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TIME-UNIT SHIFTING IN 3-PERSON GAMES IN FINITE AND UNCOUNTABLY
INFINITE STAIRCASE-FUNCTION SPACES SOLVED IN PURE STRATEGIES

Background. Games played with staircase-function pure strategies can model discrete-time dynamics of rationalizing
the distribution of some limited resources among players. Along with 2-person games, 3-person games are the most
applicable models of rationalization in economics, ecology, social sciences, politics, government, and sports. There is
a known method of finding an equilibrium in a 3-person game played in staircase-function pure strategy spaces. The
time interval on which the game is defined consists of an integer number of time units. The equilibrium is stacked
from time-unit equilibria. An open problem is a multiplicity of equilibria (on some time units) leading to a multiplicity
of equilibrium stacks. Another open question is how to deal with a 3-person game in which the time interval can be
changed or shifted by an integer number of time units.

Objective. The purpose of the paper is to expand and develop the tractable method of solving 3-person games played
within players’ finite sets of staircase functions for the case when the length of the time interval on which the 3-person
game is defined is varied by an integer number of time units.

Methods. To achieve the said objective, a 3-person game, in which the players’ strategies are staircase functions of time,
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions. The time can
be thought of as it is discrete due to the time interval is comprised of time units (subintervals). Then the set of possible
values of the player’s pure strategy is discretized so that the player possesses a finite set of staircase functions.

Results. The known method is expanded to build a single pure-strategy equilibrium stack in a discrete-time stair-
case-function 3-person game. The criterion for selecting a single equilibrium solution is to maximize the players’
payoffs sum. In the case of a time-unit shifting, this criterion allows extracting the respective best staircase-function
equilibrium pure strategy of the player in any “narrower” subgame from the player’s best staircase-function equilibrium
pure strategy in the “wider” game.

Conclusions. A tractable and efficient method of finding the best pure-strategy equilibrium in a 3-person game played in
finite or uncountably infinite staircase-function spaces is to solve a succession of time-unit 3-person games, whereupon
their best equilibria are stacked into the best pure-strategy equilibrium. To deal with the case when not every time-unit
3-person game is solved in pure strategies, an effective way is to put a staircase-function game on hold-up on those
time units which do not have pure-strategy equilibria. The result of putting the staircase-function game on hold-ups is
that the player will obtain one’s best staircase-function equilibrium pure strategy with gaps, whichever the time interval
and time-unit shifting are.

Keywords: game theory; payoff functional; 3-person game; staircase-function strategy; trimatrix game; staircase-func-
tion equilibrium pure strategy.

Introduction

In practical tasks, noncooperative 3-person
games are well-posed and easy-to-interpret models
to rationalize the distribution of real-world resourc-
es, funds, energy, facilities, tools, etc. [1, 2]. Along
with 2-person games, 3-person games are the most
applicable models of rationalization in economics

[2, 3], ecology [2, 4, 5], social sciences [6], politics
[7], government |3, 8], sports [8, 9]. Even games in
which players possess just two pure strategies have
a good practical impact. For instance, a problem
of rationalizing industrial wastewater treatment con-
sidered in [4, 5, 10, 11] is solved by using dyadic
3-person games. As industrial enterprises may vi-
olate conventions about water treatment, they are
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fined. The fines are directed to control water pol-
lution by measuring it and treating wastewater ad-
ditionally, if necessary. However, an enterprise may
reduce or stop its manufacturing under threat of
heavy fines. This results in a budget cut for water
resources conservation and recirculation. The dyadic
3-person game models a process of balancing the
fines. As a result, the balancing allows industrial en-
terprises to keep functioning along with satisfactory
water recovery.

In particular, the dyadic 3-person game solu-
tion in [4] was searched in the form of equilibrium
on a regular finite lattice of situations obtained by
sampling the continuous set of those situations. An
approximate solution was found using concessions in
the equilibrium, where the cost for water treatment
system application was a conventional unit for each
enterprise per a period of time (a day, a week, or a
month). By that solution, the water treatment system
is turned off for 3 periods of 10, and the 2-fine (a
range of the fine for when only two enterprises do
simultaneously not treat wastewater) is optimally set
at 0.34 units, whereas the 3-fine (a range of the fine
for when no one treats wastewater) is set at 1.394
units. Obviously, switching from “clean” to “pollut-
ing” manufacturing and backwards can be controlled
once per those 10 periods under the corresponding
water treatment schedule. In such a schedule, the
enterprise develops one’s metastrategy which, in fact,
appears to be a primitive staircase function of time.

Games played with staircase-function pure
strategies have been recently studied in [12, 13]
and, in a more peculiar way, [14, 15]. Whereas an
ordinary (“classical”) pure strategy of the player is
a simple (point) action whose duration is usually
negligible and represented as just a (time) point, a
staircase-function pure strategy is a complex process
comprising a series of simple actions (moves, de-
cisions, changes, strikes, etc.). The staircase-func-
tion pure strategy is defined on a time interval. The
time interval is broken into a set of time subinter-
vals (units), on which the strategy is (approximately
considered) constant. In fact, a pure staircase-func-
tion strategy can be considered as an ordinary mixed
strategy unfolded over the time interval. A mixed
staircase-function strategy is a far more complicated
case, where at least a unit corresponds to an ordi-
nary mixed strategy. The composition of ordinary
pure and ordinary mixed strategies that a player
has to switch through time units is a model whose
practical implementation requires a definitely great
number of game repetitions [4, 5, 10, 11, 16, 17].

If each of the three players possesses a finite
number of staircase-function pure strategies, the re-

spective 3-person game is finite. The finite 3-per-
son game can be represented as a trimatrix game,
whichever pure strategy form is. If pure strategies
are staircase functions (of time whose duration is
broken into time subintervals or time units), the
respective finite 3-person game can be called the
trimatrix staircase-function game [1, 13]. Clearly,
the number of pure-strategy situations in a trima-
trix staircase-function game grows immensely as the
number of time units (“stair” subintervals) increas-
es, or the number of possible values of the player’s
pure strategy increases, or they both increase [14,
18, 19]. For instance, if the number of time units
is just 4, and the number of possible values of every
player’s pure strategy is 8, then there is a finite set of

8 = 4096

possible pure strategies (i.e., 4-subinterval staircase
functions of time) at this player. The respective tri-
matrix staircase-function game has a size of

4096 x 4096 x 4096,
and so there are
8*.8%.8% =4096-4096 - 4096 = 68 719 476 736

pure-strategy situations (more than 68.7 billion ones)
in this game. If an additional time unit is (somehow)
included, the game size increases dramatically: there
are

8 .8°-8 =32768-32768-32768
=35184 372 088 832

pure-strategy situations (more than 35.1 trillion
ones!) in the respective

trimatrix 32768 x 32768 x 32768 game.

Obviously, solving 3-person games of such gigantic
sizes is intractable, let alone that there is no univer-
sal algorithm for solving any finite 3-person game
played with ordinary (“classical”) pure and mixed
strategies [19, 20]. Solving 3-person games in stair-
case-function pure strategies is always possible, but
it takes too much computational resources even if
there are a few time units.

For the equilibrium solution type, a method of
solving a 3-person game played in staircase-func-
tion pure strategy spaces was presented in [13]. The
spaces can be finite and uncountably infinite (con-
tinuous). The method is based on stacking equilib-
ria of “short” 3-person games, each defined on a
time unit where the pure strategy value is constant.
In the case of finite 3-person games, the stack is
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any interval-wise combination (succession) of the
respective equilibria of the “short” trimatrix games
(including equilibria in mixed strategies). Unlike
the straightforward approach to solving directly
the “long” 3-person game (finite or infinite), the
presented method “breaks” the “long” game into
a succession of “short” games, making thus its solv-
ing tractable. However, an open problem is a multi-
plicity of equilibria (on some time units) leading to
a multiplicity of equilibrium stacks. Another open
question is how to deal with a 3-person game in
which the function-strategy can be redefined on a
changed time interval (e.g., shifted by an integer
number of time units) [21, 22]. For instance, if the
pure staircase-function strategy is indeed considered
as an ordinary mixed strategy unfolded over a time
interval, but the number of game rounds is short-
ened, the time interval should become shorter [13,
16, 18, 23, 24]. Such game-interval modifications
may occur frequently, and respective game solutions
must be found even faster.

Problem statement

Reasoning from the mentioned issues, the ob-
jective is to expand and develop the tractable meth-
od of solving 3-person games played within play-
ers’ finite sets of staircase functions [13, 14] for the
case when the length of the time interval on which
the 3-person game is defined is varied by an integer
number of time units. The solution type is equilibri-
um in staircase-function pure strategies, where it is
presumed that such an equilibrium exists. The case
when the player possesses an uncountably infinite
set (space) of staircase functions is to be considered
as well. To meet the objective, the following eight
tasks are to be fulfilled:

1. To formalize a 3-person game, in which the
players’ strategies are functions (of time) defined
on a time interval. In such a game, the set of the
player’s pure strategies is a continuum of functions.
Such function-strategies are presumed to be bound-
ed and Lebesgue-integrable.

2. To formalize a 3-person game, in which the
players’ strategies are staircase functions defined on
the time interval. In such a game, the set of the
player’s pure strategies is a continuum of staircase
functions (of time). The time can be thought of as
it is discrete due to the time interval is comprised of
time units (subintervals).

3. To discretize the set of possible values of the
player’s pure strategy so that the game played with
staircase-function strategies be defined on a product
of staircase-function finite spaces.

4. To expand and develop the known meth-
od of solving 3-person games (the solution of the
pure-strategy equilibrium type) played in stair-
case-function finite and uncountably infinite spaces
by considering a possibility of narrowing the time
interval on which the 3-person game is defined. In
addition, a method of selecting a single pure-strate-
gy equilibrium should be suggested.

5. To suggest a way of solution when not every
“short” 3-person game is solved in pure strategies.

6. To give an example of how the suggested
method is applied.

7. To discuss practical applicability and scien-
tific significance of the method for the game theory
and operations research.

8. To make an unbiased conclusion on the
contribution to the game theory field. An outlook
of how the study might be further developed is to be
made as well.

3-person game played with pure strategies as
functions of time

In a 3-person game, in which the player’s pure
strategy is a function of time, each of the players
uses time-varying strategies defined almost every-
where on interval [7; t,] by #, > ;. Pure strategies
of the first, second, and third players denoted by
x(7), (1), and z(f), respectively, are presumed to be
bounded. Besides, the square of the function-strate-
gy is presumed to be Lebesgue-integrable [25]. Thus,
pure strategies of the player belong to a rectangular
functional space of functions of time:

X ={x(1),1€[t;1,],

Z‘l < t2 : amingx(t)gamax
by amin<amax}CL2 [t17t2] (1)
and
Y ={y(), t e[t t,], 1< 1, b < Y(1)< by,
by bmin < bmax} = L2 [tl’ t2] (2)
and
Z ={z(1), 1 €[t 0,), 1< 1y €y U <y
bY Coin < Cox ) © Lo [15 1, ] 3)

are the sets (sometimes referred to as action spaces)
of the players’ pure strategies.
The player’s payoff in situation

{x(1), (1), 2(1)} 4)
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is presumed to be an integral functional [12, 13, 14,
15, 25]. Thus, the first, second, and third players’
payoffs in situation (4) are

of uncountably infinite rectangular functional spaces
(1)—(3) of players’ pure strategies. An example of a
situation in 3-person game (11) is given in Fig. 1.
There are no restrictions to the strategy form the

F(x(1), y(t), (1)) players can use. In the example, the first player uses
= J £ (x(@), y(2), 2(2), 1) du(), (5) 2 sinusoidal strategy with an exponential growth,
[1:6] the second player uses a curvilinear strategy, and
the third player uses a close-to-straight ascending
G (x(1), ¥(1), 2(1)) line strategy. Each of sets (1)—(3) is a continuum
of functions including a subset of staircase functions
- j g (x(0), (1), 2(1), 1) du(1), (6) (this subset is a continuum as well).
[4:%] In general, the player’s payoff functional may
have a terminal component. Thus, instead of (5)—(7),
H (x(1), y(0), 2(1)) the players’ payoffs in situation (4) may be calcu-
= j h(x(1), y(1), 2(t), 1) du(?), (7) lated as
[ll;fz]
F(x(1), y(0), 2(1))
respectively, where
pectivey = [ £(x), y(@), 2(0), 1) dp(o)
S (x(®), y(1), 2(1), 1), ®) [1: 2]
+T, (x(t)), y(1,), 2(t,), 1,), (13)
g(x@), y(1), 2(1), 1), )
H(x(0), 3600, 200 10) G (x(1), (1), (1))
x(1), y(1), z(t), t
(xte). ¥ ) = [ &(x@), y@), 2(0), 1)dp(r)
are functions of x(7), y(7), z(f), explicitly including [1: 2]
time . Therefore, a 3-person game +T, (x(1,), ¥(1), 2(1,), 1,), (14)
G(x(1), y(1), (1)), H(x(1), y(1), z(t))}) (11) = [ h(x@), y(0), 2(0), 1) dp(®)
[150]
is uncountably infinite due to it is defined on product AT, (x(1), ¥(t), 2(8,). 1,) (15)
X xY xZ cL,[t; 4,]xL, [t; ,]xL, [t; 1,] (12)
x(1) y(1) z(r)
amax ‘ bl ‘ c ,‘
Dy
b
amin [ cmi
2 7 2 2 2 5

Fig. 1. A situation (4) in 3-person game (11) played in uncountably infinite functional spaces (1)—(3)
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by some terminal functions [26]

T, (x(1), y(1,), 2(1,), 1,), (16)
T, (x(1,), y(1,), 2(1,), 1,), (17)
T, (x(1,), (1), 2(1,), 1,), (18)

depending on only the final state of the player’s
strategy, but this case is not to be considered here.

3-person game played with staircase-function
strategies through discrete time

Presume that the players’ pure strategies in
game (11) can change their values only a finite num-
ber of times. Denote by N the number of time units
(subintervals) at which the player’s pure strategy is
constant, where N e N\ {1}. Then the player’s pure
strategy is a staircase function having at most N dif-
ferent values. Let there be a time-interval breaking

O={f=1"<t®<@®<...

<tV <™ =1, (19)
where {t”}"' are time points at which the stair-
case-function strategy can change its value. Generally
speaking, time-interval breaking (19) is not equidis-
tant, although in most practical cases it is equidis-
tant, i.e.

@ 2EhTh Gy L TN 0

The staircase-function strategies are right-continu-
ous [12, 13, 14, 15, 25]:

lilgqx(r(” +e)=x(19), (21)
£—0
lirgly(r([) +e)= y(t(i)), (22)
£—0
lim ¢ (1" +¢) = z(?) (23)

e>0

for i=1, N -1, whereas (if the strategy value
changes)

ljr(}’lx(r(i) —g) = x(¢?), (24)
e—0
limy(z? —¢) 2 y(z?), (25)

>0
e—-0

limz (49 —) # 29 26)

e>0

for i =1, N —1. In the end time point, obviously,

Ligglx(r(N) —g)= x(r(N)), (27)
£>0
lgi>rony(r(N) —g)=y(™), (28)
e>0
limz (1" —¢) = z(«"). (29)
550

A 3-person game played with staircase-function
strategies through discrete time can be defined by
using (1)—(12), (19)—(29).

Definition 1. 3-person game (11) defined on
product (12) of rectangular functional spaces (1)—(3)
is called a discrete-time staircase-function 3-person
game by time-interval breaking (19), if (21)—(29)
hold and

x(t) = o; €[ oy |5

V(1) = B; € [buin’ by ]
2(t) =7, € [Coins Coax | V1 € [r“’”; t(”)
fori=1, N-1and x(t)=a, [a
() =By € [buin’ b |5
A1) = vy €[Cn Cuu] VI[N AM ], (30)

a

min ? max]’

where the factual payoff of the first player in situ-
ation

A 31)
is
F(oy, B;sv,)
= .[ f(a’i’Bi’ Y,-,f)du(f)
[t(ifl); r(i))
Vi=1, N-1 (32)
and
Fy(oy, Bysvw)
- ,[ Sy, By, vy, Ddp(), (33)

[r‘”"’; I<N>J

the factual payoff of the second player in situation
(31) is
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= I g(("i’ Bn Y,-,f)du(f)

[r“’“; t(i))

Vi=1, N-1 (34)
and
GN(aNs BN’ YN)
- j glay, By, v, A1), (35)

[I(N—D; r‘N’J

the factual payoff of the third player in situation
Bl)is
Hi(aii Bi’ yl)
= j h(a[: B[a Yis t)dH(t)

[T(ifl); T(i))

Vi=1, N-1 (36)
and
Hy (o, Bysvy)
= [ hay, By, vy, Ddu@.  (37)

[T(N—D;T(N)J

Situation (4) in the discrete-time staircase-function
3-person game is a stack of successive situations

(C A (38)
in a succession of N (ordinary) 3-person games
({l@in G ] i B ] [Cins Con 1}
{0 By 15 Gy(as Bro )y Ho(, By 1)}
for i=1, N (39)
defined on product
[@min’ e 1% [Brins D ] [€ins €] (40)

by (30)—(37). Stacks {o,},, B}, {y,}7, are called
staircase-function pure strategies of the respective
players.

According to Definition 1, let a discrete-time

staircase-function 3-person game by time-interval
breaking (19) be denoted by

({X(©), Y(0), Z(®)},
{F (x(0), y(1), 2(1)), G (x(2), (1), 2(1)),

H (x(), y(0), 20))}) (41)

with the players’ pure strategy sets
X(©) = {x(1) e X ([t ,]) : x(t) = a,
€ [ Qe | VT € [r("'); r(i))
fori=1, N-1 and x(¢) = a,
€ [ Qe | VT € [t(N"); ‘C(N):|}

c X (It; 1)) (42)

and

Y(©) = {3 e Y ([1:1,]): 9(0) =B,
€ [bmin; bmax] Vte [T(H); T(i))

fori=1, N-1 and y(t)=,
e[b ) ]Vte[r(N’”;r(N)J}

min > “max

<Y ([1: 1)) (43)

and

Z(0) = {Z(t) € Z([tl; tz]) 1zt =,
S [cmm; cmax] Vite [T(H); r(i))
fori=1, N-1 and z(r) =1y,
€ [Cmm; cmax] Vite [I(N’”; T(N):l}
< Z([1:1,]).

Obviously, discrete-time staircase-function 3-person
game (41) is uncountably infinite as each of sets
(42)—(44) contains a continuum of function-strate-
gies. An example of situation (4) in a discrete-time

staircase-function 3-person game played through 28
time units (subintervals) is given in Fig. 2, where

(44)

RN Sl BV T

28

T

The exemplified pure-strategy situation of three
staircase functions can be also represented as a stack
of 28 successive situations

oy, By Yi}}fjl

of 28 ordinary 3-person games (39), where each or-
dinary pure-strategy situation
(o, B,,7,} for i=1,27

corresponds to a time unit (subinterval) [r“’” ; r“))
and ordinary pure-strategy situation
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x(1) () z()
max b Chax
max [
byin 1
gt Conin |
4 6) 8 (W) (|) H-’U ﬂf") ‘(IK" ‘[Zl)‘) 1’2" ‘[Z-’“) ‘[Z(“) - - Z) 4) l() (R) “0) ‘(|Z‘) ‘(\4‘) ‘“6‘) ‘(|X‘) ‘(Zﬂ‘) ‘(Z") “24‘) “26‘) - — l‘" ‘14‘ ‘M‘ ‘X)‘ ‘HU‘) ‘“Z; l|4‘) h(‘) l”‘) l"U‘D ‘(2"‘) lZ-/“) lZ(‘) 3
t, ‘r”‘r”‘r"‘r”t FaRR 119 022200 t t‘ t“r 1 T 00 (0B D 00 t 1P O O 100D 0D 009 L0020 C0

Fig. 2. A situation (4) in discrete-time staircase-function 3-person game (41), where the strategies are “digitized” versions of those
strategies in Fig. 1; the game is played in uncountably 1nﬁn1te functional spaces (42)—(44); the exemplified pure-strategy sit-

uation is a stack of 28 successive situations {{o,, B;, v, }}

{azxa Bas> st}

corresponds to a time unit (subinterval)

[1(27); 1(28):| _ [1(27); tz:'-

Time-interval breaking (19) allows considering
payoffs (5)—(7) in situation (4) equivalent to the sum
of respective payoffs (32)—(37). The proof is built
by an analogy to that in [14]. Another way to prove
(based on 2-person games) can be found in [12].

Theorem 1. In a pure-strategy situation (4) of
discrete-time staircase-function 3-person game (41),
payoff functionals (5)—(7) are re-written as time-
unit-wise sums

(X(t) ), Z(t) :Z an ,,'Y

i=l1
-1

= j f(aivﬁzvyf’t)du(t)

g [j (N,; f)(aN, By tys )R (45)
and |

G (1), 500, ) = 3G, (0. B 1)

- Nll[ m)g(a,-, B, v,, 7)du(r)

| ’g(aN,BN,vN,t)er) (46)

[T‘N’”;r“‘”}

and

H(x(0), 3(0), <)) = 3 H, (0, B, 7,)
3
i=1 I:(lfl);.[(f))

- .[ h(aN’BNa Y}v;t)dl.l(t),

[T(N—I);T(N)]

h(o, By y;s t)dult)

(47)

where situation (4) is a stack of successive situations
(38) in a succession of N 3-person games (39).
Proof. Time interval [#; #,] can be re-written as

[1:0]= {NUI[TM; T“) )} U[¥ e ™ ] 48)

Therefore, the property of countable additivity of
the Lebesgue integral can be used:

F(x(1), y(0), 2(0))
[ F(x@), y0), 2(1), 1)du(r)

[151]
- j
Ut eoupenoie

N-1

I (x(0), y(1), z(1), t)du(r)

[ F(x@), y(), (1), 1)du(r)
i=1 [tufn; r(i))
[ (@), y@), 2(0), 1) dud).
[I(N’”;r(m}

(49)
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Owing to (30), x(#) = o, and y(f) =B, and z(¥) =v,,
so (49) is simplified as

N-1

[ 7 (x@), y(0), 20), 1)du()
i=1 [[(H); t(i))

+ | S,y 2(0), 1)du()
[(N—l), (N)]

N-1

z J- f(ai’Bi’ Yi’t)du(t)
i=1 [(;—1);1([))

* .[ f(aN’BNs VN:t)dH(I)
[tw—l). (N)J

N

F; al’ IS’Y (50)
i=1

Consequently, in discrete-time staircase-function
3-person game (41), time-unit-wise sum (45) holds
in any pure-strategy situation (4) consisting of stair-
case-function strategies

x(1) e X(®), y()eY(®), z(t)e Z(O).
Obviously, time-unit-wise sums (46) and (47) are
proved similarly to (48)—(50). [

Theorem 1 provides a fundamental decompo-
sition of the discrete-time staircase-function 3-per-
son game based on the time-unit-wise summing in
(45)—(47), regardless of whether the player’s action
space is finite or not. Although Theorem 1 itself does
not provide a method of solving the game, it hints
about how the game might be solved in a far easi-
er way [12, 13, 14]. The time-unit-wise decomposi-
tion allows us to try finding an ordinary pure-strategy
equilibrium in each game (39) separately, whereupon
these equilibria are stitched (stacked) together [13].
Nevertheless, even a finite game (39) may not have
an equilibrium in pure strategies, let alone the case
when game (39) is infinite. So, in further investiga-
tion, it is presumed that every time-unit game (39)
has a pure-strategy equilibrium.

A presumption about discrete-time stair-
case-function 3-person game (41) has an equilib-
rium in staircase-function pure strategies (i.e., this
equilibrium is a triple of staircase functions) is equiv-
alent to the presumption of that every time-unit
game (39) has a pure-strategy equilibrium (which is
a stack of time-unit equilibria). If this pure-strate-
gy equilibrium stack is single, then every time-unit
game (39) has a single pure-strategy equilibrium and
vice versa [13].

Trimatrix staircase-function game

In a discrete-time staircase-function 3-person
game (41), let the set of possible values of every player
be finite. This can be done, e.g., by forcing the player
to act within a finite subset of possible values of its
pure strategies. Formally, the player’s pure strategy
set is discretized (sampled). The first player’s set of
possible values of its pure strategies is discretized as
=a" <a" <a? <.

min

A:{a

<a"V<a™ =a, } (51)

and the second player’s set of possible values of its
pure strategies is discretized as
B={b,=b" <b” <b? <.

<b®P <p® =b,.|

max

(32)

and the third player’s set of possible values of its
pure strategies is discretized as

C= {c
<P <™

= <V <c? <.
= cmax}

by M eN and Qe N and § e N, where

min

(33)

a" " =a"" vi=1, N for m=1, M +1 (54)
and
bV =pV vi= LN for ¢g=1,0+1 (55)
and
V=D vi=1,N for s=1,S+1L (56)

This means that along with the discrete time units
(subintervals), the players are forced (somehow) to
act within finite subsets of possible values of their
pure strategies

A={a"" (57)

and
{b(q 1)}5*}' (38)

and
C = {cts) 59
G (59)

Discretizations (51)—(56) allow defining a finite dis-
crete-time staircase-function 3-person game, which
is a trimatrix staircase-function game.
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Definition 2. Discrete-time staircase-function
3-person game (41) is called a trimatrix staircase-func-
tion game if it is played on a product of finite subsets

X (0, A)
_ {x(t) e X(®): x(f) e {a(m—])}Mﬂ}

c X©) < X([1:1,]) (60)

and

Y(®, B) = {y(t) e ¥Y(©):y(n) e {b“””}f:}

cY(@©) Y ([h:1)]) (61)

and

Z(0,C) = {z(t) € Z(©):z2(t) e {C“‘”}f:}

cZ©) < Z([1: 1)) (62)
of sets (42)—(44). The trimatrix staircase-function
game is denoted by

({X(®, 4),Y(0, B), Z(©, C)},
{F(x(0), y(1), 2(1)), G (x(1), y(1), 2(1)),
H (x(0), y(0), 20))})

by sets (42)—(44).

An example of finite sets (60)—(62) of stair-
case-function pure strategies in a trimatrix stair-
case-function game is presented in Fig. 3. The players
can change their pure strategy value at most twice.
Even such a pretty hard restriction grants 64 pure stra-
tegies to the first player, 27 pure strategies to the sec-
ond player, and 125 pure strategies to the third player.

Obviously, the exemplified trimatrix stair-
case-function game can be “broken” into a succes-
sion of three ordinary trimatrix 4 x3x 5 games, each
related to its time unit (of those three units). In [13],
such ordinary games were called “short”. In general,
“breaking” trimatrix staircase-function game (63)
into a succession of “short” games can be defined
as follows.

Definition 3. Trimatrix staircase-function game
(63) is a succession of N trimatrix games can be
defined as follows.

<{{a(m7|)}:’:"ll ’ {b(q—l)}q(-):ll , {C(S*‘)}:l}’ {F., G, H,}‘>

for i=1, N (64)

(63)

with the first player’s payoff matrices

F = [(pfmqs :I(M+1)><(Q+I)X(S+l) (65)
whose elements are
Ouge = | S (a7, 6, O 1) du(r)
[7:<7)
for i=1, N-1 (66)
and
Ormgs = [(a™™, 6, ¢ 1) du(), (67)

[T(Nfl); .[(N)]

with the second player’s payoff matrices

G: = [Puns Jirerpigennsao (68)
whose elements are
Pings = [TM.[ Tm)g(a(’””, b b t)dp(t)
for i=1, N-1 (69)
and
P Nimgs = g(a(’"’”, b, b, t)du(t), (70)

[T(Nfl); T(N):I

and with the third player’s payoff matrices

H, = [0 ]y 1y0uisn (7n
whose elements are
s = h(a"""’, b, b, l‘)du(t)
for i=1, N-1 (72)
and
O gy = h(a™ ", 6, ¢, 1)du(r). (73)

[T(N—l);t(N)}

Situation (4) in the trimatrix staircase-function game
is a stack of successive situations
N
{{a;m—l)’ bi(q—l), c;m)}} (74)
i=l1
in the succession of N trimatrix games (64) by
(54)—(56).
According to Definition 3, the assertion of

Theorem 1 for trimatrix staircase-function game
(63) can be re-written as
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X(©,4) by A:{a(o),a“),a(z),a(z)} Z(0,C) by C={c(o),c(l),c(z),cm,c(4)}
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Fig. 3. An example of finite sets (60)—(62) of staircase-function pure strategies in a trimatrix staircase-function game played with
3-time-unit staircase functions of time, where the first, second, and third players have four, three, and five possible values of
their pure strategies, respectively
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F(x(0), y(0), 20)) = 2 @ings

-1

-5

i=1 [T(H); T(i))

+ [ f(am e, O ) du@),  (75)

[T(N l);T(N)]

£(@"™, 69, ¢4, 1) d(r)

G(X(t), y(t), Z(t)) = Zpimqs

N-1
- I g(a(’”’”, b, e, t)du(t)
i=l1 [1“’[);1("))
+ I g(a('ml), b(qil)a c(kl)a t)dl,l(t), (76)
[,((N l);T(N)]
N
H(x(t)a y(t)a Z(t)) = Zeimqs
i=l1
-1
=> [ A(a" B, Y h)du)
i=l1 [1“’[);1('))
+ [ k(@ B, O 1) du(). (77)
[r(N l);T(N)]

It is worth remembering that, owing to (54)—(56),
the first player’s payoff in situation

fam D, B, o) (78)
is (66), (67), the second player’s payoff in situation
(78) is (69), (70), and the third player’s payoff in
situation (78) is (72), (73).

Pure-strategy equilibrium stack

In most practical problems, if time-unit game
(39) is solved in pure strategies, there often are
multiple equilibria (or even a continuum of equi-
libria). So, as it is presumed that every time-unit
game (39) has at least a pure-strategy equilibrium,
then some time-unit games may have multiple
pure-strategy equilibria. The question is how to se-
lect a single equilibrium. To do this, the criterion
of maximizing the sum of players’ payoffs is used
[12, 14, 18, 19, 23].

Theorem 2. If

{of, B, 71} (79)

is an_equilibrium situation in 3-person game (39),
i=1, N, and maximum

max*}{F,- (0. B, 7;)

o, Bisvi
+G, (0‘?! :’ Y?)"' H, (0(?, Bj’ Yj)}
=F (aj*’ BT*’ Yf*)+ G, (0':*9 Bj*’ Yr*)

+H, (o B 7)) (80)
is reached at an equilibrium situation
{o) 3,7 (81)

in this game for i =1, NV, then the maximum of the
players’ payoffs sum in a pure-strategy equilibrium
stack of discrete-time staircase-function 3-person
game (41) is reached at a stack

(o B0 (82)
and this maximum is
N
= Y[ F (e B
+ G (o) B0 )+ H (o B 1) ] (83)

Proof. As (81) is an equilibrium in game (39),
then stack (82), owing to Theorem 4 in [13], is an
equilibrium in staircase-function pure strategies in
game (41). Owing to Theorem 1, the first, second, and
third players’ payoffs in equilibrium stack (82) are

Wy = F (" B, (84)
i=1
*%k N *k *k ok
viv = 2.6 (o B ), (85)
i=1
W:?V = iH: (OL;*, B;*a Yj* )s (86)
i=l1
respectively. Then
e = (0 B)
SYG (o By ) Y H, (0 B )
i=1 i=1
N
=2 LA a8 )
Gy (o] By )+ H (o B, 7]
N
= ,Z:;‘{afnﬁ?)i,}{li (ai’ Bis Yi)
+G (o), Brv) )+ H (o, By )} (8)

where (87) is the sum of all N maxima (80). [



26 KPI Science News

2025/ 1

Theorem 2 suggests a method to select the
best pure-strategy equilibrium stack. Clearly, the
method is correct for both discrete-time stair-
case-function 3-person game (41) and trimatrix
staircase-function game (63). Consider now the
case when a discrete-time staircase-function 3-per-
son game is played through a lesser number of time
units. Thus, instead of time-interval breaking (19),
the game is played by a narrower time-interval
breaking

0. = {tlérl =1 <™ < gD o

<UD <« ¥ = 12<t2},

(88)
where

ne{o, N—l}, Ue{l, N}, n<U, (89)
and {r“’}:il are time points at which the stair-
case-function strategy can change its value. So,
®. c ® in terms of the interval breaking.

Theorem 3. If (79) is an equilibrium situation in
3-person game (39), i=n+1,U by (89), and max-
imum (80) is reached at an equilibrium situation
(81) in this game for i =n+1, U, then the maxi-
mum of the players’ payoffs sum in a pure-strategy
equilibrium stack of discrete-time staircase-function
3-person game

({X(©.),Y(©.), Z(0.)},
{F(x(0), y(0), 2(0)), G (x(1), y(t), 2(1)),
H (x(2), y(0), 2(0))}

by time-interval breaking (88) is reached at a stack

(90)

flor B0, o
and this maximum is
U
DPENLICA S
G (o, By )+ Ho (o) B 7)) 92)

Proof. As (81) is an equilibrium in game (39),
then stack (91), owing to Theorem 4 in [13], is an
equilibrium in staircase-function pure strategies in
game (90). Owing to Theorem 1, whose assertion
remains correct for game (90) by only changing the
time interval endpoints to 1, = t” and 1, = 1, the
first, second, and third players’ payoffs in equilibri-
um stack (91) are

Wy = Y F (o B ), (93)
i=n+1
kK U *% *% *%
Vv = Z Gi (ai ) Bi > i )’ (94)
i=n+l
W:il,U = i Hi (OL:*, B:*’ Yj* )’ (95)
i=n+l
respectively. Then
”Zl,l/ + V:il,z/ + W:il,z/
= ilE (a:‘ﬁ*s Bj*ﬂ Y:*)"' i Gi ((lj*, Bj*s Y:*)
i=n+ i=n+l1
W AT
i=n+l
U
= ‘ZI[E (0 B 7 )+ G (o, B s 7 )
B o )]
-3 max {F (o B+ G, (5 )
i=n+11\%i> PisYi
+H, (0, B, 7; )} (96)

where (96) is the sum of all U- » maxima (80). [
It is quite obvious that

(o8} e flor Bl

regardless of whether it is a discrete-time stair-
case-function 3-person game (41) or a trimatrix
staircase-function game (63). That is, the best
pure-strategy equilibrium stack (82) in a “wider”
game contains the best pure-strategy equilibrium
stack (91) in a “narrower” game. Therefore, Theo-
rem 3 along with Theorem 4 in [13] imply that the
time-unit shifting does not change the structure and
number of pure-strategy equilibria (it can be also a
continuum on a time unit) in a discrete-time stair-
case-function 3-person game, nor does it change the
structure of the best pure-strategy equilibrium stack
determined by the maximum of the players’ payoffs
sum. In fact, game (90) is a subgame of discrete-time
staircase-function 3-person game (41). A pure-stra-
tegy equilibrium solution of the subgame can be eas-
ily taken from the respective pure-strategy equilibri-
um solution (if it exists) of “wider” game (41). The
best pure-strategy equilibrium stack consists of the
same pure-strategy equilibria being the best for the
given time units (on which the respective “short”

97)
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3-person games are played), whichever time interval
encloses those time units.

When not every “short” 3-person game is solved
in pure strategies

It is likely that, as the number of successive
time units increases, there may appear at least one
“short” 3-person game without any pure-strategy
equilibria. So, if mixed-strategy solutions are un-
acceptable, then what to do in this case? Are the
proved assertions and the method of selecting a sin-
gle pure-strategy equilibrium still relevant then?

In fact, the existence or non-existence of
pure-strategy equilibria in a time-unit 3-person
game does not depend on any other time-unit
game, nor does it influence the others. Therefore,
an equilibrium on a time unit would not influence
the equilibrium stack if the time unit was deleted
(canceled, annulled, etc.). Consequently, it is suffi-
cient to put the “wider” game on hold-up on those
time units which do not have pure-strategy equilib-
ria. In practice, it is closely equivalent to hold on
while certain changes are done in the system. On
the other hand, hold-ups are equivalent to nonwork-
ing days, although the latter are mostly distributed
regularly (say, on weekends and holidays). Anyway,
the hold-up is almost always possible to incorporate.
Then time units without pure-strategy-equilibrium
are just like to “disappear”, and “wider” game (41)
is solved, by this condition, as a pure-strategy equi-
librium stack.

Examples of 3-person games solved in stair-
case-function pure strategies

Consider a finite 3-person game, in which
players’ payoff functionals (5)—(7) are

F(x(1), y(t), 2(1))

- | cos(O.Sxyzt—%je‘o'oo'”’du(t), (98)
[1:8]
G (x(1), ¥(1), 2(1))
= sin(0.6xyzt+g]du(t), (99)
[1:8]
H (x(1), y(1), 2(1))
- j sin(0.9xyzt—%jdu(t), (100)
[1:8]

discretizations (51)—(53) are such that finite subsets
(57)—(59) are

A={a") ={0.5+0.5m)  <[1;5], (101)

B={p"} ={68+0.2g)" <[7:9], (102)

C={c*) =(3.9+0.1s) < [4:4.8], (103)

1

and the players are allowed to change their pure
strategy values only at time points (the time-interval
breaking is equidistant)

{T(i)}?:l = {1-41r + O-ITEi}?:l (104)

by ¢, =1.4n, t, =2.4n

This finite 3-person game is a trimatrix stair-
case-function game being a succession of 10 trima-
trix games

({0.5+0.5mp . {6.8+0.24})),

(3.9+0.1s)_}. {F. G, Hl.}> (105)

with the first player’s payoff 9x11x9 matrices (65)
E =[O |y (1006)
whose elements (66) and (67) are
Pimgs

= j cos(O.8~(O.5+0.5m)
)

[1.3n+04lni; 1.47+0.17i

x(6.8+0.2¢)(3.9 +0.15)7 - gj

y e—O.OOl-(6A8+0A2q)(3A9+0Als)tdu(t)

for i=1,9 (107)

and

(PIqus =

| cos(o.s -(0.5+0.5m)

[2.37; 2.4x]

x(6.8+0.2¢)(3.9+0.1s)7 - %)

« e—O.OO1~(648+0,2q)(3,9+0.ls)tdu(t)’ (108)

with the second player’s payoff 9 x11x 9 matrices (68)
Gf = [pfqu]9x11x9 (109)
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whose elements (69) and (70) are
pimqs

- _[ sin (0.6~(O.5+0.5m)
)

[l.3n+0Alni; 1.47+0.1mi

x(6.8+0.24)(3.9+0.1s) 7 + gj du(7)

for i=1,9 (110)

and

plqus =

j sin [0.6 -(0.5+0.5m)

[2.37[; 2.47[}

x(6.8+0.2¢)(3.9+0.15)7 +gjd;,t(t), (111)

with the third player’s payoff 9x11x9 matrices (71)

H =6, ., (112)
whose elements (72) and (73) are
eimqs
= | sin(0.9 -(0.5+0.5m)
[1.37+0.1mi; 1.47+0.17i)
x(6.8+0.29)(3.9+0.15)7 —gjdu(t),
for i=19 (113)
and
i xoo ¥

7.6

7.4

7.2

0 sin(0.9 -(0.5+0.5m)

10mgs =
[231‘[; 2441(]

x(6.8+0.29)(3.9 +0.1s)7 - gj du(r).  (114)

Each of the 10 trimatrix games (105) by
(106)—(114) is solved in pure strategies. The num-
bers of pure-strategy equilibria on time units

{137+ 0.1i; Ldm+ 0.1mi)}) | [23m 2.4x]f (1)

are 1,2, 1, 1, 1, 1, 3, 1, 1, 1, respectively. The best
pure-strategy equilibrium stack

flar o)) =fla o)
= (X", 5" (). 5" )
by

' cA={05+05m) . b cB={68+02q)"

9
m=1"> i

¢'eC={39+0.1s}

1 b

at which the maximum of the players’ payoffs sum
Piyo by (83) is reached, is presented in Fig. 4, where
the equilibria on time units

[1.57; 1.6n), [2m;2.1n), (116)

which do not contribute to the maximum, are shown
with square-dotted line. Note that the first player’s
equilibrium strategies @, =2.5 and a, =2.5 not

.
z, ()
4.8
4.7
4.6
4.5
4.4
uuuuuu
4.3
4.2

uuuuuu

4.1

An 1.5n 1.6n 1.77 187 191 2rn 2.1n 2.2n 2.3n 2.4xn

A4n 1.5n 1.6n 1.7n 1.8n 197 2n 2.1n 221 231 2.4n

An 1.5n 1.6n 1.7n 1.8n 191 2rn 2.1n 2.2n 2.3n 2.4xn

Fig. 4. The best pure-strategy equilibrium situation (as the triple of the best staircase-function pure strategy for every player) in the
trimatrix staircase-function game being a succession of the 10 trimatrix games (105) by (106)—(114)
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contributing to the maximum on time units (116) are distributed. The best time-unit payoffs
within the respective equilibrium situations

and

just overlap (coincide) with themselves within the

F(d",b",c"), 118
lay, b, ¢} ={2.5,7.8,4.1) (@ ) (e
G(a 0", ¢"), (119)
{a;, b, ¢;} ={2.5,7.8,4.1} H,(a" 5", c") (120)

best equilibrium situations

(@, b, ¢} ={25,8, 4

and

on

in every possible equilibrium situation

{a/, b, ¢} for i

0.06

0.05

0.04

0.03

0.02

0.01

Fig. 5. Payoffs at the end of every time unit in every possible F

in every best equilibrium situation

{a",b",¢"} for i=1,10 (121)

1

are highlighted with squares.
Fig. 6 shows how players’ payoffs

(@, b7, ¢} ={25,8, 4}

(116).

P27 i

U, = ZF(a b,c;) for k=1,10, (122)

Fig. 5 shows how players’ payoffs

F(a/,b,c) (shown as asterisks),

k
v;k:;G(a,,b,,c,) for k=1,10, (123)

G, (a b,c ) (shown as circles),

i Yo

H,(a],b,¢]) (shown as diamonds)

()

o

wlk_ZH(a b,c') for k=110, (124)

i YT

and their best payoffs (highlighted with squares)
1,_10 (117) u;‘;, V:;: Wl*; for k:m (125)

0.29 )
0.28

0.27 ¢ ¢
0.26
0.25
0.24
0.23
0.22
0.21 (]

9
= 0.19

- 0.18 % o *
0.17

0.16 ©l o
0.15 7Y 2
© 0.14 o
0.13
0.12 *
0.11
a 0.1 ©l =
0.09
© 0.08 (@
<o 007} s
0.06
0.05
0.04

* 0.03} [0

B
*

(@]
1=
B
[

T5n 16n 1./n 187 19xn

equilibrium situation (117)

2n

2in 22n 231 ZA4n 158 T6rn L7n 18rn 19r  2rn  2in 22r 231 Z2A4n

. 6. Cumulative payoffs (122)—(124) and best cumulative
payoffs (125) at the end of every time unit

&
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by (84)—(86) develop as the time progresses. In fact, are the resulting payoffs after the end of the trima-

payofts (122)—(125) are cumulative: trix staircase-function game, and
I,[’F = F a*’ b*’ c* 5 v* = G a*, b*’ c* , *% 10 ExS ExS *% % 10 *k sk o
11 1(1 | 1) 11 1(1 I 1) ”1,10=2Fi(ai’bi’ci ), vl’m:ZGl_(ai,bl_,ci ),
* * * * *k *x *x *x i=1 i=1
wy, = H, (a19b1’c1)’ u, :E(al b )s 0
. e . W= H (a6 e
v, =G (al AN )s wy, = H, (al AN ) ho ; ( )
are the payoffs after the first time-unit game, are the eventual (best) players’ payoffs in the trima-

trix staircase-function game being a succession of

U, = IZO:F (aj*’ b, c )’ Vi = IZO“G. (af“, b, c ), the 10 trimatrix games (105) by (106)—(114).
' pr ' pr Fig. 7 shows how the sum of players’ payoffs

10 % * # *
Wi = 2 H,(a, b, ¢]) P =tV +w, for k=110 (126)
i=1
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015 |
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157 16rn 17n 18r 197 2rn 21rn 22n 23n 24n 227 2.3n 24n

Fig. 7. Cumulative payoff sums (126) and (127) at the end of every time unit
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and the best sum of players’ payoffs (highlighted
with thicker line and squares)

Py = Ui +vi +w, for k=110 (127)
develop as the time progresses. Due to there are six
pure-strategy equilibrium stacks, there are six polylines
(126), among which polyline (127) is the best (the
factual payoffs sum maximum is clearly seen).

According to Theorem 3, Fig. 4 contains the
best equilibrium stack in the exemplified stair-
case-function game defined on any subset of time
units (115). In other words, if the time interval in
players’ payoff functionals (98)—(100) is narrowed
by an integer number of time units (either from the
left or right or from both endpoints), it is sufficient
to narrow the time interval in Fig. 4 and extract the
respective part of the best staircase-function pure
strategy for every player. If only right endpoint ¢, is
shifted to some f=1,, then the cumulative payoffs
are those at the respective time-unit end in Fig. 6
(the plot part on (rz; tz] is just cut off) and their best
sum is in Fig. 7 (the best-sum polyline on (t,; ,] is
cut off as well). If left endpoint 7, is shifted to some
t = 1, (regardless of whether the right endpoint is
shifted or not), the cumulative payoffs and their best
sum are to be recalculated. For this, payoffs at the
end of every time unit in Fig. 5 can be used.

Now, what if the exemplified staircase-func-
tion game is continued to play beyond #, = 2.4n?

35F = - -

25F L. - - - ol - - -

1+ - o ke - - = - 4d . -

L 1 1 1 1 1 1 1 1 1

Say, when t#, = 2.4n and ¢, = 20.5n, and the players
are still allowed to change their pure strategy values
only through 0.1n time step, the staircase-function
game does not have a pure-strategy equilibrium
stack because there are many unit-time trimatrix
games not having a pure-strategy equilibrium situa-
tion. However, putting the staircase-function game
on hold-up on those time units which do not have
pure-strategy equilibria allows to obtain the play-
ers’ best staircase-function pure strategies with gaps
(Fig. 8—10). It is up to the administrator (super-
visor, manager, controller, etc.), who defines (or
constrains) the rules of a system to be game-mod-
elled, to “legalize” such gaps. Those gaps are not
necessarily to be holidays or something like that. If,
say, the time unit is a day, then the gap can be a day
during which any activity of the players (personify-
ing some agents on, e.g., a market) is forbidden (or
suppressed) [19, 23, 27].

It is quite clear that, in real-world practice, a
great deal of finite (ordinary) 3-person games do not
have pure-strategy equilibria. In the case when at
least one of the three players possesses an infinite set
(or a continuum) of one’s pure strategies, the exis-
tence of pure-strategy equilibria is far less likely. So,
a “legalization” of pure-strategy solution gaps must
be an additional condition imposed on the game
model.

- . - m e W - - - -—
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Fig. 8. The first player’s best staircase-function pure strategy with gaps



32

KPI Science News

2025/ 1

8.8 --

8.6

841

821 -

7.8 - - -

7.6 - -

74 =

721

L

| L | L | L
24m  3n 35m 4n 451 S5t 55m

| L | L | L | L 1 | 1 1 | | | | L | | 1 L 1 | 1 1 | 1 | 1 |
6n 65t 7n 757 8t 85t 9n 9.57 10m 10.5n 11m 1157 12m 12.5n 13n 13.57 14m 14.5n 151 1557 16n 16.5n 171 17.5n 18n 18.5n 1971 19.5m 20m 20.57
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Fig. 10. The third player’s best staircase-function pure strategy with gaps

Discussion of the contribution

The suggested method is an important sup-
plement to the method of solving a 3-person game
played in staircase-function pure strategy spaces
presented in [13]. Along with the approach of the
pure-strategy solution gaps, it allows quickly find-
ing the best pure-strategy equilibrium (Theorem 2)
in a discrete-time staircase-function 3-person game
just by finding pure-strategy equilibria of a succes-
sion of time-unit subgames, even when not every

“short” 3-person game is solved in pure strategies.
In the case of a trimatrix staircase-function game,
being “wider” one, its pure-strategy equilibrium sit-
uation is formed by solving and stacking pure-strat-
egy equilibria of successive smaller-sized trimatrix
games. The stacking is done in a similar manner for
(uncountably) infinite games also. Then, owing to
Theorem 3, the respective best equilibrium solution
of any “narrower” subgame can be taken from the
“wider” game best pure-strategy equilibrium. The
best equilibrium situation in subgame (90) is easily
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found regardless of whether it is an (uncountably)
infinite game or a trimatrix staircase-function game.
Consequently, the suggested method is a significant
contribution to the 3-person game theory and oper-
ations research, in the sense of both practical appli-
cability and scientific soundness.

In the case of a trimatrix staircase-function
game, the computational efficiency is only defined
by and limited to the efficiency of finding pure-strat-
egy equilibrium situations in an ordinary (time-unit)
trimatrix game whose size is commonly not that
large. Usually, this is about the direct search. With-
out considering the succession of time-unit trima-
trix games, any straightforward approach to finding
pure-strategy equilibrium situations in a trimatrix
staircase-function game is intractable.

The case when the player’s payoff function-
al has a terminal component is only seeming to
be more general than that of functionals (5)—(7).
Indeed, whichever terminal functions (16)—(18)
are, functionals (13)—(15) can be always brought
to the form of functionals (5)—(7) by transforming
and fitting the terminal function under the integral.
Then integrated functions (8)—(10) are respectively
changed but the conception of the integral func-
tional remains the same. This is why the terminal
component case has not been considered.

Another peculiarity is the inclusion of time vari-
able 7 into functions (8)—(10) to be integrated. As time
variable ¢ is explicitly integrated, it means that the
time progress influences the process modeled by the
staircase-function game. In simple terms, the explicit
time variable 7 under the integral means that something
changes within the process. Contrariwise, if in a dis-
crete-time staircase-function 3-person game time 7 is
not explicitly included in functions (8)—(10), then
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- .[ f(ai’ Bi» Y,—)du(l‘)
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instead of (36) and (37). Equalities (128)—(133)
mean that the player’s payoff value, depending only
on the time unit length, is equal to the length mul-
tiplied by the respective value of the function under
the integral. If the length does not change in the
case of trimatrix staircase-function game (63), then
the time-unit trimatrix game does not change. If the
length does not change in the case of discrete-time
staircase-function 3-person game (41), the time-unit
(ordinary) 3-person game defined on parallelepiped
(40) does not change. Then the solution (of any
type) to the initial (finite or uncountably infinite)
discrete-time staircase-function 3-person game is
determined just by the solution of a one time-unit
game, and this solution will not change as the time
units go by. Such a triviality of the equal-length-
time-unit solution (by implicit time) is explained
by a standstill of the players’ strategies (not to be
confused with equal-length-time-unit solutions, like
that one in Fig. 4, where time is explicit under the

(133)
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integral).

Without underestimation, the scientific signifi-
cance of the discrete-time staircase-function 3-person
game and the methods of finding the best pure-stra-
tegy equilibrium in it (provided by Theorems 2 and 3)
is high. Owing to Theorems 2 and 3, such games, if
finite, are very simple models to describe struggling for
rationalizing the distribution of some limited resources
among three sides. Unlike an ordinary trimatrix game,
which models only a static process of the struggle, a
discrete-time staircase-function 3-person game con-
siders the discrete-time dynamics of the struggle.

Searching for the best pure-strategy equilibri-
um is much simplified if it is somehow known that
a discrete-time staircase-function 3-person game
has just a single pure-strategy equilibrium situation.
Then, owing to Theorem 3 in [13], every time-unit
game has a single pure-strategy equilibrium. Once it
is found on a time unit, the (direct) search on this
unit is stopped. This is a kind of an early stop condi-
tion. It allows for significantly shortening the time of
computations making thus the solving process even
more efficient, especially when time-unit games are
solved concurrently.

Conclusions

Due to a pure staircase-function strategy can
be considered as an ordinary mixed strategy unfold-
ed over a time interval, staircase-function 3-per-
son games are important mathematical objects to
study ordinary (“classical”) 3-person games played
on a finite horizon of game rounds. Besides, stair-
case-function games fairly describe discrete-time
dynamics of competing processes. So, building and
developing a theory for staircase-function games
and their solutions is an actual task and a significant
contribution to the game theory field.

Directly searching for a pure-strategy equilibri-
um in a trimatrix staircase-function game is an intrac-
table problem because of a gigantic size of the game
rendered to an ordinary (“classical”) trimatrix game.
The same concerns (to a much more greater extent)
a discrete-time staircase-function 3-person game, in
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B.B. PomaHtok

3CYB 3A OOMHUMUAMMN YACY B ITPAX TPbOX OCIB Y CKIHYEHHMX | HESNIYEHHO HECKIHYEHHWMX MPOCTOPAX
CXOOMHKOBWX ®YHKLLIN, LLIO PO3B’A3YIOTLCA Y YACTUX CTPATENIAX

Mpobnematuka. Irpu, KOTpi Po3irpytoTbCA YUCTUMU CTpaTErisMMU Y PopMi CXOAUHKOBMX (PYHKLIA, MOXYTb MOAENoBaTN ANCKPETHO-

YacoBy AvHaMiKy pauioHanisaduii po3noginy aeskux obMexeHux pecypciB Mixk rpaBusmMu. AK i irpy gBOxX ocib, irpy Tpbox ocib € HanbinbLL
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YXKVBaHUMKN MOAENSMM TaKOT paLioHanisauii B eKOHOMiLi, eKonorii, coljianbHUX Haykax, NoniTULi, ynpaeniHHi, cnopTi. ICHye BinoMuin meToa
3HaXOMXEHHsI piBHOBAry y rpi Tpbox OCi0, WO po3irpyeTbCs y NpocTopax YMCTUX cTpaTerin y hopMi CXOQMHKOBMX (PyHKUiNA. [HTepBan
yacy, Ha sIkoMy Taka rpa 3aaeTbCsl, CKNaAaeTbes i3 Linoro Ymcna 4yacoBux ognHuULb. Lisi piBHOBara yTBOpHOETLCS yKNadaHHsSM piBHOBar
Ha oaMHWLSX Yacy. BigkpuToto 3apaveto € MHOXMHHICTb piBHOBAr (Ha AesKMX OAMHMLSX Yacy), WO NPU3BOAUTL 40 MHOXMHHOCTI YKNnazis
piBHoBar. LLle ogHe BiokpWTe NUTaHHS nonsrae y Tomy, Lo pobuTu i3 rpoto Tpbox Ocib, y skl iHTepBan Yacy moxe ByTu 3miHeHUA abo
3CYHYTUI Ha Ljine YMCro YacoBUX OONHULb.

Meta pocnigxeHHs. Meta nonsirae y Tomy, o6 po3BUHYTU i YAOCKOHANUTN e(PEKTUBHUI METOL PO3B’S3yBaHHs! irop Tpbox ocib,
KOTPi pO3irpytoTbCs y Mexax CKIHYEHHUX MHOXWMH CXOAMHKOBUX (DYHKLIN rpaBLiB AN BUNadKy, Konu nepiod, yNnpoaoBX SKOro rpa TpUBae,
3MIHIOETBCS Ha Ljife YMCro YacoBUX OOMHULb.

MeTtoauka peanisauii. LLlo6 gocsarty 3asHaveHoi MeTu, hopmanisytoTb rpy TPbOX OCiB, B SKill cTpaTerii rpaBLiB € CXOAWHKOBUMM
yHKUisMK Yacy. Y Takili rpi MHOXUHA YACTUX CTpaTETil rpaBLs € KOHTUHYYMOM CXOAMHKOBUX hyHKLiN. OCKinbku YacoBui iHTepBan ckna-
[aeTbCs 3 YacoBMX OAMHULB (MiAiHTepBaniB), Yac BBaxawTb AUCKPETHUM. [icns LbOro MHOXWHA MOXIIMBMX 3HAYEeHb YACTOI cTparterii
rpaBLs AUCKPETU3YETLCS Tak, L0 rpaBeLib BOOAIE CKIHYEHHOK MHOXUHOK CXOAMHKOBUX (PYHKLNA.

PesynbraTty gocnigxeHHs. Bigomuii MeTo po3BUHYTO Tak, Wo6 ByayBaTi eAuHUIA yknag, piBHOBAr y YACTMX cTpaTerisx y Oyab-sikin
[OMCKPETHO-4acoBil rpi TpboX 0cib 3i cxoguHkoBMMU dpyHKUisiMU. Kputepiem BUGopy eanHOI piBHOBaXHOT cuTyalLlii € Makcumisalis cymu BuU-
rpawis rpaBuiB. Y BUNagKy 3CyBy 3a YaCOBUMW OOUHULSAMM Lier KpUTepin JO3BONSE BUTATyBaTU BiAMOBIAHY HAMKpaLLy PIBHOBAXHY YUCTY
cTparTerito y hopMi CXoauHKOBOT dPyHKUIT rpaBLs y A0BINbHIN «6inbLu By3bkKili» Niarpi 3 HankpaLyoi piBHOBaXHOT YncToi cTpaterii y dopmi
CXOAMHKOBOT (DYHKLii LbOro rpaBLs Y «LWUMPLLIA» rpi.

BucHoBKkU. EpekTVBHUM METOOM 3HAXOOXKEHHS HaMKpaLLol piBHOBaru y YMCTUX CTpaTerisx y rpi Tpbox ocib, kKoTpa posirpyeTbcsi
Y CKiH4eHHMX abo He3niYeHHO HECKIHYEHHMX NMPOCTOpPaxX CXOAMHKOBUX (OYHKLN, € pO3B’A3yBaHHsi MOCNIAOBHOCTI irop Tpbox ocib Ha Yaco-
BUX OAMHULAX, NICNSA YOro iX HanKpaLli piBHOBarn yknagarTbCs Y HanKpally piBHOBary y YMCTUX cTpaTerisax. Y BUNagKy, KOnu He KoXHa
rpa TpbOX OCib Ha YacoBWUX OOMHULAX PO3B’A3YETLCS Y YACTUX CTPATErisiX, €PEKTUBHUM PILLEHHSIM € NPU3YNUHEHHS TPU 3i CXOAMHKOBUX
YHKLIN Ha TUX YaCOBUX OAMHULSAX, KOTPI He MatloTb PIBHOBAr Y YACTUX CTpaTerisx. Y pesynbsraTi Takux 3ynuWHOK rpaBeLb OTpuMyBaTuve
BMacHy CXOAUHKOBY PIBHOBaXHY YMCTY CTpaTerito i3 nponyckamu, sikum 6u He ByB YacoBuii iHTEpBan i 3cyB 3a YacOBMMMW OQVHULISIMU.

Knto4yoBi cnoBa: Teopisi irop; dyHKLioHan BurpaLlis; rpa Tpbox ocib; cTpaterisi y dhopMi cXoanHKOBOT doyHKLUIT; TpMMaTpuyHa rpa;
CXO[VHKOBA piBHOBaXHa YMcTa cTpaTeris.

PexomennoBana Pamoro Haniiina no penaxitii
¢akyJIbTeTy NpUKIaIHOI MaTeMaTUKU 25 xoBTH: 2024 poky
KIII im. Iropst CikopchbKoro
IIpuiinsara go myOGikariii
10 mororo 2025 poky



