-strategy equilibria (it can be also a 
continuum on a time unit) in a discrete-time stair-
case-function 3-person game, nor does it change the 
structure of the best pure-strategy equilibrium stack 
determined by the maximum of the players’ payoffs 
sum. In fact, game (90) is a subgame of discrete-time 
staircase-function 3-person game (41). A pure-stra-
tegy equilibrium solution of the subgame can be eas-
ily taken from the respective pure-strategy equilibri-
um solution (if it exists) of “wider” game (41). The 
best pure-strategy equilibrium stack consists of the 
same pure-strategy equilibria being the best for the 
given time units (on which the respective “short” 
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3-person games are played), whichever time interval 
encloses those time units.

When not every “short” 3-person game is solved 
in pure strategies

It is likely that, as the number of successive 
time units increases, there may appear at least one 
“short” 3-person game without any pure-strategy 
equilibria. So, if mixed-strategy solutions are un-
acceptable, then what to do in this case? Are the 
proved assertions and the method of selecting a sin-
gle pure-strategy equilibrium still relevant then?

In fact, the existence or non-existence of 
pure-strategy equilibria in a time-unit 3-person 
game does not depend on any other time-unit 
game, nor does it influence the others. Therefore, 
an equilibrium on a time unit would not influence 
the equilibrium stack if the time unit was deleted 
(canceled, annulled, etc.). Consequently, it is suffi-
cient to put the “wider” game on hold-up on those 
time units which do not have pure-strategy equilib-
ria. In practice, it is closely equivalent to hold on 
while certain changes are done in the system. On 
the other hand, hold-ups are equivalent to nonwork-
ing days, although the latter are mostly distributed 
regularly (say, on weekends and holidays). Anyway, 
the hold-up is almost always possible to incorporate. 
Then time units without pure-strategy-equilibrium 
are just like to “disappear”, and “wider” game (41) 
is solved, by this condition, as a pure-strategy equi-
librium stack.

Examples of 3-person games solved in stair-
case-function pure strategies

Consider a finite 3-person game, in which 
players’ payoff functionals (5)–(7) are

( )

[ ]1 2

0.001

;

( ), ( ), ( )

cos 0.8 ( ),
6

yzt

t t

F x t y t z t

xyzt e d t-p = - µ 
 ∫      (98)

( )

[ ]1 2;

( ), ( ), ( )

sin 0.6 ( ),
9t t

G x t y t z t

xyzt d t
p = + µ 

 ∫           (99)

( )

[ ]1 2;

( ), ( ), ( )

sin 0.9 ( ),
8t t

H x t y t z t

xyzt d t
p = - µ 

 ∫         (100)

discretizations (51)–(53) are such that finite subsets 
(57)–(59) are

{ } { } [ ]9 9( 1)

11
0.5 0.5 1; 5 ,m

mm
A a m-

==
= = + ⊂  (101)

{ } { } [ ]11 11( 1)

11
6.8 0.2 7; 9 ,q

qq
B b q-

==
= = + ⊂   (102)

{ } { } [ ]9 9( 1)

11
3.9 0.1 4; 4.8 ,s

ss
C c s-

==
= = + ⊂  (103)

and the players are allowed to change their pure 
strategy values only at time points (the time-interval 
breaking is equidistant)

{ } { }9 9( )

11
1.4 0.1i

ii
i

==
t = p + p            (104)

by 1 1.4 ,t = p  2 2.4 .t = p
This finite 3-person game is a trimatrix stair-

case-function game being a succession of 10 trima-
trix games

{ } { }{
{ } } { }

9 11

1 1

9

1

0.5 0.5 , 6.8 0.2 ,

3.9 0.1 , , ,

m q

i i is

m q

s

= =

=

+ +

+ F G H       (105)

with the first player’s payoff 9 11 9× ×  matrices (65)

9 11 9i imqs × ×
 = ϕ F                  (106)

whose elements (66) and (67) are

( )
[ )

( ) ( )
( )( )

1.3 0.1 ; 1.4 0.1

0.001 6.8 0.2 3.9 0.1

cos 0.8 0.5 0.5

6.8 0.2 3.9 0.1
6

( )

imqs

i i

q s t

m

q s t

e d t

π+ π π+ π

− ⋅ + +

ϕ

⎛= ⋅ +⎜
⎝

π ⎞× + + − ⎟
⎠

× μ

∫

for  1, 9i =                    (107)

and

( )
[ ]

( ) ( )
( )( )

10
2.3 ; 2.4

0.001 6.8 0.2 3.9 0.1

cos 0.8 0.5 0.5

6.8 0.2 3.9 0.1
6

( ),

mqs

q s t

m

q s t

e d t

π π

− ⋅ + +

⎛ϕ = ⋅ +⎜
⎝

π ⎞× + + − ⎟
⎠

× μ

∫

   (108)

with the second player’s payoff 9 11 9× ×  matrices (68)

9 11 9i imqs × ×
 = ρ G                  (109)
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whose elements (69) and (70) are

( )
[ )

( ) ( )

1.3 0.1 ; 1.4 0.1

sin 0.6 0.5 0.5

6.8 0.2 3.9 0.1 ( )
9

imqs

i i

m

q s t d t

π+ π π+ π

ρ

⎛= ⋅ +⎜
⎝

π ⎞× + + + μ⎟
⎠

∫

for  1, 9i =                    (110)

and

( )
[ ]

( ) ( )

10
2.3 ; 2.4

sin 0.6 0.5 0.5

6.8 0.2 3.9 0.1 ( ),
9

mqs m

q s t d t

π π

⎛ρ = ⋅ +⎜
⎝

π ⎞× + + + μ⎟
⎠

∫

   (111)

with the third player’s payoff 9 11 9× ×  matrices (71)

9 11 9i imqs × ×
 = θ H                 (112)

whose elements (72) and (73) are

( )
[ )

( ) ( )

1.3 0.1 ; 1.4 0.1

sin 0.9 0.5 0.5

6.8 0.2 3.9 0.1 ( ),
8

imqs

i i

m

q s t d t

π+ π π+ π

θ

⎛= ⋅ +⎜
⎝

π ⎞× + + − μ⎟
⎠

∫

for  1, 9i =                    (113)

and

[ ]
( )

( ) ( )

10
2.3 ; 2.4

sin 0.9 0.5 0.5

6.8 0.2 3.9 0.1 ( ).
8

mqs m

q s t d t

π π

⎛θ = ⋅ +⎜
⎝

π ⎞× + + − μ⎟
⎠

∫

   (114)

Each of the 10 trimatrix games (105) by 
(106)–(114) is solved in pure strategies. The num-
bers of pure-strategy equilibria on time units

[ ){ } [ ]{ }9

1
1.3 0.1 ; 1.4 0.1 , 2.3 ; 2.4

i
i i

=
p + p p + p p p  (115)

are 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, respectively. The best 
pure-strategy equilibrium stack

{ }{ } { }{ }
{ }

10 10
** ** ** ** ** **

1 1

** ** **

, , , ,

( ), ( ), ( )

i i i i i i
i i

i i i

a b c

x t y t z t

= =
a β γ =

=

by

{ }9**

1
0.5 0.5 ,i m

a A m
=

∈ = +
  

{ }11**

1
6.8 0.2 ,i q

b B q
=

∈ = +

{ }9**

1
3.9 0.1 ,i s

c C s
=

∈ = +

at which the maximum of the players’ payoffs sum 
**
1,10p  by (83) is reached, is presented in Fig. 4, where 

the equilibria on time units

[ )1.5 ; 1.6 ,p p
  [ )2 ; 2.1 ,p p            (116)

which do not contribute to the maximum, are shown 
with square-dotted line. Note that the first player’s 
equilibrium strategies *

2 2.5a =  and *
7 2.5a =  not 

 

 
1

1.5

2

2.5

3

3.5

4

4.5

5

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

**( )iz t**( )iy t**( )ix t

Fig. 4. The best pure-strategy equilibrium situation (as the triple of the best staircase-function pure strategy for every player) in the 
trimatrix staircase-function game being a succession of the 10 trimatrix games (105) by (106)–(114)
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contributing to the maximum on time units (116) 
within the respective equilibrium situations 

{ } { }* * *
2 2 2, , 2.5, 7.8, 4.1a b c =

and

{ } { }* * *
7 7 7, , 2.5, 7.8, 4.1a b c =

just overlap (coincide) with themselves within the 
best equilibrium situations

{ } { }** ** **
2 2 2, , 2.5, 8, 4a b c =

and

{ } { }** ** **
7 7 7, , 2.5, 8, 4a b c =

on (116).
Fig. 5 shows how players’ payoffs

( )* * *, ,i i i iF a b c   (shown as asterisks),

( )* * *, ,i i i iG a b c   (shown as circles),

( )* * *, ,i i i iH a b c   (shown as diamonds)

in every possible equilibrium situation

{ }* * *, ,i i ia b c   for  1, 10i =          (117)

0

0.01

0.02

0.03

0.04

0.05

0.06

1.5p 1.6p 1.7p 1.8p 1.9p 2p 2.1p 2.2p 2.3p 2.4p

Fig. 5. Payoffs at the end of every time unit in every possible 
equilibrium situation (117)

are distributed. The best time-unit payoffs

( )** ** **, , ,i i i iF a b c                  (118)

( )** ** **, , ,i i i iG a b c                  (119)

( )** ** **, ,i i i iH a b c                  (120)

in every best equilibrium situation

{ }** ** **, ,i i ia b c   for  1, 10i =          (121)

are highlighted with squares.
Fig. 6 shows how players’ payoffs

( )* * * *
1,

1

, ,
k

k i i i i
i

u F a b c
=

= ∑   for  1, 10,k =    (122)

( )* * * *
1,

1

, ,
k

k i i i i
i

v G a b c
=

= ∑   for  1, 10,k =    (123)

( )* * * *
1,

1

, ,
k

k i i i i
i

w H a b c
=

= ∑   for  1, 10,k =   (124)

and their best payoffs (highlighted with squares)
**
1, ,ku  **

1, ,kv
 

**
1,kw   for  1, 10,k =          (125)
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Fig. 6. Cumulative payoffs (122)–(124) and best cumulative 
payoffs (125) at the end of every time unit
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by (84)–(86) develop as the time progresses. In fact, 
payoffs (122)–(125) are cumulative:

( )* * * *
1,1 1 1 1 1, , ,u F a b c=

  ( )* * * *
1,1 1 1 1 1, , ,v G a b c=

( )* * * *
1,1 1 1 1 1, , ,w H a b c=

  ( )** ** ** **
1,1 1 1 1 1, , ,u F a b c=

( )** ** ** **
1,1 1 1 1 1, , ,v G a b c=

  ( )** ** ** **
1,1 1 1 1 1, ,w H a b c=

are the payoffs after the first time-unit game,

( )
10

* * * *
1,10

1

, , ,i i i i
i

u F a b c
=

= ∑
  

( )
10

* * * *
1,10

1

, , ,i i i i
i

v G a b c
=

= ∑

( )
10

* * * *
1,10

1

, ,i i i i
i

w H a b c
=

= ∑

are the resulting payoffs after the end of the trima-
trix staircase-function game, and

( )
10

** ** ** **
1,10

1

, , ,i i i i
i

u F a b c
=

= ∑
  

( )
10

** ** ** **
1,10

1

, , ,i i i i
i

v G a b c
=

= ∑
  

( )
10

** ** ** **
1,10

1

, ,i i i i
i

w H a b c
=

= ∑

are the eventual (best) players’ payoffs in the trima-
trix staircase-function game being a succession of 
the 10 trimatrix games (105) by (106)–(114).

Fig. 7 shows how the sum of players’ payoffs

* * * *
1, 1, 1, 1,k k k kp u v w= + +   for  1, 10,k =     (126)
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Fig. 7. Cumulative payoff sums (126) and (127) at the end of every time unit



31ПРИКЛАДНА МАТЕМАТИКА

and the best sum of players’ payoffs (highlighted 
with thicker line and squares)

** ** ** **
1, 1, 1, 1,k k k kp u v w= + +   for  1, 10,k =     (127)

develop as the time progresses. Due to there are six 
pure-strategy equilibrium stacks, there are six polylines 
(126), among which polyline (127) is the best (the 
factual payoffs sum maximum is clearly seen).

According to Theorem 3, Fig. 4 contains the 
best equilibrium stack in the exemplified stair-
case-function game defined on any subset of time 
units (115). In other words, if the time interval in 
players’ payoff functionals (98)–(100) is narrowed 
by an integer number of time units (either from the 
left or right or from both endpoints), it is sufficient 
to narrow the time interval in Fig. 4 and extract the 
respective part of the best staircase-function pure 
strategy for every player. If only right endpoint t2 is 
shifted to some t = t2, then the cumulative payoffs 
are those at the respective time-unit end in Fig. 6 
(the plot part on ( ]2 2; tt  is just cut off) and their best 
sum is in Fig. 7 (the best-sum polyline on ( ]2 2; tt  is 
cut off as well). If left endpoint t1 is shifted to some 
t  =  t1 (regardless of whether the right endpoint is 
shifted or not), the cumulative payoffs and their best 
sum are to be recalculated. For this, payoffs at the 
end of every time unit in Fig. 5 can be used.

Now, what if the exemplified staircase-func-
tion game is continued to play beyond t2  = 2.4p? 

Say, when t1 = 2.4p and t2 = 20.5p, and the players 
are still allowed to change their pure strategy values 
only through 0.1p time step, the staircase-function 
game does not have a pure-strategy equilibrium 
stack because there are many unit-time trimatrix 
games not having a pure-strategy equilibrium situa-
tion. However, putting the staircase-function game 
on hold-up on those time units which do not have 
pure-strategy equilibria allows to obtain the play-
ers’ best staircase-function pure strategies with gaps 
(Fig. 8–10). It is up to the administrator (super-
visor, manager, controller, etc.), who defines (or 
constrains) the rules of a system to be game-mod-
elled, to “legalize” such gaps. Those gaps are not 
necessarily to be holidays or something like that. If, 
say, the time unit is a day, then the gap can be a day 
during which any activity of the players (personify-
ing some agents on, e.g., a market) is forbidden (or 
suppressed) [19, 23, 27].

It is quite clear that, in real-world practice, a 
great deal of finite (ordinary) 3-person games do not 
have pure-strategy equilibria. In the case when at 
least one of the three players possesses an infinite set 
(or a continuum) of one’s pure strategies, the exis-
tence of pure-strategy equilibria is far less likely. So, 
a “legalization” of pure-strategy solution gaps must 
be an additional condition imposed on the game 
model.
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Fig. 8. The first player’s best staircase-function pure strategy with gaps
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Discussion of the contribution

The suggested method is an important sup-
plement to the method of solving a 3-person game 
played in staircase-function pure strategy spaces 
presented in [13]. Along with the approach of the 
pure-strategy solution gaps, it allows quickly find-
ing the best pure-strategy equilibrium (Theorem 2) 
in a discrete-time staircase-function 3-person game 
just by finding pure-strategy equilibria of a succes-
sion of time-unit subgames, even when not every 

“short” 3-person game is solved in pure strategies. 
In the case of a trimatrix staircase-function game, 
being “wider” one, its pure-strategy equilibrium sit-
uation is formed by solving and stacking pure-strat-
egy equilibria of successive smaller-sized trimatrix 
games. The stacking is done in a similar manner for 
(uncountably) infinite games also. Then, owing to 
Theorem 3, the respective best equilibrium solution 
of any “narrower” subgame can be taken from the 
“wider” game best pure-strategy equilibrium. The 
best equilibrium situation in subgame (90) is easily 
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Fig. 9. The second player’s best staircase-function pure strategy with gaps
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Fig. 10. The third player’s best staircase-function pure strategy with gaps
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found regardless of whether it is an (uncountably) 
infinite game or a trimatrix staircase-function game. 
Consequently, the suggested method is a significant 
contribution to the 3-person game theory and oper-
ations research, in the sense of both practical appli-
cability and scientific soundness.

In the case of a trimatrix staircase-function 
game, the computational efficiency is only defined 
by and limited to the efficiency of finding pure-strat-
egy equilibrium situations in an ordinary (time-unit) 
trimatrix game whose size is commonly not that 
large. Usually, this is about the direct search. With-
out considering the succession of time-unit trima-
trix games, any straightforward approach to finding 
pure-strategy equilibrium situations in a trimatrix 
staircase-function game is intractable.

The case when the player’s payoff function-
al has a terminal component is only seeming to 
be more general than that of functionals (5)–(7). 
Indeed, whichever terminal functions (16)–(18) 
are, functionals (13)–(15) can be always brought 
to the form of functionals (5)–(7) by transforming 
and fitting the terminal function under the integral. 
Then integrated functions (8)–(10) are respectively 
changed but the conception of the integral func-
tional remains the same. This is why the terminal 
component case has not been considered.

Another peculiarity is the inclusion of time vari-
able t into functions (8)–(10) to be integrated. As time 
variable t is explicitly integrated, it means that the 
time progress influences the process modeled by the 
staircase-function game. In simple terms, the explicit 
time variable t under the integral means that something 
changes within the process. Contrariwise, if in a dis-
crete-time staircase-function 3-person game time t is 
not explicitly included in functions (8)–(10), then
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instead of (32) and (33),
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instead of (34) and (35), and
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instead of (36) and (37). Equalities (128)–(133) 
mean that the player’s payoff value, depending only 
on the time unit length, is equal to the length mul-
tiplied by the respective value of the function under 
the integral. If the length does not change in the 
case of trimatrix staircase-function game (63), then 
the time-unit trimatrix game does not change. If the 
length does not change in the case of discrete-time 
staircase-function 3-person game (41), the time-unit 
(ordinary) 3-person game defined on parallelepiped 
(40) does not change. Then the solution (of any 
type) to the initial (finite or uncountably infinite) 
discrete-time staircase-function 3-person game is 
determined just by the solution of a one time-unit 
game, and this solution will not change as the time 
units go by. Such a triviality of the equal-length-
time-unit solution (by implicit time) is explained 
by a standstill of the players’ strategies (not to be 
confused with equal-length-time-unit solutions, like 
that one in Fig. 4, where time is explicit under the 
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integral).
Without underestimation, the scientific signifi-

cance of the discrete-time staircase-function 3-person 
game and the methods of finding the best pure-stra-
tegy equilibrium in it (provided by Theorems 2 and 3) 
is high. Owing to Theorems 2 and 3, such games, if 
finite, are very simple models to describe struggling for 
rationalizing the distribution of some limited resources 
among three sides. Unlike an ordinary trimatrix game, 
which models only a static process of the struggle, a 
discrete-time staircase-function 3-person game con-
siders the discrete-time dynamics of the struggle.

Searching for the best pure-strategy equilibri-
um is much simplified if it is somehow known that 
a discrete-time staircase-function 3-person game 
has just a single pure-strategy equilibrium situation. 
Then, owing to Theorem 3 in [13], every time-unit 
game has a single pure-strategy equilibrium. Once it 
is found on a time unit, the (direct) search on this 
unit is stopped. This is a kind of an early stop condi-
tion. It allows for significantly shortening the time of 
computations making thus the solving process even 
more efficient, especially when time-unit games are 
solved concurrently.

Conclusions

Due to a pure staircase-function strategy can 
be considered as an ordinary mixed strategy unfold-
ed over a time interval, staircase-function 3-per-
son games are important mathematical objects to 
study ordinary (“classical”) 3-person games played 
on a finite horizon of game rounds. Besides, stair-
case-function games fairly describe discrete-time 
dynamics of competing processes. So, building and 
developing a theory for staircase-function games 
and their solutions is an actual task and a significant 
contribution to the game theory field.

Directly searching for a pure-strategy equilibri-
um in a trimatrix staircase-function game is an intrac-
table problem because of a gigantic size of the game 
rendered to an ordinary (“classical”) trimatrix game. 
The same concerns (to a much more greater extent) 
a discrete-time staircase-function 3-person game, in 

which at least one of the three players possesses an 
infinite set (or a continuum) of pure staircase-func-
tion strategies. Moreover, the time interval on which 
the discrete-time staircase-function 3-person game, 
being either finite or (uncountably) infinite, is de-
fined can vary (be shifted) by an integer number of 
time units. For dealing with such a time-unit shift-
ing along with selecting a single equilibrium solution, 
a tractable and efficient method of finding the best 
pure-strategy equilibrium in a 3-person game played 
in finite or uncountably infinite staircase-function 
spaces is to solve a succession of time-unit 3-person 
games, whereupon their best equilibria are stacked 
into the best pure-strategy equilibrium. The criterion 
for selecting a single equilibrium solution is to ma-
ximize the players’ payoffs sum. This criterion allows 
extracting the respective best staircase-function equi-
librium pure strategy of the player in any “narro wer” 
subgame from the player’s best staircase-function 
equilibrium pure strategy in the “wider” game.

To deal with the case when not every time-
unit 3-person game is solved in pure strategies, an 
effective way is to put a staircase-function game 
on hold-up on those time units which do not have 
pure-strategy equilibria. During such a “freezing” 
of the game, the player’s payoff is not accumulated 
(i.e., is not added up to the preceding payoff). The 
players cannot change their strategies or any their 
activity is suppressed by attaching the respective 
prohibition to the game model. The result of putting 
the staircase-function game on hold-ups is that the 
player will obtain one’s best staircase-function equi-
librium pure strategy with gaps, whichever the time 
interval and time-unit shifting are.

The study might be further developed in order 
to consider other solution types including situations 
with efficient (and, maybe, non-equilibrium) strat-
egies. Moreover, the criterion for selecting a single 
solution situation on each time unit can be more 
disputable when at least two players’ payoff rang-
es differ significantly. Then, payoff normalization 
(standardization) or a correction of the criterion is 
to be studied as well.
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В.В. Романюк

ЗСУВ ЗА ОДИНИЦЯМИ ЧАСУ В ІГРАХ ТРЬОХ ОСІБ У СКІНЧЕННИХ І НЕЗЛІЧЕННО НЕСКІНЧЕННИХ ПРОСТОРАХ 
СХОДИНКОВИХ ФУНКЦІЙ, ЩО РОЗВ’ЯЗУЮТЬСЯ У ЧИСТИХ СТРАТЕГІЯХ

Проблематика. Ігри, котрі розігруються чистими стратегіями у формі сходинкових функцій, можуть моделювати дискретно-
часову динаміку раціоналізації розподілу деяких обмежених ресурсів між гравцями. Як і ігри двох осіб, ігри трьох осіб є найбільш 
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уживаними моделями такої раціоналізації в економіці, екології, соціальних науках, політиці, управлінні, спорті. Існує відомий метод 
знаходження рівноваги у грі трьох осіб, що розігрується у просторах чистих стратегій у формі сходинкових функцій. Інтервал 
часу, на якому така гра задається, складається із цілого числа часових одиниць. Ця рівновага утворюється укладанням рівноваг 
на одиницях часу. Відкритою задачею є множинність рівноваг (на деяких одиницях часу), що призводить до множинності укладів 
рівноваг. Ще одне відкрите питання полягає у тому, що робити із грою трьох осіб, у якій інтервал часу може бути змінений або 
зсунутий на ціле число часових одиниць.

Мета дослідження. Мета полягає у тому, щоб розвинути й удосконалити ефективний метод розв’язування ігор трьох осіб, 
котрі розігруються у межах скінченних множин сходинкових функцій гравців для випадку, коли період, упродовж якого гра триває, 
змінюється на ціле число часових одиниць.

Методика реалізації. Щоб досягти зазначеної мети, формалізують гру трьох осіб, в якій стратегії гравців є сходинковими 
функціями часу. У такій грі множина чистих стратегій гравця є континуумом сходинкових функцій. Оскільки часовий інтервал скла-
дається з часових одиниць (підінтервалів), час вважають дискретним. Після цього множина можливих значень чистої стратегії 
гравця дискретизується так, що гравець володіє скінченною множиною сходинкових функцій.

Результати дослідження. Відомий метод розвинуто так, щоб будувати єдиний уклад рівноваг у чистих стратегіях у будь-якій 
дискретно-часовій грі трьох осіб зі сходинковими функціями. Критерієм вибору єдиної рівноважної ситуації є максимізація суми ви-
грашів гравців. У випадку зсуву за часовими одиницями цей критерій дозволяє витягувати відповідну найкращу рівноважну чисту 
стратегію у формі сходинкової функції гравця у довільній «більш вузькій» підгрі з найкращої рівноважної чистої стратегії у формі 
сходинкової функції цього гравця у «ширшій» грі.

Висновки. Ефективним методом знаходження найкращої рівноваги у чистих стратегіях у грі трьох осіб, котра розігрується 
у скінченних або незліченно нескінченних просторах сходинкових функцій, є розв’язування послідовності ігор трьох осіб на часо-
вих одиницях, після чого їх найкращі рівноваги укладаються у найкращу рівновагу у чистих стратегіях. У випадку, коли не кожна 
гра трьох осіб на часових одиницях розв’язується у чистих стратегіях, ефективним рішенням є призупинення гри зі сходинкових 
функцій на тих часових одиницях, котрі не мають рівноваг у чистих стратегіях. У результаті таких зупинок гравець отримуватиме 
власну сходинкову рівноважну чисту стратегію із пропусками, яким би не був часовий інтервал і зсув за часовими одиницями.

Ключові слова: теорія ігор; функціонал виграшів; гра трьох осіб; стратегія у формі сходинкової функції; триматрична гра; 
сходинкова рівноважна чиста стратегія.
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