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FLEET MANAGEMENT ALGORITHM FOR ENHANCING ENVIRONMENTAL
FRIENDLINESS OF MARITIME DELIVERY

Background. Maritime cargo delivery accumulates over 80 % of international transport operations, providing a cost-ef-
fective method for global trade, particularly vital for developing countries. However, maritime transportation is heavily
dependent on fossil fuels, which results in significant emissions of carbon dioxide CO, and creates environmental prob-
lems for water resources. To address these issues, this study proposes a solution to optimize maritime delivery route
planning projects, and reduce fuel consumption and CO, emissions.

Objective. The objective is to develop an algorithm for planning delivery routes at optimal vessel speed, consisting of
a genetic algorithm and a speed optimization step, to reduce fuel consumption and CO, emissions during maritime
transportation. In addition, the results will be validated and the efficiency of the developed algorithm will be compared
with a standard genetic algorithm without a speed optimization step.

Methods. This article proposes an implementation of an additional step of vessel speed optimization into the algorithm
for calculating delivery routes, which can significantly reduce fuel consumption and CO, emissions without increasing
the complexity of the algorithm itself. The route is computed by solving the vehicle routing problem.

Results. The study demonstrates that the application of the speed optimization step in the algorithm for planning deli-
very routes significantly reduces the volumes of fuel consumption and CO, emissions. Comparison of the experimental
results showed that the genetic algorithm with a speed optimization step outperforms the standard genetic algorithm in
terms of the volumes of fuel used and CO, emissions. Detailed analysis of various combinations of fleet composition
emphasizes the need to balance the capacity of vessels to achieve maximum efficiency of cargo delivery. While adding
more feeders initially reduces overall fuel consumption, overloading the fleet with underutilized vessels can lead to inef-
ficiencies and increased operational costs. The study also considers alternative approaches such as increasing capacity
and reallocating vessels among routes, highlighting their impact on fuel consumption and CO, emissions.

Conclusions. The study proposes an improved algorithm for constructing maritime cargo delivery routes using a genetic
algorithm with a speed optimization step. Such an algorithm ensures effective management of maritime delivery route
planning projects, while significantly reducing fuel consumption and CO, emissions into the environment. Also, optimal
control of the fleet composition ensures the reduction of CO, emissions due to the efficient use of each vessel.
Keywords: water transport; fleet management; optimal control; route planning; route optimization; project manage-
ment; fuel consumption; CO, emissions; vessel speed optimization; genetic algorithm.

Introduction

Maritime cargo delivery accounts for the larg-
est share of global goods transportation, making up
more than 80 % of international transport. This
percentage is even higher in most developing coun-
tries [1]. One of the key advantages of maritime car-
go transportation is its low delivery cost [2]. How-
ever, this mode of transportation consumes a vast
amount of fuel, leading to significant carbon dioxide
CO, emissions, which have a detrimental impact on
the environment [3]. Many carrier companies op-

erate ageing fleets that rely almost exclusively on
fossil fuels, having resulted in a 20% increase in
greenhouse gas emissions over the last decade [4].
Efficient ways to reduce CO, emissions include using
modern fuels and deploying modern ships that are
less harmful to the environment. These options are
interconnected, as it is not feasible to easily switch
to modern fuel on older ships and vice versa. There-
fore, implementing these emission reduction strat-
egies will require significant investment — first to
renew the fleet of ships and then to transition to less
harmful fuels. Consequently, the cost of delivery is
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likely to increase substantially, potentially decreas-
ing the share of maritime delivery in the global mar-
ket. It is important to note that fleet modernization
can only be implemented in the long term, allowing
for a gradual phase-out of outdated ships and fuels.

An alternative way to reduce CO, emissions
is to plan the shortest delivery routes for cargo. It
may seem intuitive that shorter routes use less fuel,
leading to lower CO, emissions. However, a crucial
factor influencing CO, emissions is the speed of the
ship. Fuel consumption has a non-linear relationship
with vessel speed — as speed increases, fuel usage
increases significantly. Consequently, CO, emissions
into the atmosphere also rise with increased speed.

High delivery speeds are justified by the fact
that container shipping companies aim to deliver
goods as quickly and reliably as possible. As fuel
consumption increases, so does the delivery cost.
Carrier companies commit to delivering goods with-
in specified time frames and failing to meet these
deadlines results in penalties and reputational dam-
age. Therefore, it is crucial to plan delivery routes
that allow cargo to be delivered on time while en-
abling ships to travel at the minimum acceptable
speed to fulfil contractual agreements. Additionally,
the lower speeds can lead to a reevaluation or reduc-
tion in delivery costs [5].

Article [6] considers the multiple travelling
salesmen problem (mTSP) for constructing optimal
routes, incorporating additional constraints such as
feeder capacity, cargo accumulation intensity at the
port, and maximum route duration or time windows.
These constraints effectively expand the mTSP into
the vehicle routing problem (VRP). The classic VRP
extends the mTSP by including different service re-
quirements at each node and varying capacities for
vessels in the fleet management. The objective of
these problems is to minimize the total cost or dis-
tance across all routes [7].

This article proposes an additional route opti-
mization step that can significantly reduce costs and
emissions without increasing the complexity of the
route calculation algorithm. The route is computed
using a genetic algorithm, which belongs to heu-
ristic algorithms, providing approximate solutions
that save computational resources — equivalent to
time and budget [8, 9]. The genetic algorithm stands
out as one of the best heuristics for finding delivery
routes with lengths practically approaching the pos-
sible minimum [10, 11]. In some cases, the heuristic
solution matches the exact solution’s route length.

Various methods exist to enhance the perfor-
mance of a genetic algorithm. A study on the se-
lection mechanism and the elimination of invalid

routes is discussed in [12]. The impact of a random
number generator on population creation and mu-
tation processes is explored in [13]. The fundamen-
tal mutation operation in genetic algorithms is the
crossover operation, commonly known as two-point
crossover. An alternative version of the algorithm
featuring a modified three-point crossover is de-
tailed in [14].

This paper proposes a solution that calculates
the optimal speed of vessels along routes, identi-
fied using a genetic algorithm with enhanced con-
straints [6]. In maritime cargo delivery, the vehicle
routing problem addresses the routing of optimal
feeder tours. The determination of speed follows the
identification of the optimal feeder route for cargo
delivery. Opting for reduced-speed delivery routes
allows ships to travel slowly enough to ensure timely
cargo delivery while minimizing fuel consumption
and thereby reducing CO, emissions.

Problem statement

The goal is to describe, implement, and justify
the importance of using an algorithm, consisting of
a genetic algorithm and a speed optimization step,
to achieve reductions in fuel consumption and CO,
emissions in maritime shipping. Moreover, compar-
isons with the algorithm without an additional opti-
mization step will be demonstrated. To achieve the
goal, the following four tasks are to be fulfilled:

1. To substantiate the inclusion of the speed
optimization step after an initial route is produced
by the genetic algorithm.

2. To show the advantage of the algorithm using
the speed optimization step compared to the algo-
rithm, which does not consider the speed of feeders.

3 To discuss the significance and practical
applicability of the suggested improvements in the
algorithm of maritime delivery route planning and
project management.

4. To make an unbiased conclusion on the
contribution to the field of algorithms used, in parti-
cular, to optimize maritime cargo delivery planning.
An outlook of how the research should be extended
and advanced is to be made as well.

GA with speed optimization

Route planning is a crucial aspect of maritime
cargo delivery and project management, aimed at
solving the traveling salesman problem. This clas-
sic problem involves constructing the shortest route
that visits all points on a map exactly once before
returning to the starting point. However, in practical
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maritime operations, companies manage large fleets
of ships, and merely solving the classic travelling
salesman problem is not sufficient to ensure opti-
mal and profitable delivery of goods. As a result, the
mTSP has emerged, focusing on finding the shortest
routes for several salesmen simultaneously. Solving
the mTSP requires an enhanced algorithm based on
the classic TSP framework. Despite the complexity
introduced by multiple salesmen, the ultimate goal
remains the same: to identify the shortest possible
routes, which are deemed optimal for efficient cargo
delivery.

Constructing a route solely based on minimum
length may not suffice for efficient maritime cargo
delivery. Carrier companies must navigate nume-
rous additional constraints crucial to planning de-
livery routes effectively. Key among these are feed-
er capacity, cargo accumulation intensity at ports,
and maximum route duration, reflecting real-world
processes in maritime cargo operations. Integrating
these factors into algorithms enables the develop-
ment of delivery routes that accommodate the com-
plexities and specificities of maritime logistics [6].
Incorporating these constraints expands the mTSP
into the VRP. The primary goal of these problems is
to minimize the total cost or distance covered across
all feeder tours.

Expanding the problem to include the VRP
complicates the algorithmic logic required to find
optimal routes, necessitating consideration of imple-
mented restrictions. This challenge can be formu-
lated as a mathematical optimization problem and
solved using various algorithms, including meta-
heuristics or exact methods [15]. As previously men-
tioned, a proposed solution to address this transpor-
tation challenge involves the utilization of a genetic
algorithm. Genetic algorithms leverage principles of
natural selection to solve optimization problems ef-
ficiently [10].

The genetic algorithm iteratively modifies a
population of individual solutions. In each iteration,
the algorithm selects individuals from the current
population to act as parents, generating offspring for
the next generation. Through successive generations,
the population evolves towards an optimal solution.
During the generation of a new population, muta-
tions occur. The algorithm used in this study in-
corporates mutations such as flip, swap, slide, and
crossover. These mutations can also be combined,
enabling the creation of complex mutations. Each
of these operations modifies the individual in unique
ways, contributing to a near-optimal solution.

Following the completion of all mutations across
the population, the genetic algorithm proceeds with

evaluation and selection steps. Each generated solu-
tion undergoes evaluation using a fitness function,
which assesses its proximity to the optimal solution
of the problem and verifies compliance with spe-
cified constraints. Solutions that violate any defined
constraints are penalized and rendered infeasible,
thereby excluding them from further mutations.
Conversely, solutions that incur fewer penalties or
remain penalty-free are deemed feasible and re-
tained for subsequent mutation processes.

In our previous studies [6, 12, 13, 14], a gene-
tic algorithm is utilized to find the shortest delivery
routes while imposing a maximum route length con-
straint. The fitness function evaluated each feeder
route’s length, imposing penalties if it exceeded the
defined constraint. This constraint aimed to enable
uninterrupted cargo delivery routes without the need
for refuelling, thereby reducing fuel costs and avoid-
ing additional refuelling time. In this article, a new
set of constraints is introduced and the algorithm’s
input data is expanded. Notably, the maximum
route length restriction is omitted, as refuelling costs
are now considered permissible during the cargo de-
livery process.

Expanding the problem to solve the VRP com-
plicates the search for the optimal route. For in-
stance, in the case of using a genetic algorithm, the
population size must be sufficiently large to accom-
modate all constraints, such as capacity and speed
of movement. If speed variations are not initially
considered in the algorithm for solving mTSP, ad-
dressing the VRP requires multiplying the popula-
tion size by the range of permissible vessel speeds.
Consequently, this increases the time required to
compute the optimal route.

This research proposes a solution to the car-
go delivery problem using a genetic algorithm that
considers route length, feeder capacity, and cargo
accumulation at ports to compute the minimum
route satisfying these conditions. Following the cal-
culation of the feeder route, a speed optimization
step is proposed to gradually reduce the speed of
each feeder along the route. This speed reduction
significantly decreases fuel consumption and CO,
emissions. Integrating this speed optimization step
leverages the existing genetic algorithm to find the
optimal route without initially factoring in feeder
speeds, thereby avoiding an increase in computa-
tion time. The speed reduction step requires mi-
nimal additional calculation time compared to the
main route calculation. Thus, a hybrid approach is
suggested for planning sea routes for cargo delivery,
combining a genetic algorithm with an additional
speed optimization step.
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Maritime cargo delivery model

In this section, the mathematical model under-
lying the genetic algorithm for maritime route plan-
ning is presented. The model aims to optimize cargo
delivery routes while considering various constraints,
such as feeder capacity, port cargo accumulation,
and route duration. By formulating this problem as
a variant of the mTSP in order to achieve efficient
and sustainable maritime logistics advanced opti-
mization techniques can be leveraged. The primary
objective of the model is to minimize the total cost,
which includes fuel consumption and CO, emissions
while ensuring that all delivery constraints are met.
This involves not only finding the shortest possible
routes but also optimizing feeder speeds and capaci-
ties. The genetic algorithm incorporates various mu-
tations and crossover operations to explore a wide
range of potential solutions, ultimately converging
on an optimal or near-optimal route configuration.

The following variables are used in a simplified
maritime cargo delivery model [6]: Nthe number
of ports, p,, and p,, are the horizontal and vertical
components of the position of the port k, and M,
the number of feeders available to accomplish the
delivery. Every feeder m starts its tour off port 1
and ends up returning to that port. We denote the
current number of feeders by M.

In our previous work, we considered a model
in which the feeder had a limitation feeder m
capacity C,, accumulation intensity 4,,, of cargo at
port » visited by the feeder m, and maximum route
duration D, . The minimization goal is to find such

max*

a set of flags X, at which

d. (N, M, X*)szindz(N,M, X) (1)
under feeder capacity and cargo accumulation con-
straints.

This article discusses an approach to reducing
fuel consumption during maritime delivery. Fuel
consumption for a feeder vessel is primarily depen-
dent on the vessel’s speed and can be expressed as a
cubic relationship. This means that fuel consumption
increases exponentially with speed. At the same time,
it depends on the specific characteristics of the vessel,
including its engine efficiency and hull resistance.

To accurately calculate fuel consumption,
it is essential to refer to the fuel consumption va-

Table 1. Emissions produced by heavy fuel oil

lues at the vessel’s maximum speed as specified in
the technical documentation. Using this data, fuel
consumption at lower speeds can be approximately
estimated. Also, it can be adjusted with additional
empirical data or specific operational considerations
for the vessel.

In this work, the objective function is to mi-
nimize fuel consumption when delivering cargo by
sea. So, the task is to find X", at which

N
d,(R,,v,, X")= mxln;F(Rm, v,, X) )

where N is the number of routes, R, is the route of
the m feeder, and v is the speed of the m feeder. The
restrictions from [6] must also be taken into account
when searching for optimal routes and speeds.

Maritime shipping is a significant contributor
to global CO, emissions, which play a major role in
climate change and ocean acidification. By mini-
mizing these emissions, we can help protect ma-
rine ecosystems and the environment. Additionally,
compliance with increasingly stringent international
regulations, such as those set by the International
Maritime Organization (IMO), is essential to avoid
penalties and ensure the sustainability of maritime
operations. Lowering CO, emissions also has public
health benefits, as it reduces the release of harmful
pollutants, thereby improving air quality and reduc-
ing health risks for communities near ports and along
shipping routes. Air pollutants from the ship opera-
tions using heavy fuel oil are shown in Table 1 [16].
The table displays the amount of pollution in grams
produced per gram of fuel burned.

Testing

In the testing section, the algorithm’s operation
for constructing maritime cargo delivery routes with
a speed optimization step is analysed. A comparison
with the algorithm without this additional optimiza-
tion step is conducted. Experiments are performed
to evaluate the impact of the speed optimization step
on algorithm performance. Henceforth in this arti-
cle, the algorithm with the optimization step will be
denoted as GA_S, while the algorithm without it will
be referred to as GA. Each experiment is conducted
under identical conditions, using the same port map
and a predetermined number of feeders.

Pollutant CO, CH, N,O

NO

NMVOC CcO PM,, SO,

X

EF HFO 3,114 0,000 06 0,000 15

0,0903

0,003 08 0,00277 | 0,00278 | 0,025
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Table 2 presents the results of experiments
comparing fuel consumption and carbon dioxide
emissions between GA and GA_S. These experiments
are conducted across varying numbers of ports, re-
flecting the need to establish sea delivery routes for
both small-scale scenarios (e.g., the Sea of Azov or
the Marmara Sea) and larger-scale scenarios en-
compassing several dozen ports (e.g., the Black Sea
or the Mediterranean Sea) [17].

Table 2 demonstrates that the algorithm with
an additional optimization step yields promising re-
sults in reducing fuel consumption and CO, emis-
sions. This suggests that the speed reduction step
can effectively contribute to planning optimal mari-
time delivery routes. Importantly, this approach al-
lows for calculating the minimum permissible speed
without introducing complexity to the existing al-
gorithm. The additional step gradually reduces the
speed of each feeder until it conforms to all specified
delivery constraints, including the total fleet capaci-
ty necessary to manage accumulated cargo at ports
within specified timeframes.

Considering an alternative approach to solving
the VRP using a genetic algorithm without an addi-
tional optimization step, it becomes evident that in-
corporating speed selection into population genera-
tion and selection processes is crucial. Introducing a
population with varied speeds inevitably increases its
size compared to one without speed considerations.
The larger population size in a genetic algorithm im-
pacts the time required to reach an optimal solution.
To compare the performance of algorithms with an
additional speed optimization step and an algorithm
featuring an expanded population, tests are conduc-
ted, and the results are presented in Table 3.

As shown in Table 3, the basic genetic algorithm
(GA) finds a route faster than other algorithms. The
genetic algorithm with a speed optimization step
(GA_S) slightly increases the time required to obtain
a route but has the advantage of reducing fuel con-

sumption. This increase in time can be considered
quite acceptable. A basic genetic algorithm (GA) is
also run with an increased population (from 24 to
32 individuals) to simulate the operation of an al-
gorithm that would evaluate all possible speeds. The
time to find the optimal route using an algorithm
with an increased population (GA_IP) is significant-
ly longer than that of an algorithm with a speed
optimization step. Thus, it follows that GA S is
more preferable for obtaining a route with the min-
imum permissible speeds if considering the speed
of obtaining the result. On the other hand, GA IP
searches for solutions among a larger number of ini-
tial routes, which can help obtain a more preferable
route, which requires more computational time.

Next, specific examples of constructing mari-
time delivery routes for the same set of ports are ex-
amined. Both algorithms — those with and without
an additional speed optimization step — are tested.
These experiments utilized the same port map to en-
sure objective evaluation of algorithm performance.
Each test resulted in a map displaying construct-
ed routes for every feeder involved in cargo deli-
very. Additionally, a table is constructed presenting
key characteristics and properties of the calculated
routes: feeder capacities, route lengths, tour dura-
tions, vessel speeds, cargo accumulation at ports,
fuel consumption, and carbon dioxide emissions.
Furthermore, tables presenting results from the al-
gorithm with an additional speed optimization step
illustrate differences in fuel consumption and CO,
emissions.

In the initial test, the delivery routes for five
feeders are computed using the algorithm without
an additional optimization step. For the tests, the
“Wes Janine” feeder vessel is chosen. It has a ca-
pacity of 1000 TEU, a top speed of 16 knots, and an
approximate fuel consumption of 24 tons per day.
The routes are illustrated in Fig. 1, while fuel con-
sumption and CO, emissions are detailed in Table 4.

Table 2. Comparison of GA_S and GA on fuel consumption and CO, emissions

GA GA_S GA— GA_S
fuel CO, fuel CO, fuel CO,
10 356,23 1109,31 153,39 477,66 202,84 631,65
15 536,47 1670,56 192,06 598,08 344,41 1072,48
20 601,41 1872,79 222,99 094,41 378,42 1178,38
25 803,76 2502,92 309,66 964,29 494,1 1538,63
N 30 945,88 2945,47 318,97 993,29 626,91 1952,18
35 1031,52 3212,18 373,99 1164,62 567,53 2047,56
40 1230,11 3830,58 445,84 1388,35 784,27 2442,23
45 1358,58 4230,64 466,16 1451,62 892,42 2779,02
50 1473,41 4588,2 546,34 1701,31 927,07 2886,89
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Table 3. Comparison of GA, GA_S and GA with increased

population (GA_IP) on performance.

In the tables describing the characteristics of the
tour, abbreviations are used: Acc — accumulation,
Cons — consumption and d — difference.

GA

GA S

GA_IP

10 [ 0,072413961

0,072 851451

0,103 959 863

15 | 0,518 522275

0,518 782 627

1,585 358 039

20 | 1,24920349

1,249 525 882

2,045274 353

25 | 1,907 294 725

1,907 693 686

3,174 980 137

30 | 3,648222176

3,648 680 647

4,429 585902

35| 4,730 179 745

4,730 695 49

6,475 466 02

40 | 5,993 691235

5,994 274039

8,846 539 392

451 7,198 098 902

7,198 742 863

9,660 162451

50 | 8,419 610 608

8,420 315 353

11,584472 2

Fig. 1 displays highly optimal routes that faci-
litate the delivery of goods without breaching spe-
cified restrictions on feeder timing and capacity. It’s
important to note that the algorithm used to gene-
rate these routes does not account for feeder speed,
thus all feeders default to a speed of 16 knots. This
relatively high speed enables efficient port service
along the routes. Upon analyzing the constructed
route, it’s evident that the feeders handle cargo de-
livery with a margin of safety, as indicated by accu-
mulated cargo and tour durations. With a maximum
route duration set at 10 days and the longest route
lasting 6 days, it can be inferred that reducing speed
would not violate these restrictions. Furthermore,
reducing speed would also lead to decreased fuel
consumption.

24

23

Fig. 1. Route of 5 feeders with a total consumption of 648 tons of fuel built by GA

Table 4. Route of 5 feeders built by GA

Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5

Capacity 1000 1000 1000 1000 1000
Distance 88,82 82,68 84,8 69,57 55,81
Days GA 6 6 6 5 4
Speed GA 16 16 16 16 16
Acc_GA 990 600 720 800 380
Cons GA 144 144 144 120 96
CO, GA 448,41 448,41 448,41 373,68 298,94
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Fig. 2 depicts feeder routes similar to those in
Fig. 1, but incorporating an additional optimization
step. In this updated calculation considering opti-
mal speeds, the trajectories of the routes have been
adjusted. The width of each route line on the graph
varies depending on the feeder speed — routes with
higher feeder speeds are represented by wider lines.

By reducing feeder speeds, updates have been
made to accumulation, duration, speed, fuel con-
sumption, and CO, emissions. The algorithm’s out-
put data are presented in Table 5. The significant
differences in fuel consumption and CO, emissions
underscore the importance of employing the addi-
tional step to optimize feeder speeds.

30

32

fret S P

) 34

23
40

22

Fig. 2. Route of 5 feeders with a total consumption of 315,52 tons of fuel built by GA_S

Table 5. Route of 5 feeders built by GA_S

Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5
Capacity 1000 1000 1000 1000 1000
Distance 88,82 82,68 84,8 69,57 55,81
Days_GA 6 6 6 5 4
Acc_GA 990 600 720 800 380
Cons_GA 144 144 144 120 96
Days_ GA_S 6 9 8 6 7
Speed_GA_S 15 10 11 12 8
Acc_GA_S 990 900 960 960 665
Cons GA S 118,65 52,73 62,39 60,75 21
Cons_d 25,34 91,26 81,6 59,25 75
CO, d 78,93 284,2 254,13 184,5 233,55
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Table 5 highlights that feeders 1 and 4 operate at
speeds of 15 and 12 knots, respectively, indicating they
are not operating at the lowest possible speed and thus
consume more fuel. One approach to further reduce
overall feeder speed and fuel consumption is to aug-
ment the fleet with additional feeders to distribute the
workload. To explore this, an algorithm is deployed
to construct delivery routes involving two additional
feeders. The delivery trajectories are displayed in Fig. 3.

The addition of extra feeders to the fleet result-
ed in a reduction of both the overall average feeder
speed and fuel consumption (Table 6). This reduc-
tion is attributed to the cubic relationship between
fuel consumption and speed. Despite the inclusion
of additional feeders, overall fuel consumption and
CO, emissions are effectively lowered.

The involvement of additional feeders (Fig. 4)
does not consistently result in reduced fuel con-

Fig. 3. Route of 7 feeders with a total consumption of 290,23 tons of fuel built by GA_S

Table 6. Route of 7 feeders built by GA_S

Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5 Feeder 6 Feeder 7
Capacity 1000 1000 1000 1000 1000 1000 1000
Distance 86,4 90,38 71,33 32,3 63,61 31,12 34,23
Days GA 6 6 5 3 4 2 3
Acc_GA 750 810 500 180 540 100 105
Cons_GA 144 144 120 72 96 48 72
Speed_GA_S 13 13 8 8 10 8 8
Days GA S 7 7 9 5 7 4 5
Acc_ GA S 875 945 900 300 945 200 175
Cons_GA_ S 90,11 90,11 27 15 41,01 12 15
Cons_d 53,88 53,88 93 57 54,98 36 57
CO, d 167,8 167,8 289.6 177,49 171,22 112,1 177,49




52 KPI Science News

2025/ 1

sumption or its optimal control. Firstly, maintaining
a larger fleet necessitates ongoing maintenance and
the employment of crew members for each feeder.
Secondly, despite the reduction in overall average
feeder speed, Table 7 indicates that 4 out of the 8
feeders are loaded at only 12 %. This inefficient use
of the fleet incurs high costs, both in terms of fuel
consumption and feeder maintenance.

Another alternative option considered for con-
structing optimal delivery routes involves increasing

the capacity of vessels. In the following experiment,
4 feeders are used, each with a larger capacity than
those in previous experiments (Fig. 5). If a carri-
er company possesses a sufficiently diverse fleet of
feeders, redistributing them between routes becomes
more feasible. Larger feeders facilitate transporting
more goods between ports without breaching de-
livery time constraints. Selecting the optimal fleet
composition represents a distinct, complex optimiza-
tion problem that can be addressed through various

Table 7. Route of 8 feeders built by GA_S

Fig. 4. Route of 8 feeders with a total consumption of 306,81 tons of fuel built by GA S

Feeder 1 Feeder 2 | Feeder 3 Feeder 4 | Feeder 5 Feeder 6 | Feeder 7 Feeder 8
Capacity 1000 1000 1000 1000 1000 1000 1000 1000
Distance 70,23 22,06 26,28 87.1 32,65 90,38 55,6 33,97
Days_ GA 5 2 2 6 3 6 4 3
Acc_GA 625 80 60 840 75 810 480 75
Cons_GA 120 48 48 144 72 144 96 72
Speed_GA_S 11 8 8 13 8 13 8 8
Days GA_S 7 3 4 7 5 7 7 5
Acc_GA S 875 120 120 980 125 945 840 125
Cons_GA_ S 54,59 9 12 90,11 15 90,11 21 15
Cons_d 65,4 39 36 53,88 57 53,88 75 57
CO, d 203,68 121,44 112,1 167,8 177,49 167,8 233,55 177,49
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methods — ranging from brute force searches to
heuristic approaches like genetic algorithms.

As shown in Table 8, feeders with larger capa-
cities effectively deliver goods within the designated
10-day limit, all while maintaining a minimum speed
of 9 knots, resulting in the lowest fuel consumption
and CO, emissions. Optimal utilization of feeder ca-
pacity is evident with four feeders operating at 90 %
to 93 % capacity, which is highly efficient. This fleet
composition does not require further adjustments, as

it effectively handles the delivery of goods. Altering
the set of feeders would necessitate redistributing
ports, which could increase the average speed of all
ships and, consequently, fuel consumption.

Selecting the optimal fleet composition is cru-
cial to meet delivery obligations while minimizing
delivery costs. Introducing additional feeders on the
route can reduce costs up to a certain threshold, be-
yond which feeders may operate at minimum speed
and with low loads.

Fig. 5. Route of 4 increased capacity feeders with a total consumption of 303,35 tons of fuel built by GA_S

Table 8. Route of 4 increased capacity feeders built by GA_S

Feeder 1 Feeder 2 Feeder 3 Feeder 4
Capacity 1500 1500 1500 1500
Distance 102,95 66,87 73,97 86,14
Days_GA 7 4 5 6
Acc_GA 1225 700 750 840
Cons_GA 280 160 200 240
Speed GA_S 13 9 9 9
Days GA_S 8 8 9 10
Acc_GA_S 1400 1400 1350 1400
Cons GA S 143,09 47,48 53,41 59,35
Cons_d 136,9 112,51 146,58 180,64
CO, d 426,31 350,38 456,45 562,53
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Conclusions

The introduction of a speed optimization step
within the genetic algorithm framework has proven
instrumental in reducing fuel consumption and CO,
emissions. Comparative analyses indicate that the
genetic algorithm with speed optimization consis-
tently achieves superior environmental friendliness
performance compared to the standard genetic algo-
rithm, without adding complexity to the algorithm.
This finding underscores the viability of incorpora-
ting speed optimization in route planning to achieve
substantial environmental benefits. By integrating
feeder capacity, port cargo accumulation, and max-
imum route duration, the genetic algorithm’s ca-
pabilities have been significantly expanded beyond
merely finding the shortest route. However, it is im-
portant not to dismiss the simplified algorithm with-
out these additional constraints entirely, as there are
scenarios where route planning and project mana-
gement for a single feeder or a few feeders without
strict cargo flow or timing restrictions may suffice.

The contribution of this work to the develop-
ment of algorithms for maritime cargo delivery is
evident. Compared to other studies on this topic, such
as improvements in 2-point crossovers, tour con-
straint penalties, and the influence of pseudorandom
number generators, this research introduces another
effective method for enhancing the practical perfor-
mance of genetic algorithms, specifically for mTSP.
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A.lO. PomaHoB

AIMTTOPUTM YTMPABNIHHA ®TIOTOM AJ1A NMOKPALLEHHA EKONOINYHOCTI MOPCbKMX NMEPEBE3EHDb

MpobnemaTtuka. Mopcbki BaHTaXHi nepeBe3eHHst cTaHoBMATb NoHaz 80 % MiXHapOoAHUX TPaHCMOPTHUX onepaLin, 3abesnevytoum
E€KOHOMIYHO edeKTMBHUI cnocib BeaeHHs rnobanbHOI Toprieni, 0cobnMBO BaXnMBWUIA ONs KpaiH, L0 PO3BMUBAOTLCA. YTiM, MOPCbKI
nepeBe3eHHs CUIbHO 3anexarTb BiJ BUKOMHOIO NanuBea, Lo Npu3BoauTb 40 3HaYHKX BUKMAiB Byrnekucnoro rasy (CO,) i CTBOPOE eKonoriyHi
npobnemu onst BOOHUX pecypciB. [ns BUpILLEHHS LuX Npobnem y uboMy AOCHIAXEHHI NPOMOHYETHCH PilLEHHS AN ONTUMi3auii NPoeKTiB
nnaHyBaHHS MOPCbKMX MapLUpyTiB OCTaBKU, 3MEHLLEHHS CMOXMBaHHs nanvea i Bukugis CO,,.

Meta. MeToto € po3pobneHHst anropuTMy nnaHyBaHHS MapLUPYTiB 4OCTaBKM 3a ONTUMarbHOI LLBUAKOCTI PyXy CYAEH, L0 CKNafaeTbCst
3 reHETUYHOro anropuTMy i KpOKy OMTMMI3auii LIBWAKOCTI, AN CKOPOYEHHsI CrnoXuBaHHs nanvea i Bukugis CO, nig 4ac mMopcbKoro
TpaHcnopTyBaHHsi. Kpim Toro, 6yae npoBefeHO BanifaLito OTpMMaHNX pe3ynbraTiB i NOpPIBHAHHSA edeKTUBHOCTI po3pobreHoro anroputmy
3i CTaHA4@PTHWUM reHEeTUYHMM anropuTMoM 6e3 KpoKy onTuMI3aLii LWBMAKOCTI.

MeToauka peanisadii. Y cTaTTi NponoHyeTbCA BNPOBa)KeHHS OAATKOBOrO KPOKY ONTUMI3aLlii LUBUAKOCTI PyxXy CyAEeH B anroputMm
po3paxyHKy MapLUpyTiB JOCTaBKW, WO MOXe 3HaYHO 3MEHWWUTU BUTpaTV nanvea i Bukuais CO, 6e3 36inblueHHs cknagHOCTi caMoro
anropuTMy. MapLupyT o64ncnoTb Yepes po3B’si3aHHs 3adaqvi MapLUpyTu3aLlii TPaHCMOPTHUX 3acobiB.

Pesynbrati. [JocnimjkeHHs nokasye, Lo 3aCcTOCyBaHHSA KPOKY ONTUMI3aLii WBWMAKOCTI B anropuTMi NnaHyBaHHSA MapLupyTiB Ao-
CTaBKW CYTTEBO 3MeHLLYye 06’eMu crnoxmnBaHHs nanuea i BuknaiB CO,. [opiBHAHHSA pe3ynbTaTiB eKCnepuMMEHTIB Noka3sarno, Wo reHeTUYHUI
anropvTM i3 KPOKOM OMTMMIi3aLii LUBUAKOCTI NepeBepLlye CTaHAapTHUI FrEHETUYHUIA anropuTM 3a ob6’eMamyn BUKOPUCTaAHOTO MarbHOro
i BukmgiB CO,. [leTanbHuiA aHani3 pisHux kombiHaui cknagy dnoTy nigkpecnoe HeobxigHiCTb 6anaHcyBaHHS MICTKOCTI CyAeH Ans Jocsr-
HEHHS1 MaKCUMMarbHOI ePeKTUBHOCTI [OCTaBKM BaHTaxiB. Xova 3any4eHHs1 BinbLUOi KiNnbKOCTi CyAeH CrMoYaTKy 3HWKYE 3araribHe CroXu-
BaHHSA Nanuea, HagMipHe BUKOPUCTaHHS proTy 3 HeJOBaHTaXeHVMU CyAHaMU MOXe NPU3BECTU A0 3POCTaHHS eKcrnyaTtauiiHiX BUTpaT.
Y pocnigkeHHi TakoX po3rnsiaalTbCs ansTepHaTUBHI NiAXoaM, Taki Sk 36inbLeHHS MICTKOCTI 1 Nepepo3nodin CyaeH MiX MapLupyTamu,
LLIO TaKOX BMNIMBAE Ha CMoXuBaHHs nanvea i Bukuam CO,.

BucHoBkuU. [locnigxeHHs NPONoHye yA0CKOHaNeHUA anroputmM nodyaAoBM MapLLIPYTiB MOPCbKUX BaHTaXXHWUX NepeBe3eHb, L0 BUKO-
PUCTOBYE FrEHETUYHUIA anropuTM i3 KPOKOM ONTMMI3aLii lWBMAKoCTi. AnropuTtM 3abesnevye edekTMBHE yNpaBniHHA NPOEKTaMy [OCTaBKM,
npu LUbOMY 3Ha4YHO 3MEHLUYHYM BUTpaTU nanuea i Bukuan CO, y HaBKOMULLHE cepenoBuLle. Takox onTUMarbHe KepyBaHHS CKIafoMm
oty 3abesneyye ckopoyeHHsi Bukuais CO, 3a paxyHOK edEKTUBHOMO BUKOPUCTAHHS KOXKHOTO cyaHa.

KntouoBi cnoBa: MOPCbKUA TPaHCMOPT; ynpasmiHHA (noToOM; ONTUMaribHe KepyBaHHS; MraHyBaHHA MapLUpyTiB; onTumisdauis
MapLLpYTiB; ynpaBniHHA NPOEKTaMM; CNOXUBaHHA nanvea; Bukuan CO,; onTuMi3aLis WBUAKOCTI CyAeH; reHETUYHWUIA anropuTMm.
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