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TRANSFORMER VS. MAMBA AS SKIN CANCER CLASSIFIER:
PRELIMINARY RESULTS

Background: Skin cancer is a deadly disease that claims tens of thousands of lives annually. Early diagnosis is crucial
for successful treatment. Reliable diagnostic tools typically involve surgical methods, such as histological examination.
However, issues arise when such methods are not feasible or desirable: for instance, the location of the lesion on the
face, allergies to anesthesia, etc. This has led to active research in non-invasive methods, including those based on
neural networks. This brings about the task of skin cancer image classification. Currently, and in our specific case, the
models showing the best results in classification are Transformers. Nevertheless, these models have significant compu-
tational limitations due to quadratic scaling. In this study, a new machine learning architecture was explored proposed
as an alternative to Transformers. Mamba is scaled linearly and demonstrates Transformer-like efficiency in various
machine learning tasks.

Objective: The performance of two machine learning architectures was compared, Vision Transformer (ViT) and Mam-
ba, for skin cancer classification using dermoscopic images. The goal is to investigate the classification results of both
models.

Methods: A well-known benchmark in skin cancer classification, the HAM10000 dataset was used, which includes
10,015 dermoscopic images. The data to address issues such as class imbalance and normalized the images was prepared.
Both models, ViT and Mamba, were pre-trained on the ImageNet dataset and fine-tuned for skin cancer classification.
The models based on overall accuracy and F1-score for specific skin cancer classes were evaluated.

Results. The dataset for classification was processed. Using pre-trained weights of the two architectural variants, VMam-
ba and ViT, they were fine-tuned on the proposed dataset. For quality assessment, accuracy and F1-score metrics were
used. The results show that the ViT and Mamba models have similar overall accuracy, with Mamba models slightly
better at classifying underrepresented classes such as Bowen’s disease and dermatofibroma. Both models demonstrated
high Fl-scores in the case of melanoma, indicating their effectiveness in detecting this severe form of skin cancer.
Conclusions: The results indicate that Mamba is a viable alternative to ViT for skin cancer classification due to its similar
accuracy. The application of VMamba could potentially make skin cancer diagnosis cheaper and more accessible due
to its efficient scaling. Further research is needed to explore other variants of the Mamba model and to enhance its
performance on larger datasets.
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Introduction

Skin cancer poses a significant challenge to
healthcare systems worldwide. Over 1.4 million
skin cancer cases were reported in 2020, of which
120,000 were fatal [1]. The key to successfully treat-
ing this disease lies in early detection — in most
cases, a lesion can be removed with little to no con-
sequences if caught in the early stages [2]. The gold
standard in diagnostics is histology, which involves
the surgical removal of the lesion. The problem is,
there are cases when patients do not want the lesion

removed for various reasons, ranging from aesthetic
(removal leaves scars) to religious concerns. Recent
advancements in image analysis have focused on
using dermoscopic pictures for classification, which
are easy and harmless to obtain. The integration
of machine learning with these images has led to
the development of effective diagnostic models. In
particular, the Transformer architecture, originally
designed for natural language processing, has shown
promise in computer vision tasks, including skin
cancer analysis in recent years. The Vision Trans-
former [3] has demonstrated significant performance
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in both benchmarks and real-world tasks [4, 5, 6],
showing higher metric values than previously used
Convolutional Neural Networks (CNNs). However,
despite its advantages, the model has computational
challenges, making it less accessible for processing
high-quality images.

Recently, a new spatial state architecture
known as Mamba [7] has been introduced. It is be-
lieved that Mamba could potentially address these
issues. In this paper, a basic comparison of the ef-
fectiveness of ViT and a modified Mamba model for
computer vision in diagnosing skin cancer is pro-
vided. This comparison aims to determine whether
Mamba could be an efficient skin cancer classifier
while requiring fewer computational resources.

Problem statement

The goal of this paper is to evaluate the effec-
tiveness of the Mamba model for skin cancer diag-
nosis, using the ViT as a recognized and effective
model for comparison. By comparing the results of
these two models, we aim to determine whether the
Mamba approach offers a solution of comparable
effectiveness for the early detection of skin cancer
through image analysis. Ultimately, this research
seeks to contribute to the development of advanced
diagnostic systems that can improve patient out-
comes by facilitating timely and less invasive inter-
ventions.

Motivation

The ViT, introduced by Alex Dosovitskiy et
al. in 2021, represents a significant advancement
in adapting the Transformer architecture, originally
designed for Natural Language Processing (NLP),
to the realm of computer vision. At the core of the
Transformer is the attention mechanism [8], which
selectively focuses on the most salient parts of input
data, enabling the model to capture critical features
with high precision.

However, the attention mechanism also intro-
duces a challenge: the computational complexity in-
creases quadratically with the size of the input, as
the attention scores must be calculated between all
pairs of input vectors. This complexity becomes a
bottleneck when dealing with high-resolution imag-
es, leading to increased resource requirements and
reduced accessibility. Despite numerous attempts
to optimize the algorithm, maintaining the balance
between efficiency and performance remains a chal-
lenge. According to recent studies, such as the one
by Tay et al. (2022) [9], achieving significant re-

ductions in computational complexity often results
in a trade-off with the model’s performance, which
is a key factor in the popularity of the Transformer
architecture.

Natively, ongoing research seeks models that
can solve the Transformer’s computational problems
while retaining high performance. One of the com-
petitive architectures is State Space Models (SSMs).
These models can generally be described by the next
system of equations, where x(f) e R" — variables,
u(t) e R" — inputs, y(t) e R” — outputs, A € R™" —
state matrix, B € R™" — control matrix, C € R”" —
output matrix:

{x'(t) = Ax(t)+ Bu(t);
y(t) = Cx(¢).

After a data discretization [10] step SSMs can
achieve considerable performance in machine learn-
ing tasks. We find the latest advancements in this
field, published in Mamba paper [7] very promis-
ing. While output items are still dependant on each
other in a similar way to Recurrent Neural Net-
works (RNNs), on training step these dependencies
(matrix A) can be precomputed allowing Mamba to
train parallelly. Same time, with adding new block
(token), the complexity of additional computation
is not dependant on a size of a context that that
was already processed (so not the way it works in
Transformers). Summarising, authors were able to
achieve Transformer’s performance with model that
scales linearly.

If the same approach works for the task of skin
cancer classification that could potentially decrease
the resources that are needed and therefore make
final diagnostics cost more affordable. In this work
we would like to do initial empirical validation of
this assumption.

In order to apply Mamba to Computer Vision
task we utilize its modification — VMamba [11]. In
order to fit the data to the task it uses mechanism
called 2D selective scan. The approach involves un-
folding image patches into sequences along rows and
columns and then scanning these sequences in four
different directions: from top-left to bottom-right,
from bottom-right to top-left, from top-right to bot-
tom-left, and from bottom-left to top-right. Authors
state that this process ensures that each pixel gathers
information from all other pixels in various direc-
tions. It is important to note that the architecture
used in this study, VMamba, is not the only Mamba
variant for computer vision tasks. Currently, there
is at least one other model known as Vision Mam-
ba [12]. However, for this study VMamba was spe-
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cifically chosen over Vision Mamba for a couple
of reasons. Firstly, it demonstrated slightly better
performance in classification tasks reported to the
model’s authors [11, 12]. Secondly, the additional
feature of bidirectional layers in Vision Mamba was
not proven to be effective, making this model seem
unnecessary for now. Of course, this could change
in future versions of the model, and we will be ea-
gerly anticipating new improvements proposed by
the community.

Methods

The HAM10000 [13] dataset is a well-estab-
lished benchmark in the field of skin cancer classi-
fication, consisting of 10,015 dermoscopic images
that include both malignant and benign lesions,
with each image being cleaned and centered. It was
decided to utilise this renowned dataset in order
for our results to be easily reproducible for fur-
ther research. In our study, a data preprocessing
pipeline was implemented that integrated methods
from previous research [6, 7] along with some nov-
el techniques. The primary steps in our data prepa-
ration included:

Deduplication: Duplicate images were eli-
minated from the dataset to ensure that each sample
was unique. Each record of the dataset is marked
with lesion id field by which duplicates can be iden-
tified.

Normalization: The pixel intensities of the
images were normalized to standardize the input
data, facilitating better convergence of the mod-
els. As a result, all pixels were transformed to
0—1 range.

Oversampling: To mitigate the issue of class
imbalance, we applied augmentation techniques
such as rotations, flips, and zooms to artificially
enhance the presence of underrepresented classes.
We aimed to have at least 7,000 samples of each
class, addressing the class balancing problem with
that strategy.

Test-Validation Split: Since the HAM 10000
dataset provides separate training and test data, fur-
ther the train data was divided into training and val-
idation sets using a consistent random seed to ensure
reproducibility and enable a fair evaluation of model
performance. The training was stopped when the
model showed no improvements in the validation
loss metric for 3 consecutive epochs.

To maintain the integrity of our results, we en-
sured uniformity in the use of augmented images and
the train-test-validation split across all experiments.
Each model underwent training for up to 20 ep-

ochs, with early stopping implemented to terminate
training if there was no improvement in the model’s
performance beyond a threshold of 10-? over three
consecutive epochs. This strategy was employed to
prevent overfitting and reduce the usage of the use
of computational resources. Additionally, different
learning rates were explored to enhance model con-
vergence and prevent overlooking the optimal solu-
tion. On average, each model was trained for ap-
proximately 15 epochs, all with learning rates from
10 to 103,

Y
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Batcthorm Batch Norm
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Linear Linear
Y Y
GElLU Softmax

Fig. 1. Classification block used for the task

Both models were pretrained on the ImageNet
dataset by other research teams [5, 6] for ImageNet
classification and fine-tuned by us for the specific
task at hand. Our custom classifier comprised a se-
quence of layers — Flatten, Dropout, Norm, Linear,
GELU, Dropout, Norm, Linear, Softmax — which
can be seen in Fig. 1. Three distinct learning rates
were tested for each model and here presented only
the ones with top learning rates. The classification
block is also a result of experiments. The key metrics
we focused on were overall accuracy and F1 scores
for three classes: Actinic Keratosis, Intraepithelial
Carcinoma, and Dermatofibroma (as the most un-
derrepresented classes), as well as Melanoma (as the
most severe and dangerous type of the disease).

Results

Analyzing the data presented in Table 1, it
is apparent that both the larger ViT models and
VMamba models exhibit comparable performance
in terms of overall accuracy. The ViT L 32 model,
utilizing the imagenetl kvl weights, shows a training
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Table 1. Fine Tuning Results

. Train Top-1 F1 F1 F1
Model Weights Ace | Ace | AKEIC | D Mel
vit_1 32 imagenetl vl 0.98 0.76 0.49 0.64 0.88
vit_1 16 imagenetlk_swag linear vl 0.85 0.8 0.44 0.75 0.9
VMamba-T vssmtiny dp02_ckpt_epoch_258 0.95 0.8 0.6 0.76 0.9
VMamba-B vssm_base 0229 ckpt epoch 237 0.91 0.77 0.65 0.65 0.87
accuracy of 0.98 and a commendable top-1 accuracy Conclusions

of 0.76. This suggests the lowest generalizability of
the model to new data if compared to every other
model trained in this research. As for F1 scores for
the targeted classes, VMamba models show a slight-
ly superior performance, particularly in classifying
Actinic Keratoses and Intraepithelial carcinoma /
Bowen’s Disease (AKIEC), with the VMamba-T
and VMamba-B achieving an F1 score of 0.6 and
0.65 for AKIEC, which is notable considering the
underrepresented nature of this class.

For Dermatofibroma (Df), a rare category, both
models perform well, but the ViT_L_16 model, with
the imagenetlk swag linear vl weights, lags slight-
ly behind with an F1 score of 0.75 compared to the
VMamba-T’s 0.76. This indicates VMamba’s poten-
tial in handling classes with fewer training samples
more effectively. In the crucial case of Melanoma
(Mel), which is of the highest concern due to its
severity, both models deliver high F1 scores, with
VMamba-B and ViT_L_16 both achieving score 0.9,
demonstrating their robustness in identifying this
dangerous form of skin cancer.

Summarizing, while both ViT and VMamba
architectures demonstrate high efficacy in skin can-
cer classification tasks, VMamba models, in partic-
ular, show promise in their handling of specific, less
represented classes without compromising on the
detection of more severe conditions such as Mel-
anoma. These findings underscore the potential of
using these models in clinical settings, where they
should be less expensive while being as effective as
ViT based ones.
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TPAHC®OPMEP | MAMBA A5 KNACU®IKALLIT PAKY LLKIPW: MONEPEAHI PE3YNIbTATU

MpobnemaTuka. Pak LKipn — Le cMepTenbHe 3axXBOPHOBAHHS, SKe LLOPOKY 3abupae XWTTs OecaTkiB Tucsdy nogen. Knoyosum
erieMeHTOM YCMiLHOro NiKyBaHHS € paHHs giarHocTuka. TUNoBUM iHCTPYMEHTOM HagilHOI iarHOCTUKM € MeToaw, Lo NoTpebyoTb Xipyp-
riYHOro BTPyYaHHs, SIK, Hanpuknag, rictonoriyHe gocnigkeHHs. Mpobnema nocTae, KONW 3aCTOCYBaHHS TakUX METOAIB HE € MOXITUBUM
4y GaxxaHUM: po3MiLLEHHSI YTBOPEHHSI Ha 0bnnyyi, anepris Ha aHecTesito Towo. Yepes Le akTMBHO BeAeTbCst AOCMIIXEHHSI HEiHBa3iINHMX
METOAiB, 30KpemMa Ha OCHOBI HEMPOHHWX MepexX. Tak nocTae 3aBAaHHs Knacudikauii 306paxeHb paky Wwkipn. Mogeni, ski nokasyTb
HaViKpaLLi pe3ynstati y krnacudikauii Hapasi — TpaHcgopmepu. TM He MeHLUe Lieit Tun Modenen Mae 3HaqHi o64mcnioBanbHi OOMEXEHHsST —
KBagpaTuyHe malictabyBaHHs. Y Ui poboTi My JocnigXyemo HOBY apXiTEKTYypy MaLUMHHOMO HaB4YaHHS, Lo Oyna 3anpornoHoBaHa sk
ansTepHaTMBHa TpaHcdopepam. Mamba macwtabyeTbes NiHIMHO | AEMOHCTPYE CX0XY A0 TpaHchopMepiB epeKTUBHICTb y HM3Li 3agay
MaLUVHHOTO HaBYaHHS.

Meta pgocnigxeHHsi. My nopiBHSANM edeKTUBHICTb ABOX apXiTEKTYp MalUMHHOMO HaByaHHs — Vision Transformer (ViT) Ta Mamba —
Ons knacudikauii paky LWKipy 3a 4ONOMOrol AepMOCKOMiYHUX 306paxeHb. MeTow € JocnimKeHHs pe3ynbTaTiB knacudikadii ABoma mMo-
aensmu.

MeToauka peanisauii. Mu BukopucTanu Habip gaHux HAM10000, BigoMuii 6eHuUmMapk y knacudikadii paky LWKipy, WO BKNoYae
10 015 pgepmockonivyHmx 3o06paxeHb. Mu nigrotyBanu gaHi Ans BUpilLeHHst npobnem, Takux sik AucbanaHc knacis, i HopmanidyBanum
306paxeHHsi. Obuasi mogeni, ViT Ta Mamba, 6ynv nonepeaHbo HaBYeHi Ha Habopi aaHux ImageNet Ta gonpavuboBaHi Ans knacudikawii
paky Lwkipy. Mu ouiHunmM Mogerni Ha OCHOBI 3aranbHOT TOYHOCTI Ta F1-score Ans KOHKPETHWX KraciB paky LUKipu.

PesynbraTtu gocnigkeHHA. My 06pobunu Habip AaHux ans knacudikauii. Basslun 3asganerigb HaTpeHoBaHi Barn ABoX BapiaHTiB
apxitektyp VMamba Ta ViT, M goHaB4mnu ix Ha 3anponoHoBaHOMY Habopi. [nsi ouiHIOBaHHSA SIKOCTi MV BUKOPWCTOBYBamnM 3HaYEHHs!
accuracy Ta F1-score. Pedynbtati nokasytotb, Wo Mogeni ViT Ta Mamba MatoTb CX0Xy 3aranbHy TOYHICTb, Npu LboMy Moaenb Mamba
TPOXM KpalLle knacudikye MeHL npeacTaBneHi knacu, Taki sik xsopoba boyeHa Ta aepmatocdibpoma. O6masi Moaeni NpoaeMoHCTpyBanm
BWUCOKI 3HaYeHHs F1-score y BUNaaky MenaHoMu, LWO CBIAYUTbL MPO iXHI0 ePEeKTUBHICTb Y BUSBIIEHHI L€l BaXKOT (hopMK paky LLKipw.

BucHoBku. Pesynbtaty ceigyath, Wwo Mamba € cnpaexHbot anbTepHaTtvBoto ViT ansa knacudikauii paky LKipy Yyepes CXoxy
TouHicTb. 3acTocyBaHHA VMamba y nepcnektuBi Morno 6 3pobuTu AiarHOCTUKY paky LUKipW AelleBLIol Ta Ginblu JOCTYMHOW Yepes
edpekTnBHE MawlcTabyBaHHs. Hagani gocnigkeHHs NoTpiGHi ANs BUBYEHHS iHWMX BapiaHTiB Modeni Mamba Ta ans goonpautoBaHHs ii
NPOAYKTUBHOCTI Ha BinbLUnX Habopax AaHuX.

KntoyoBi cnoBa: MalLuMHHE HaBYaHHS; KOMIMIOTEPHWIA 3ip; pak LWKipu; TpaHcdopmepu; NpocTopoBi Moaeni ctaHy; VMamba.
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