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FINITE APPROXIMATION OF ZERO-SUM GAMES PLAYED
IN STAIRCASE-FUNCTION CONTINUOUS SPACES

Background. There is a known method of approximating continuous zero-sum games, wherein an approximate solution
is considered acceptable if it changes minimally by changing the sampling step minimally. However, the method cannot
be applied straightforwardly to a zero-sum game played with staircase-function strategies. Besides, the independence of
the player’s sampling step selection should be taken into account.

Objective. The objective is to develop a method of finite approximation of zero-sum games played in staircase-function
continuous spaces by taking into account that the players are likely to independently sample their pure strategy sets.
Methods. To achieve the said objective, a zero-sum game, in which the players’ strategies are staircase functions of time,
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions of time, and
the time is thought of as it is discrete. The conditions of sampling the set of possible values of the player’s pure strategy
are stated so that the game becomes defined on a product of staircase-function finite spaces. In general, the sampling
step is different at each player and the distribution of the sampled points (function-strategy values) is non-uniform.
Results. A method of finite approximation of zero-sum games played in staircase-function continuous spaces is pre-
sented. The method consists in irregularly sampling the player’s pure strategy value set, solving smaller-sized matrix
games, each defined on a subinterval where the pure strategy value is constant, and stacking their solutions if they are
consistent. The stack of the smaller-sized matrix game solutions is an approximate solution to the initial staircase game.
The (weak) consistency of the approximate solution is studied by how much the payoff and optimal situation change as
the sampling density minimally increases by the three ways of the sampling increment: only the first player’s increment,
only the second player’s increment, both the players’ increment. The consistency is decomposed into the payoff, opti-
mal strategy support cardinality, optimal strategy sampling density, and support probability consistency. It is practically
reasonable to consider a relaxed payoff consistency.

Conclusions. The suggested method of finite approximation of staircase zero-sum games consists in the independent
samplings, solving smaller-sized matrix games in a reasonable time span, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appropriate if at least the respective approximate (stacked) solution is
e-payoff consistent.

Keywords: game theory; payoff functional; staircase-function strategy; matrix game; irregular sampling; approximate
solution consistency.

Introduction

Zero-sum (also known as antagonistic) games
are usually used to model processes where two sides
referred to as persons or players interact in struggling
for optimizing the to-be-paid-or-pay events [1], [2].
A possible action of the player called its (pure) stra-
tegy can be intended to bring a particular contribu-
tion into the interaction process in order to receive
the best payoff for this player [3, 4]. The strategy can
be as a simple (point) action whose duration is usual-
ly short, as well as a process consisting of an order of
simple actions [3, 5].

The simplest zero-sum game is a matrix game,
whichever the pure strategy complexity is. Any matrix
game has optimal solutions — one, a finite num-
ber, or continuum, either in pure or mixed strategies
[1, 6, 7]. A more complicated zero-sum game is
the antagonistic game, in which the game payoff
function (kernel) is a surface defined on a finite-di-
mensional compact Euclidean subspace. A simple
example of the subspace is a unit square [1, 6, 7].
In such cases, opposed to matrix games, the opti-
mal solution is not always determinable. Addition-
al complications may arise when the surface has
discontinuities [8, 9]. Moreover, zero-sum games
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defined on open or half-open subspaces (e. g., open
square like in the examples from [6, 7]) may not
have an optimal solution at all [1, 5, 6]. Therefore,
aiming at assuredly obtaining an optimal solution,
rendering a zero-sum game to a matrix one becomes
a crucial task in zero-sum-game modeling. Without
rendering, a zero-sum game may have an intrac-
table optimal solution (if any), when the optimal
strategy support is infinite or continuous (e. g., see
the examples in [6, 7, 10, 11]). A zero-sum game,
in which the player’s strategy is a function (e. g., of
time), is a far more complicated case. In such games,
the payoff kernel must be a functional mapping ev-
ery pair of functions (pure strategies of the players)
into a real value [7, 8, 12, 13]. A game played with
such function-strategies is rendered down to a ma-
trix game only when each of the players possesses a
finite set of one’s function-strategies. Obviously, the
rendering is theoretically impossible if the set of the
player’s strategies is infinite.

The question of rendering an infinite game to a
finite one was studied in [14, 15]. The core consists
in approximating the infinite game so that the ap-
proximated game would not lose the properties of the
initial game. There are two fundamental conditions
in the game approximation core that allow rendering
a zero-sum game with strategies as functions down
to a matrix game. First, a time interval, on which
the pure strategy is defined, should be broken into
a set of subintervals, on which the strategy could
be (maybe, approximately) considered constant.
The second condition requires that the set of possi-
ble values of the player’s function-strategy be finite.

The first fundamental condition is the time
sampling condition. It can be done according to the
rules of a system to be game-modelled, where the
administrator (supervisor, manager, controller, etc.)
does always define (or constrain) the form of the
strategies players will use [8, 10, 16, 17]. Moreover,
any process is interpreted static on a sufficiently
short time span. Henceforward, the time sampling
condition is considered fulfilled (automatically, by
default). Then the function-strategy becomes stair-
case. To keep the terminology simple, the respective
game can be called staircase.

The second fundamental condition is imposed
for the natural reason that the number of factual
actions of the players (in any game) is always finite.
While the players may use strategies of whichever
form they want, the number of their actions has a
natural limit (unless the game is everlasting; but the
everlasting game is an unreal mathematical object)
[6, 7, 10, 17]. Thus, the set of function-strategies

used in a zero-sum game is finite anyway. Therefore,
any non-everlasting zero-sum game is played as if it
is a matrix game. However, the size of this matrix
game depends on how each of the players has decid-
ed on discretizing (i. e., finitely approximating) one’s
set of function-strategy values. It does not seem that
a player is likely to independently discretize the set
identically to the other player’s discretization.

Theoretically, the continuous game approxi-
mation is based on sampling (discretizing) either the
payoff kernel or the sets of players’ pure strategies.
Basically, this is the same. A method of approxi-
mating continuous zero-sum games is known from
[14, 15, 18]. An approximate solution is considered
acceptable if it changes minimally by changing the
sampling step minimally. Obviously, the indepen-
dence of the player’s sampling step selection should
be taken into consideration. Moreover, the method
cannot be applied straightforwardly to a zero-sum
game played with staircase-function strategies.
However, a part of the staircase game considered
on a time subinterval where the players’ strategies
are constant can be directly approximated by the
method taking into account the independence of the
player’s sampling step selection.

Problem statement

Issued from the impossibility of solving ze-
ro-sum games played in staircase-function contin-
uous spaces, the objective is to develop a method of
finite approximation of such games by taking into
account that the players are likely to independently
sample their pure strategy sets. For achieving the
objective, the following six tasks are to be fulfilled:

1. To formalize a zero-sum game, in which the
players’ strategies are functions of time.

2. To formalize a zero-sum game, in which the
players’ strategies are staircase functions. In such a
game, the set of the player’s pure strategies is a con-
tinuum of staircase functions of time, and the time
is thought of as it is discrete.

3. To state conditions of sampling the set of
possible values of the player’s pure strategy so that
the game be defined on a product of staircase-func-
tion finite spaces. By this, the sampling step is to be
different at each player. In addition, the distribu-
tion of the sampled points (function-strategy values)
must not be necessarily uniform.

4. To state conditions of the appropriate finite
approximation. This implies also convergence. The
independence of the player’s sampling step selection
is to be discussed also.
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5. To discuss applicability and significance of the
method for the game theory. In particular, the ques-
tion of how to reconcile the difference of the players’
sampling step selection is to be discussed as well.

6. Make an unbiased conclusion with a clear
prompt of how the research might be extended and
advanced.

A zero-sum game played with strategies as
functions

A zero-sum game, in which the player’s pure
strategy is a function of time, is defined by the fol-
lowing presumptions. Let each of the players use
time-varying strategies defined almost everywhere
on interval [#; t,] by ¢, > ¢, . The first player’s strate-
gy is denoted by x(7) and the second player’s strategy
is denoted by y(7). These functions are bounded, i. e.

Anin < x(1) < a,,. by G, < G (1)

and
bon S V()< b, by b

min

< b ?2)

Besides, the square of the function-strategy is pre-
sumed to be Lebesgue-integrable [19]. The sets of
the players’ pure strategies are

X ={x(t), telt; ],
h<t:a,, <x(t)<a,, bya, < amax} cL,[t; 5] (3)

and
Y:{y(t),te[tl;tz],

< y(t) = bmax by bmin < bmax} < ]LZ [tls tz]s (4)
respectively. Each of sets (3) and (4) is a rectangular
functional space, in which every element is a bounded
function of time by (1) and (2).

The first player’s payoff in situation

{x(@), y(0)}

<t b

min

(&)
is
K (x(1), y()).
The payoff is presumed to be an integral functional:
K (x(1), y(1)) = j f(x@), y(0), t)dp(®)  (6)
[0 1]
with a function

f(x(0), y(0), 1) (7

of x(7) and y(7) explicitly including time z. Therefore,
the continuous zero-sum game

{X, Y}, K(x(0), y(0))) (8)
is defined on product
XchLz[tl;tz]x]Lz[tl;tz] )

of rectangular functional spaces (3) and (4) of
players’ pure strategies. It is worth noting that the
game continuity is defined by the continuity of
spaces (3) and (4), whereas payoff functional (6) still
can have discontinuities.

As it has been argued above, zero-sum game (8),
in which the players’ strategies are functions of time,
in practical reality is played discretely during time
interval [#,, t,]. The time step is the same for each of
the players because it is presumed to be established
either by the rules of the system game-modelled or
by the administrator.

A zero-sum game with staircase-function strategies

Denote by N the number of subintervals at
which the player’s pure strategy is constant, where
N e N\ {I}. Then the player’s pure strategy is a stair-
case function having only N different values (out of,
maybe, a continuum of possible values). Then there
are N — 1 time points at which the staircase-func-
tion strategy changes or can change its value. These

. YN
points are {r(”}_ | » Where
i

1= 1<tV @< <D ™= L.

(10)

AN
Points {r(’)},fo are not necessarily to be equidistant,

but they are the same for each of the players and
they do not change as the game is repeated (a finite
number of repetitions is meant — from the practical
point of view).

The staircase-function strategies are right-con-
tinuous:

1£i>r0nx(r(” +s):x(r"’) (11)
£—0

and
lim y(x”+e)=y(x") (12)

e—>0
for i =1, N — 1, whereas (if the strategy value changes)

lgi>r()rlx(‘c([) - 8) # x(r(i))
e—>0

(13)
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: 0 _ ) 14
lim (" —¢) = y (=) (14) K(oy, By) = F ey By 1)du(t). (23)
a0 [r<Nfl);r(N)l
fori=1, N 1. As an exception, Henceforward, game (8) equivalent to the succession
. N\ v (V) of N continuous zero-sum games (19) by (20)—(23)
133({3 x(T 8) h x(T ) (15) is called staircase. A pure-strategy situation in stair-
o case game (8) is a succession of N situations
and N
Houws B (24)
lim y (" —¢) = y(«V), (16) ‘
=0 in games (19). In staircase game (8), the set of the
player’s pure strategies is still a continuum of stair-
SO case functions of time, but the time is discrete. This
o ™ time-discretization property, implying constant val-
x(T )= x(T ) (I7) " ues of the players’ strategies on every subinterval,
allows, in addition to the succession of N contin-
and uous zero-sum games (19), decomposing staircase
( ( N_l)) B ( ( N)) (18) game (8) with respect to the (staircase) payoff.
. BEASEA Theorem 1. In a pure-strategy situation (5) of

As both functions x(7) and y(#) are constant
Vite [t“’”; ’C(i)) for i=1, N -1 and
Vte [I(N’l); T(N):I,

then game (8) can be thought of as it is a succession
of N continuous zero-sum games

({[uin: @] [Boins B I} K (012 B,))— (19)
defined on product
[@min’s v ] [ B ]
by
o = X(1) € [} O]
and B, = y(#) € [byins Onax | V1€ [r”‘”; r‘”)
for i=1, N -1 and Vte[t(N");r(N)J (20)
where the factual payoff in situation
{a;, B;} (21
is
K(a;,B)= S (o, B, 1)du(?)
Vi=1,N-1 (22)

staircase game (8), represented as a succession of N
games (19), functional (6) is re-written as a subin-
terval-wise sum

N
K (x(1), y(1)) = ZK(O'I" )=

N j oy, By t)du(t) +

i=1 [T(i—l); T(1))

" J' oy By £)du(?) (25)

[T(N—l); 1:(N)]
Proof. Situation (21) is tied to half-subinterval

[r(i’l); r(i)) by i=1, N-1

and to subinterval
[€¥0; €] by i = N,
Function (7) in this situation is some function of

time #. Denote this function by y(#). For situation
(21) function

yi()=0 Ve[, (26)
and for situation
{ons By}
function
Yy =0 Vig[t" D <M. (27)
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Therefore,

N
S (x(0, y(0), 1) =D i) (28)

in a pure-strategy situation (5) of staircase game (8),
by using (26) and (27). Consequently,

[ £(xw), 30.1)anr) -

[’15 ’2]

K (x(1), y(t)) =

N-1

- j v (Hdu(t) + vy (Ddu(t) =

[,[(Nfl); ,[(N):I

-y J‘ f (o, By, 1)du(r)+

i=1 [1(171); r(,))

+ j oy By £)du(t) =

[,[(Nfl); ,[(N):I

:ﬁl((ai, ;)

i=l

(29)

in a pure-strategy situation (5) of staircase game (8).

It is noteworthy that Theorem 1 can be proved
also by using the property of countable additivity
of the Lebesgue integral. Theorem 1 does not pro-
vide a method of solving the staircase game. Nev-
ertheless, it provides a fundamental decomposition
of the game based on the subinterval-wise summing
in (25). This decomposition allows considering and
solving each game (19) separately, whereupon the
solutions are stitched (stacked) together.

Why the sampling must be different and irregular

There are two main arguments for considering
different sampling steps at each of the players. First,
the players cannot agree on the sampling step. If
even they have identical ranges of function-strategy
values, an agreement is impossible due to the coop-
eration is excluded. Second, if a player has a wid-
er range of one’s function-strategy values then it is
likely to be sampled with a greater number of points.
This, however, does not mean a denser sampling.

The sampling can be non-uniform (irregular).
Indeed, a player may tend to use greater or lesser
values of one’s function-strategy more frequently. In
particular, this may lead to a denser sampling in a
neighbourhood of those values. Thus, the sampling,
in a generalized approach to finite approximation of
zero-sum games played in staircase-function contin-
uous spaces, must be irregular.

Sampling along the pure strategy value axis

In game (19) on subinterval i, the first play-
er has its set [a,,,; @] Of pure strategies, and the
second player’s pure strategy set is [5,.;,; b,...]- Let set
[@ins @] De sampled non-uniformly (irregularly)
with M points, M € N\ {1}:

M

AM)={a"}" =

m=1

= {amil’l7 {a(m)}Mil > amax} c [amln; amax] (30)

m=2

by

M) _ 4

aV =a . and a - (31)
i. e., the endpoints are always included into the sam-
pling. Similarly to this, let set [b,,,; b,...] be sampled
non-uniformly (irregularly) with J points, J € N\ {1}:

B(J)={p")

j=1

YA
= {bmin’ {b(J)}j:z ’ bmax} = [bmin; bmax] (32)
by
b =p  and bV =b_ . (33)

The roughest sampling is by M = 2 and J = 2, when
A(2) = {a(”, a(z)} ={Gins Qx|

min?® ““max
and

B(2) = {6, 67} = {Bpin» bas }-

min® “max

If either of integers M and J is increased by 1, a new

sampling must comply with the previous one. This

is a requirement of the proper sampling increment.
Definition 1. Sampling

w(S+1) =)o) =

s=1
= {Qmina {}"(5)};12 ) Cmax} = [Cmin; Cmax] (34)

by Cin < Cmax and S € N\ {1} is a proper sampling
increment of sampling

()= () -

S-1

B {Cmi"’ {Qm}szz ’ QmaX} c [Cme Cmax] (35)
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if

max (;\’(Hl) _ 7\.(3)) < max (C(Hl) _ C(S)):
s=1, 8 s=1, -1

(36)

i. e. the §'+ 1 points in 1-incremented sampling (34)
are selected denser than .S points in sampling (35).
With the sampling by (30)—(33), the succession
of N continuous games (19) by (20), (22), (23) be-
comes a succession of N matrix M xJ games

<{{a<'">}m ST LK J)> (37)
with payoff matrices
K, (M, J)=[k,, (M, J)], | (38)
whose elements are
Ky (M, J) = f(a™, b, t)du(r)
[#70:+7)
for i=1, N -1 (39)
and
Ky (M, J) = f(a™, b9, t)du(z). (40)

[I(Nfl);T(N):I

So, if integers M and J for game (8) by (20) is some-
how selected, the staircase game is represented as a
succession of N matrix M x J games (37).

By sampling (30) and (32) the staircase game
becomes defined on product A(M)x B(J), which
becomes a product of staircase-function finite spac-
es by running through all i =1, N. Thus, game (8)
becomes a finite staircase game. It might be ren-
dered to a matrix game in order to obtain a staircase
solution (herein, adjective “staircase” gives a hint to
the type of the game, rather than to the structure of
its solution). However, there is a much easier way to
solve a finite staircase game.

Theorem 2. If game (8) on product (9) by conditions
(3), (4), (6) is made a staircase game as a succession of
N continuous zero-sum games (19) by (20), (22), (23),
whereupon it is sampled by (30) and (32), then the re-
spective finite staircase game is always solved as a stack
of successive optimal solutions of N matrix games (37) by
(38)-(40).

Proof. A matrix game always has a solution,
either in pure or mixed strategies. Denote by

P (M0 =[o (0.)],

and
Q (M, J)=[a" (M. ])],
the mixed strategies of the first and second players,

respectively, in matrix game (37). The respective sets
of mixed strategies of the first and second players are

P:{P,.(M,J)GRM " (M, J)=0,

Zp(”') M, J) 1} (41)

and
Q={Q, (M,J)eR’ : g (M,J)=>0,

Zq(” (M, J)= } 42)

SO
P(M,J)eP, Q(M,J])cQ,

and

(P.(M,J),Q,(M,J)} (43)

is a situation in this game, i. e. (43) is a situation on
subinterval 7. Let

{7 (M, ]),Q (M, J)}}: B
-{{Lo . 1],

N
o* M J
Lo (DN
be a set of optimal solutions of N games (37) by (39)
and (40). Then

(44)

. T
oA Q,<%13§QR<M,J>-Kf<M,f>-[of<MJ>J :
M J
- P(rAlf}a}))(eP Q:(M, J szlzk”"f
<™ (M, T)gl” (M, )=
— (m) ( )
_P(InglaJXePQ M.IEQZZP M’J ’ (M J)

m=1 j=1

« j' f(a(m), b, t)du(t) _
[t(ffl);,[(l))
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p(m) (/) (M, J)><

.M\

i
m=1 j

f(a(’”), b(j), t)du(t) _

X

—_—

[r“’”; Tm)
=P (M, J)-K,(M,J)-[Q (M, J)]T -

J

m ZZ "
Q(M.IEQPM.IEP

= in
m=

v, (M, J)=

(/) M, J) x

y I f(a(’"),b“),t)du(t):
[T(i—n. r‘“)

M J

"o M./eQPMJ ZZ ”"/
=
(M

m

xp" (M., J)gq”

)
= min max P(M,J)-

Q;(M,J)e@ P,(M,J)eP

J)=
K, (M,J)-[Q (M, J)]

vVi=1, N -1 (45)

and

in Py (M,J)-Ky(M,J)[Qy(MJ)] =

max m
Py(M,J)eP Qy(M.J)e@

M. J
:P(MJePQNMJ ZZ Nm/
=l j=
)y (M. J) =
M
— (m) ()
T p, (n/\}al)%eP Q,»(I}}JEQZZPN (M, J)ay’ (M, J)x

% J. f(a(m)’ b(j), t)dp(t) _
[<Nfl). (N}]
-2

m=1 j

x py" (M

p(m> (j)* (M, J) %

.M\

X

—_—

f(a(’"), b(f), t)du(t) _
[T(N*I);T(N)]
=Py (M, J)-Ky (M, J)-[Qy (M, J)]T

M J
T M.IEQPNMJ ZZ

m=1 j=1

(/) M J)

y I f(a(’"), b, t)du(t) _
[TtN—l);qu

=vy (M, J)=

Q MJeQ Py ( Mjepzzk’\’mf M J

m=1 j=1
< (M, T)q (M, J) =
P, (M, J)x

min max
QN(M,J)EQ Py(M,J)eP

<Ky (M. J)-[Qu(M, )] . (46)

Using Theorem 1 allows concluding that, using a
wide-sense pure-strategy symbolism,

max min K (x(r), y (1)) =

P ePQ MJGQZZPI(M) M J

—1
i=1 m=1 j=1

xq" (M, J) f(a('”’,b‘/),z)du(;) +
[T(ifl).T(i))

M J
(m)
+P(MJePQ~MJ QZZPN (M J)x

m=1 j=1

<q\ (M, J) f(a™, b9, t)du(r) =

[T(N");T‘N’J
N-1 M J
=YD Y A (M) a (M) x
i=l m=1 j=1

I(f—l); T(l))

% I f(a(m), b(j), l)du(l‘) _
[T(.’Vfl);,[(N)J

(M) K, (M, ) [Q (M, )]+
+Py (M, J)-K, (M J).[Q’]‘v (M’J)]T _

=» v, (M, J)+vy (M, J)=v (M, J)=
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Nt v v, (M, J)=v, (M +1,0) <|v] (M =1,0)=v] (M, J])
— (m)
‘Z Q(Ib“}}eap(%la}’)ipz;zl’f (M, J) for i=1, N (48)
i= m=1 j=
and
D) [ F@ 8 a0 ]S (0 1) (0,
[Tu—n;rm) for i= ], N (49)
M S and
: DR WA
o, e v, (B30 e v, (M, J)=v, (M + 1,0+ 1)| <]y (M =1,J =1)=v] (M, ]
for i=1, N, (50)

xqP (M, J) f(a™, b, t)du(r) =
[r(Nfl);T(N)]

= min max K (x(1), y (1))

(1) 47

and, therefore, the stack of successive solutions (44)
is an optimal solution in staircase game (8) sampled
by (30) and (32).

It is quite clear that these M xJ matrix games
are solved in parallel, without caring of the succes-
sion. The succession does matter when the solutions
are stacked (stitched) together to form the staircase
solution (the solution to the finite staircase game).
If all N matrix games are solved in pure strategies,
then stacking their solutions is fulfilled trivially. When
there is at least an equilibrium in mixed strategies for
a subinterval, the stacking is fulfilled as well imply-
ing that the resulting pure-mixed-strategy solution of
staircase game (8) is realized successively, subinterval
by subinterval, spending the same amount of time
to implement both pure strategy and mixed strategy
solutions (e. g., see [6, 7, 10, 18, 20, 21]).

Approximate solution consistency

The conditions of the appropriate finite ap-
proximation are stated by using the known method
of obtaining the approximate solution of continuous
antagonistic games on unit multidimensional cube
with uniform sampling [18]. There are five items of
the conditions. The requirement of the smooth sam-
pling of the payoff kernel is inapplicable here [22].

First of all, there is an easy-to-find condition
of the finite approximation appropriateness. It is
about the game optimal value change, which must
not change more by the proper sampling increment.
Inasmuch as an increment is possible from the side
of both the players, then this condition is a set of
3N inequalities:

Conditions (48)—(50) mean that, as the sampling den-
sity minimally increases, either from the side of the
first or second player, the game optimal value change
in an appropriate approximation should not grow.

Definition 2. An approximate solution (44) to
staircase game (8) is called payoff-{M, J}-consistent
if inequalities (48)—(50) hold. The players’ optimal
strategies in such a solution are called payoff-{M, J}-
consistent.

The second condition is the change of the op-
timal strategy support cardinality. Denote the sup-
ports of the optimal strategies of the players by

suppP; (M, J) = {m,};\"" < {m} | (5D)
by the respective support probabilities
(m )* (M, .I)
{p"" (M, J)} S (52)
and
supp@; (M. J) = {4, ;" < {7y, (53)
by the respective support probabilities
( ) M .l)
(g (M, J)} 3 (54)
Then 6/ inequalities
U (M+1,7)2U,(M,J) for i=1, N, (55)
U (M, J+1)2U,(M,J) for i=1, N, (56)

U(M+1,J+1)2U,(M,J) for i=1,N, (57)
W, (M +1,J)2W,(M,J) for i=1, N, (58)
W, (M,J+1)2W,(M,J) for i=1, N, (59)

W, (M +1,J +1)2W,(M,J) for i=1, N (60)
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require that, by minimally increasing the sampling
density, either from the side of the first or second
player, the cardinalities of the supports not decrease.

Definition 3. An approximate solution (44) to
staircase game (8) is called weakly support-cardinality-
{M, J}-consistent if inequalities (55)—(60) hold. The play-
ers’ optimal strategies in such a solution are called weakly
support-cardinality-{ M, J}-consistent.

Obviously, requirements (55)—(60) can be sup-
plemented (strengthened) by considering a minimal
decrement of the sampling density. Then another
6N inequalities

U (M,J)2U,(M~-1,J) for i=1, N, (61)

U, (M,J)2U;(M,J-1) for i=1, N, (62)
U (M,J)>2U,(M~1,J 1) for i=1, N, (63)

W, (M,J)=2W,(M~-1,J) for i=1, N, (64)

W, (M,J)=W,(M,J-1) for i=1, N, (65)

W, (M,J)=W,(M-1,J -1) for i=1, N (66)
are required.

Definition 4. An approximate solution (44) to stair-
case game (8) is called support-cardinality-{M, J}-con-
sistent if inequalities (55)-(66) hold. The players’ optimal
strategies in such a solution are called support-cardinali-
ty-{ M, J}-consistent.

As the sampling density minimally increases,
the maximal gap between the support indices should
not increase. Let m (M, J) and j (M, J) be the re-
spective support indices corresponding to integers
{M, J} on a subinterval by (20). Then 6N inequalities

. [ (M +1,0)=m, (M +1,J)]<
<, pmax [, (M, J)=m, (M. J)] fori=1, N, (67)
. Ur?%ﬂ)l[ e (M, T +1)=m, (M, J +1)] <
< max [ (M. J)=m, (M, J)] fori =1, N, (68)
MZ%[mH(MH,J+1)—mM(M+1,J+1)]£
sulrunax [mw M,J)-m,(M,J)] fori=1, N, (69)
wlug(lng})fu |:_]w+1 (M +1,J)- jw(M+1,J)}s

< o [ (M, J)=j, (M, J)] fori=1, N, (70)
W:Wrg;lixhw[jw+l (M, J+1)-j, (M, J +1)]<

< max L (M, )= j, (M, 1)] fori=1, N, (71)
max____[ . (M+1,J+1)=j,(M+1,J+1)]<

w=l, W,(M+1,J+1)-

[ (M. T) =, (M, 1)] fori=1, N (72)

< max
w=l, W;(M, J)-

are required.

Definition 5. An approximate solution (44) to stair-
case game (8) is called weakly sampling-density-{M, J}-
consistent if inequalities (67)—(72) hold. The players’ op-
timal strategies in such a solution are called weakly sam-
pling-density-{ M, J}-consistent.

Similarly to strengthening the weak (by Defi-
nition 3) support cardinality to that by Definition
4, requirements (67)—(72) can be strengthened by
considering a minimal decrement of the sampling
density. Then another 6 N inequalities

L e (M) =m, (M. J)] <
%[Ml (M, J)~m,(M,J fori=1, N, (73)
v P e (M. T) =m, (M, T)]<
: u=T, Uril(’llt?,xl—l)fl [m’”l (M’ J=1)-m (M. J - 1):|

for i=1, N, (74)
lum(eﬁllixj)l[ml (M, J)=m,(M,J)]<
< uﬁ?ﬁ_l)_l[”’wl (M =1,J -1)-m,(M-1,J -1)]
for i=1, N, (75)
i e (M- T) 0 (M )]
< max  [j,,(M-1J)-j,(M-1,J)]

w=L, W,(M-1,J)-1

for i=1, N, (76)
w=%[jw+l(M’J)—JW(M,J)]S
< o Lo (M. T =1)=j, (M, ] -1)]
for i=1, N 77)
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w:l,rul;,l(a}t;(J), |:jW+1 (M’J)_jw (M, J):|S
Swwai)f“[lwn _I’J_l)_jw(M—l,J—l)}
for i=1, N (78)

are required.

Definition 6. An approximate solution (44) to stair-
case game (8) is called sampling-density-{M, J}-consis-
tent if inequalities (67)-(78) hold. The players’ optimal
strategies in such a solution are called sampling-density-
{M, J}-consistent.

Denote by A,(i; m, M, J) a polyline whose ver-
tices are probabilities

{ (m)* (M J)}

=1’

and denote by A,(i; j, M, J) a polyline whose vertices
are probabilities

{ * (M J)}

Then, by minimally increasing the sampling density,
the “neighboring” polylines should not be farther
from each other, i. e. inequalities

rﬁ)l;2ﬁ<|hl (i m, M, J )~ h, (i m, M +1, J)|§

< r[rol;a]>]<|hl (i3 m, M =1, J) = by (ism, M, J)

for i=1, (79)
r[rol;aﬁ<|h1 (i;m, M, J)—h (i;m, M, J +l)| <
< r[rol;aﬁ(|h1 (i m, M, J 1) =B (ism, M, J )|

for i=1, N, (80)

r[r&aw/q (iym, M, J)~ h, (i; m,M+1,J+1)|s

gmal>]<|hl (i m, M =1, 0 1) =y (ism, M, J )|

or 1=, (81)
and
M 5 M)~ (5. M 41, )
for 121,_’ )

1[101;ax|h2(i; 5 M) =h (05, M, J +1)| <

<max|h2 iy j, M, J =1)=h(i5 j, M, J)

[0; 1]

for i=1, N, (83)

m.ax|h2(i; M, J) = h (i j,M+1,J+1)|£

<max|h2 (i34, M = 1,0 =1)=hy(i5 j, M, J)|

for i=1, (84)
along with

| (s m, ML T =By (5m, M1, T )| <

<|m (ism, M =1, J) = h (i;m, M, J)

L,[0;1] for i=1, N, (85)

| (65, M Ty~ (35, ML T 1) <
< (is m, M, J =1)=h (i;m, M, J )|

in L,[0;1] for i=1, N, (86)

1 (65 m, ML T )=y (i m, M +1, 0 + 1) <
< (is my M =1, 0 =1) =Ry (ism, M, J )|
L,[0;1] for i=1, N, (87)
and
|7 (55 . M T) =y (15, M+ 1,0 )| <
<ty (55 o M =1, )= by (55 1, M, T )|

L,[0;1] for i=1, N, (88)

||h2(i; Js M, J)=h, (is ], M,J+1)||g
<[y (i . M, T =1) = by (i3 j, M. T )|

in L,[0;1] for i=1, N, (89)

o (i3 4o M T) =y (i, M+ 1,0 +1)| <

<\ (i s M =10 =1)=hy (i j, M, T )|

in L,[0;1] for i=1, N (90)
are required.

Definition 7. An approximate solution (44) to stair-
case game (8) is called probability-{ M, J}-consistent if
inequalities (79)-(90) hold. The players’ optimal strategies
in such a solution are called probability-{ M, J}-consistent.
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The solution consistency by each of Definitions
3—7 implies that both the players’ optimal strategies
are consistent as well. Nevertheless, it is not worth
cancelling the player’s optimal strategy consistency
when for the other player the consistency conditions
do not hold. Thus, a player’s optimal strategy may
be consistent while an optimal strategy of the other
player is not consistent. For instance, if inequali-
ties (55)—(57) hold, but inequalities (58)—(60) do
not hold (at least one of those 3N inequalities is
violated) and thus the second player’s optimal strat-
egy is not weakly support-cardinality-{M, J}-con-
sistent, the first player’s optimal strategy is weakly
support-cardinality-{ M, J}-consistent. If inequalities
(48)—(50), (55)—(60), (67)—(72), (79)—(90) hold for
some i, then matrix game (37), assigned to the sub-
interval between 1" and 1, has a weakly consistent
approximate solution to the corresponding conti-
nuous game (19) by (20), (22), (23). On this basis,
the weak consistency of an approximate solution to
a staircase game (8) is formulated.

Definition 8. The stack of successive solutions (44)
is called a weakly { M, J}-consistent approximate solution
of game (8) on product (9) by conditions (3), (4), (6) if in-
equalities (48)-(50), (55)-(60), (67)~(72), (79)-(90) hold.
The players’ optimal strategies in such a solution are called
weakly {M, J}-consistent.

Once again, if, say, the second player’s opti-
mal strategy is not weakly {M, J}-consistent (at least
one of the respective inequalities in Definition 8
for the second player is violated), it does not mean
that the first player’s optimal strategy is not weakly
{M, J}-consistent also. If, in this example, inequa-
lities (48)—(50), (55)—(57), (67)—(69), (79)—(81),
(85)—(87) do hold, then the first player possesses a
weakly {M, J}-consistent optimal strategy, regardless
of the second player’s weak consistency. Similarly
to strengthening Definitions 3 and 5, the weak con-
sistency can be strengthened by adding the require-
ments with inequalities (61)—(66) and (73)—(78).

Definition 9. The stack of successive solutions (44) is
called an {M, J}-consistent approximate solution of game
(8) on product (9) by conditions (3), (4), (6) if inequalities
(48)-(50) and (55)-(90) hold. The players’ optimal strate-
gies in such a solution are called {M, J}-consistent.

The approximate solution consistency theore-
tically proposes a better approximation than the
weak consistency. The weak consistency notion by
Definition 8 may be thought of as it is decomposed
by Definitions 2, 3, 5, 7. Thus, the consistency
notion by Definition 9 is decomposed into Defini-
tions 2, 4, 6, 7. Even if an approximate solution is
not weakly consistent, it may be, e. g., payoff-con-

sistent. The payoff consistency is checked the easi-
est and fastest. A payoff-consistent solution can be
sufficient to accept it as an appropriate approximate
solution [1, 6, 14, 18, 22]. However, if a one of 3N
inequalities (48)—(50) is violated, even this type of
consistency does not work. Meanwhile, the viola-
tion may be induced by a very small growth of the
payoft change. Therefore, it is useful and practically
reasonable to consider the payoff consistency adding
a relaxation to inequalities (48)—(50).

Definition 10. An approximate solution (44) to
staircase game (8) is called e-payoff-{M, J}-consis-
tent if inequalities

v, (M, J)=v] (M +1,J)[-
—e<|v/ (M =1,J)=v, (M, J)

by some ¢>0 for i=1, N 91)
and
v, (M, J)=v] (M, J +1)-
—e<|v (M, J =1)=v] (M, J)
by some ¢>0 for i=1, N 92)
and
v, (M, J)=v] (M +1,J +1)|
—e<|v (M -1,J =1)-v (M, J)
by some ¢>0 for i=1, N (93)

hold. The players’ optimal strategies in such a solution are

called e-payoff-{ M, J}-consistent.

To ascertain whether the stack of successive
solutions (44) is weakly consistent or not, the seven
bunches of N matrix games (37) should be solved,
where the sampling density is defined by integers

(M-1,J -1}, (M-1,J}, {M,J-1}, {M,J},
(M +1,J}, {M,J+1}, {M+1,J+1}.

It is worth noting once again that the players select
their respective integers M and J independently and,
moreover, the sampling by an integer .S means that
those § — 2 points within an open interval can be
chosen in any way, not necessarily to be uniformly
distributed through the interval. Only the require-
ment of the proper sampling increment (by Defi-
nition 1) is followed. Nevertheless, the consisten-
cy meant by some sampling density integers {M, J}
does not guarantee that both the players will select
such sampling density. Moreover, it is hard to find
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a continuous zero-sum game, for which a consis-
tent approximate solution could be determined at
appropriately small integers M and J. However, it is
quite naturally to expect that, as they are increased
(i. e., the sampling is made denser), the approximate
solutions must converge to the solution of staircase
game (8). Besides, the approximate solutions must
become “more” consistent, which means that more
inequalities of the bunch of inequalities (48)—(50),
(55)—(90) must hold.

A visual exemplification

To visually exemplify how a zero-sum stair-
case game is approximated by using the approximate
solution consistency along with reconciling the dif-
ference of the players’ sampling step selection, con-

sider a case in which 7 € [0.4x; 1.6x], the set of pure
strategies of the first player is

X = {x(t), 1 €[0.4m; 1.6n]: 5£x(t)s9} c
< L, [0.4m; 1.67] 94)

and the set of pure strategies of the second player is
Y = {y(t), te[0.4m;1.6n]:2 < y(r) < 8} c

< L, [0.4x; 1.6x], 95)

where each of the players is allowed to change its
pure strategy value at time points

=1

The payoff functional is

K(x(1), y(1)) = sin? (0.25xt + %j «

[0.4; 1.6x]

xsin (0.53yt - %T) e " dp(r).

= {0.4n+0.2ni) .

(96)

So, each of the players possesses 6-subinterval
staircase function-strategies defined on interval

[0.47; 1.6n]. Hence, the zero-sum staircase game is
represented as a succession of 6 zero-sum games (19)

({1591, 12: 81}, K (e, B))) 97)

by
o, =x(1) €[5 9] and B, = y(r) € [2; 8]

Vte [0.27: +0.2ni; 0.4m + 0.27ti)

for i =1,5 and V7 € [1.4r; 1.67], (98)

where the factual payoff in situation (21) is

K (aia i) = sin? [0.250(11 + %) x

[021‘[+02ni; 0A4n+0.2ni)

xsin(0.53[3l.t—7?nje0‘02“"dp(t) vi=15 (99)
and

K (0, Be) = sin’ (0.25%: + ﬁj x

[1.47; 1.6m]

x sin [0.53[36t - Ej e " dp (1), (100)

8

Payoff functional (96) on each subinterval of set

{{[0.27+ 02713 0,47+ 0.2m1)}7 , [Ld; L6} (101)
is shown in Fig. 1.
The irregularity (non-uniformity) in the sam-
pling is modelled as follows:

al” =5+ dm -4 and a™ =a™ L5
M -1 M
for m=2, M —1 (102)
by a =5, a™ =9, and
b =2+878 ang por g &
J - J
for j=2,J -1 (103)

by bV =2, b = 8, where &, and &, are values of
two independent random variables distributed nor-
mally with zero mean and unit variance. The values
resulting from (102) and (103) are sorted in ascend-
ing order, whereupon they are checked whether (30)
and (32) are true. When either integer M or J is
increased by 1, samplings (30) and (32) are checked
whether they satisfy the proper sampling increment
by Definition 1, i. e. whether inequality (36) holds
for samplings (35) and (34).
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Fig. 1. The payoff kernels (99), (100) on the 6 subintervals of set (101)

Thus, 6 matrix games (37) with payoff matrices . .
(38) are formed from 6 zero-sum games (97), where Koy (M, J) = sin’| 0.25a"t + )

kimj (M, J) _ [1.47; 1.6m]

. i 77t (m)
xsin| 0.536¢ — == |e 2" gy (). 105
= sin’ 0.250“"’t+% x 8 w(r) - (105)
[0-2r40:225 0:4740.2) Although the subinterval length in (104) and (105)
X SiTl 0.53b‘j’t—7—n o~0:024"1 du(r) for i =1,5 (104) does.not change, every subl.nterval.has 1t§ “‘owp
matrix game due to time variable 7 is explicitly in-
cluded into the functions under the integral. This
and means that, as time goes by, the players develop

their actions subinterval by subinterval.
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Surely, the solutions of these games (and the
solution of the initial staircase game) badly depend
on the sampling. Subinterval-wise optimal strategies
of the players by the sampling for every M =3, 10
and J = 3,10 are shown in Fig. 2 in a bunch (they
are presented indistinguishable). It is well seen that as
the sampling density changes at such a relatively wide
range of small sampling integers M and J, the player’s
optimal strategy (in every subinterval game, let alone
the stacked optimal strategy on interval [0.4x; 1.6%])
badly varies. The only exception is the first subinter-
val, on which the second player’s optimal strategy
being the pure one does not vary at all. The first player
has only pure optimal strategies on this subinterval as

well. The first player’s payoff v; (M, J) (at the end of
the i-th subinterval) and the payoff cumulative sum

89
88
8.7
8.6
8.5
84
83
8.2
81

79
78
7.7
76
75
74
73
72
71

-
T T T T T T T T T

69
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6.7
6.6
6.5
6.4
63
6.2
6.1

o

59
58
5.7
5.6
5.5
54
5.3
5.2
51

v (M, J):Zv:(M, J) by n=1,6 (106)

i=1

are also badly scattered (Fig. 3), where, according
to (106), v©"(M, J) is the optimal value in this stair-
case game, i. €.

Vi (M, J)=vO" (M, J). (107)

The only exception is that payoffs vs(M,J)
received on reaching the final time point (at the end
of the sixth subinterval) are almost converged (seen
as dots), unlike optimal values (107) being scattered
the worst (seen as circles).
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Fig. 2. An indistinguishable bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =3, 10
and J = 3,10 (here and further below the optimal pure strategy is represented by thicker line, pure strategies from the mixed

optimal strategy support are represented by thinner lines)
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Nevertheless, as the sampling density is further
increased, mixed optimal strategies become more
“condensed” (Fig. 4), where game (97) by (98)—(100)
is still solved in pure strategies on the first subinter-
val. The pure optimal strategy of the second player

on [0.4n; 0.67:) is unchangeable (it is unchangeable,
whichever the sampling is). Moreover, the payoffs
“condense” also (Fig. 5): the subinterval payoffs run
into a distinct polyline, and their cumulative sum
runs into a polyline as well, although some scatter-
ing of optimal values (107) is still seen.

It is noteworthy that the players’ optimal strat-
egies are g-payoff-{M, J}-consistent just for

e=0304-|v/ (M,J) at i=1,6

by every
M =15,20 and J =15, 20.

O RAUTEWNF NOONOUTAWNR =0 BIRTTHE DR RO PR WA G130 DR N W U110 00 ON =
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This is an evidence of that the solution convergence

] S is not enough.
Fig. 3. An indistinguishable bunch of the first player’s payoffs at
the end of every subinterval (dots) and their cumulative

sum (circles) by M =3,10 and J =3, 10

9~ 8
89 781
88—
871 - 7.6~
86 — 74~
8.5 e 72+
84 —
831 U
8.2 68—
8.1~ 661
sk
79k 6.4
781 621
7.7 6
7.6
75k 58
| — 5.6
73 54k
72 | o
74 S2r —
7= 5| —
69 sl -
6.8~
671 46~
6.6/ 44
65 42
64
631 4
6.2~ 38
6.1 361
6 —
59 —— 34
58 32
5.7 3L
5.6~
55k 28
54 261
531 24
5.2
511 22
50, i 1 1 | i | 2 1 | ! | | 1
0.4n 0.6n 0.8n 1n 12n l4n 1é6n 0.4n 0.6m 0.8n 1n 1.2n l4n 16n

Fig. 4. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =15,20 and J =15, 20
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Fig. 5. A bunch of the first player’s payoffs at the end of every

subinterval (dots) and their cumulative sum (circles) by
M =15,20 and J =15, 20

Fig. 6 presenting mixed optimal strategies
by M =25,30 and J =25,30 can be easily com-
pared to Fig. 4. The matter is that, along with the
first player’s pure optimal strategies on subinterval
[0.47; 0.67), the player’s mixed optimal strategies on
subintervals

{{[0.27+ 0,25 0.47 + 0.2

2 9

[1.4 1.67]) (108)

do really converge to the solution of the staircase
game. The comparison of more “condensed” payoffs
in Fig. 7 to Fig. 5 allows concluding the same. More-
over, here the players’ optimal strategies are e-payoft-
{M, J}-consistent for

e=0.159.

v (M, J) at i=16

by every
M =25,30 and J =25, 30

additionally supporting the said.
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Fig. 6. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M = 25,30 and J =25, 30
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Fig. 7. A bunch of the first player’s payoffs at the end of every
subinterval (dots) and their cumulative sum (circles) by
M =25,30 and J =25,30

Further thickening the samplings does not
change the result much. Along with the first player’s

pure optimal strategies on subinterval [0.4m; 0.67),
the scattering of mixed optimal strategies on subin-
tervals (108) by M =31,40 and J =31, 40 (Fig. 8)
is slightly less than that in Fig. 6. The “condensation”
of payoffs in Figures 7 and 9 are nearly the same.

Although the solution convergence is apparent,
the players’ optimal strategies are e-payoff-{M, J}-
consistent for

e=0202-y (M, J) at i=16

by every

M =32,39 and J =32, 39.

This is an evidence of that the solution convergence
reaches its saturation, and further thickening the
samplings will not improve the solution approxima-
tion nor improve the consistency. Therefore, the ap-
proximate solution to the zero-sum staircase game
by (94)—(96) and (97)—(100) can be accepted by the
independent sampling at both players’ with the in-
tegers between 25 and 30 (of course, not necessarily
identical).
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Fig. 8. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =31, 40

and J =31, 40
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Discussion of the contribution

Clearly, it would be commonly intractable to
straightforwardly solve the sampled staircase game,
without considering each subinterval matrix game
separately. For instance, by sampling the exempli-
fied game, where each of the players uses 6-subin-
terval staircase function-strategies, with, say, M = 25
and J = 30, the resulting 25° x 30° matrix game
(in which, e. g., the second player has 729 million
pure strategies!) cannot be solved in a reasonable
time span. Therefore, solving subinterval matrix
games (which are obviously “smaller”) separately
and then stacking their solutions is a far more effi-
cient way to obtain an approximate solution of the
initial staircase game. The applicability of this method
may be limited to the subinterval matrix game size.
For instance, the computation time has an expo-
nentially-increasing dependence on the size of the
square matrix. Solving matrix games, in which each
of the players has at least a few hundred pure strate-
gies, may be time-consuming in applications requir-
ing fast updates of the solution (when the structure
of the initial staircase game changes itself).

The (weak) consistency of an approximate
solution is a criterion of its acceptability. However,
a (weakly) consistent approximate solution may not

exist at appropriately small (tractable) M and J. So,
the consistency decomposition into parts by Defini-
tions 2—7 and particularly isolating an g-payoff con-
sistency by Definition 10 is justified and practical-
ly applicable. There are still many open questions,
though. First, it is not proved that limits

lim v/ (M,J) Vi=LLN (109

M—>w, J >0

exist and they are equal to the respective optimal values
of the subinterval continuous games. Second, if limits
(109) exist, it is not proved that this is followed by that
any approximate solution (44) is e-payoff-{ M, J}-con-
sistent for any M > M. and J >J. (M. eN\{l},
J. e N\ {I}). The inter-influence among the con-
sistency decomposition parts by Definitions 2—7 is
also uncertain yet.

The question of a possible reconciliation of the
difference of the players’ sampling step selection is
indeed that hard. The players can select their sam-
plings simultaneously but not identically. Even if the
ranges of function-strategy values are identical and
sampling integers M and J are the same (i. e., M =J),
implying the uniform samplings, a player’s sampling
may differ from the other player’s sampling due to
eventual inaccuracies in selecting points, as it has
been modelled by (102) and (103) with using normal
“noise” in the point selection. However, at sufficient-
ly great sampling integers M and J, not necessarily
equal, significant changes in M and J are expected
not to influence the approximate solution much.
Just like in the above-considered example, the play-
er’s optimal strategies converge subinterval-wise and
the resulting staircase strategy appears to be an ac-
ceptable approximate optimal strategy in the initial
staircase game (see Figures 6 and 8). Such a conclu-
sion is made easier by the payoff convergence (see
Figures 5, 7 and 9).

Therefore, the presented method is a signifi-
cant contribution to the antagonistic game theory
and its finite approximation supplement. It allows
approximately solving zero-sum games with stair-
case-function strategies in a far simpler manner
regardless of the fact that the players may sample
their sets of function-strategy values differently
[18, 22]. Once the (weak) consistency is confirmed
(the respective approximate solution should be at
least ¢-payoff consistent by Definition 10), the ap-
proximate pure-mixed-strategy solution (like those
ones of staircase strategies in Figures 6, 8) can be
easily implemented and practiced [5, 7, 10, 11, 15,
18, 20].
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Conclusion

A zero-sum game played in staircase-function
continuous spaces is approximated to a matrix game
by sampling the players’ pure strategy value sets. Each
set is irregularly sampled in its own way so that the re-
sulting samplings may be of different cardinalities and
varying densities. While sampled, the requirement of
the proper sampling increment (by Definition 1) must
be followed — the § + 1 points in a 1-incremented
sampling must be selected denser than S points.

Owing to Theorem 2, the solution of the matrix
game is obtained by stacking the solutions of the
“smaller” matrix games, each defined on a subin-
terval where the pure strategy value is constant. The
stack of the “smaller” matrix game solutions is an
approximate solution to the initial staircase game.
The (weak) consistency of the approximate solu-
tion is studied by how much the payoff and optimal
situation change as the sampling density minimal-
ly increases by the three ways of the sampling in-
crement: only the first player’s increment, only the
second player’s increment, both the players’ incre-
ment. Thus, the consistency, equivalent to the ap-
proximate solution acceptability, is decomposed into
the payoff (Definition 2), optimal strategy support
cardinality (Definitions 3 and 4), optimal strategy
sampling density (Definitions 5 and 6), and support
probability consistency (Definition 7).

The most important parts are the payoff consis-
tency and optimal strategy support cardinality (weak)
consistency. They are checked in the quickest and
easiest way. In addition, it is practically reasonable
to consider a relaxed payoff consistency. The relaxed
payoff consistency by (91)—(93) means that, as the
sampling density minimally increases (in each of the
three ways of the sampling increment), the game

References

optimal value change in an appropriate approxima-
tion may grow at most by €. The weak consistency
itself is a relaxation to the consistency, where the
minimal decrement of the sampling density is ig-
nored. Therefore, the suggested method of finite ap-
proximation of staircase zero-sum games consists in
the independent samplings, solving “smaller” matrix
games, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appro-
priate if at least the respective approximate (stacked)
solution is g-payoff consistent (Definition 10).

One can notice that, in staircase game (8) de-
composed into games (19), the payoff value depends
only on the subinterval length if time 7 is not ex-
plicitly included into the function under the integral
in (6). If the subinterval length does not change,
every subinterval has the same matrix game. The
triviality of the equal-length-subinterval solution is
explained by a standstill of the players’ strategies.
Time variable ¢ explicitly included into (6) means
that the players may develop their actions due to the
game-modelled system changes (develops) as time
goes by.

Finite approximation of games played in stair-
case-function continuous spaces will be extended
and advanced also for the case of non-antagonistic
interests of two players sampling their strategy value
sets irregularly. An approach to solving the corre-
sponding “smaller” bimatrix games is not straight-
forwardly deduced from Theorem 2 as the optimality
in the matrix game does not have an analogy for the
bimatrix game [1, 6, 12, 14, 15]. The independence
of the player’s sampling step selection may have a
deeper incompatibility impact in the bimatrix game
case, where multiple and non-equivalent solutions
are very often possible, which requires additional
reconciliation of the varying profitability.

[1]  N. N. Vorob’yov, Game theory fundamentals. Noncooperative games. Moscow, USSR: Nauka, 1984.
[2]  N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani, Algorithmic Game Theory. Cambridge, MA, USA: Cambridge

Univ. Press, 2007, doi: 10.1017/CB09780511800481.

[3] M. J. Osborne, An introduction to game theory. Oxford, U.K.: Oxford University Press, 2003.

[4] K. Leyton-Brown and Y. Shoham, “Essentials of game theory: a concise, multidisciplinary introduction,” Synth. Lect. on Artif.
Intell. and Mach. Learn., vol. 2, no. 1, pp. 1-88, Jan. 2008, doi: 10.2200/S00108ED1V01Y200802AIM003.

[5] R. B. Myerson, Game theory: Analysis of Conflict. Cambridge, MA, USA: Harvard Univ.Press, 1997.

[6] N. N. Vorob’yov, Game theory for economists-cyberneticists, Moscow, USSR: Nauka, 1985.

[71 V. V. Romanuke, Theory of Antagonistic Games. Lviv, Ukraine: Novyy svit, 2010.

[8] E. B. Yanovskaya, “Antagonistic games played in function spaces,” Lithuanian Mathematical Bulletin, no. 3, pp. 547 — 557, 1967.

[9] E. B. Yanovskaya, “Minimax theorems for games on the unit square,” Probability theory and its applications, no. 9 (3),

pp. 554 — 555, 1964
[10]
[11]
[12]

T. C. Schelling, The Strategy of Conflict. Cambridge, MA, USA: Harvard Univ.Press, 1980.
H. Moulin, “Extension of two-person zero-sum games,” J. of Math. Anal. and Appl., no. 55 (2), pp. 490 — 507, 1975.
V. V. Romanuke, “Finite approximation of continuous noncooperative two-person games on a product of linear strategy func-

tional spaces,” J. of Math. and Appl., vol. 43, pp. 123 — 138, 2020, doi: 10.7862/rf.2020.9.



38 KPI Science News 2021/ 4

[13] J. Yang, Y. Chen, Y. Sun, H. Yang, and Y. Liu, “Group formation in the spatial public goods game with continuous strategies,”
Phys. A: Stat. Mech. and its Appl., vol. 505, pp. 737 — 743, Sep. 2018, doi: 10.1016/j.physa.2018.03.057.

[14] V. V. Romanuke, “Approximation of unit-hypercubic infinite two-sided noncooperative game via dimension-dependent irregular
samplings and reshaping the multidimensional payoff matrices into flat matrices for solving the corresponding bimatrix game,”
Comp. Model. and New Technol., vol. 19, no. 3A, pp. 7 — 16, 2015.

[15] V. V. Romanuke and V. G. Kamburg, “Approximation of isomorphic infinite two-person noncooperative games via variously
sampling the players’ payoff functions and reshaping payoff matrices into bimatrix game,” Appl. Comp. Syst., vol. 20, pp. 5 — 14,
2016, doi: 10.1515/acss_2016-0009.

[16] S. P. Coraluppi, and S. I. Marcus, “Risk-sensitive and minimax control of discrete-time, finite-state Markov decision processes,”
Automatica, vol. 35, no. 2, pp. 301 — 309, Feb. 1999, doi: 10.1016/S0005-1098(98)11253-8.

[17] S. Rahal, D. Papageorgiou, and Z. Li, “Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive
linear optimization,” Europ. J. of Oper. Res., vol. 290, no. 3, pp. 1014 — 1030, 2021, doi: 10.1016/j.ejor.2020.08.054.

[18] V. V. Romanuke, “Approximation of unit-hypercubic infinite antagonistic game via dimension-dependent irregular samplings
and reshaping the payoffs into flat matrix wherewith to solve the matrix game,” J. of Inform. and Org. Sci., vol. 38, no. 2,
pp. 125 — 143, 2014.

[19] R. E. Edwards, Functional Analysis: Theory and Applications. New York, NY, USA: Holt, Rinehart and Winston, 1965.

[20] H. Khaloie, A. Abdollahi, M. Shafie-khah, A. Anvari-Moghaddam, S. Nojavan, P. Siano, and J. P. S. Catalao, “Coordinated
wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model,” Appl. Energy,
vol. 259, 114168, Feb. 2020, doi: 10/1016/j.apenergy.2019.114168.

[21] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Princeton, NJ, USA: Princeton University Press, 1944.

[22] V. V. Romanuke, “Adaptive finite approximation of continuous noncooperative games,” J. of Automat. and Inform. Sci.,
vol. 52, no. 10, pp. 31 — 41, 2020, doi: 10.1615/JAutomatInfScien.v52.i10.20.

B. B. PomaHtok

CKIHYEHHA ATMNPOKCUMMALIA ITOP 3 HYJIbOBOKO CYMOIO, WO POSIINPYOTLCA Y HEMEPEPBHMX MPOCTOPAX
CXOOMHKOBUX ®YHKLLIN

MpobnemaTuka. IcHye Bigomwuii crocib6 anpokcumalii HenepepBHWUX irop 3 HyNbOBOK CyMOK, A€ HabnuxeHun po3B’s30K
BBaXaAETbCHA NPUNHATHUM, SKLIO BiH 3MIHIOETLCA MiHIManbHO 3a MiHiMarnbHOI 3MiHM KPOKYy Auckpetu3adii. OgHak uen meTod He MOXHa
npsiMO 3aCTOCyBaTW [0 MPU 3 HYNbOBOK CYMOHO, LLIO PO3irpyeTbCs 3i cTpaTerisMu y hopmi CXoAUHKOBUX (PyHKUiN. Kpim Toro, cnig 6patu
[0 yBaru HesarnexHicTb BUOOpPY rpaBLEeM KpoKy AMCKpeTM3aLii.

Meta pocnigkeHHsA. MeTta nonsirae y Tomy, Wo6 po3pobuTu MeTon CKiHYEHHOI anpokcumalii irop 3 HynbOBOK CYMOLO, SiKi
PO3irpyroTbCsl y HENEPEPBHMX NMPOCTOPaX CXOAMHKOBUX (PYHKLiA, Bepyyun Ao yBaru, Lo rpasLi, IMOBIPHO, AUCKPETU3YOTb MHOXWUHN CBOTX
YUCTKX CTpaTerii CaMoCTIiNHO.

MeTtoauka peanisauii. [na AocArHeHHs 3a3HayYeHOi MeTu hopmanidyeTbCs rpa 3 HynbOBOK CyMOW, B SKi cTpaTerii rpaBuiB
€ CXOOMHKOBMMU (PYHKUiSIMU Yacy. Y Taki rpi MHOXMHA YMCTUX CTpaTerii rpaBus € KOHTMHYYMOM CXOAMHKOBMX (DYHKLiM Yacy, i vac
BBaXa€ETbCS ANCKPETHUM. YMOBU ANCKPETU3aALIT MHOXMHM MOXITMBMX 3HAYEHb YMCTOI CTpaTerii rpaBus BUKNaAaoTbCcs Tak, WO rpa cTae
BM3HAYEHOI Ha JOBYTKY CKIHYEHHMX NPOCTOPIB CXOAMHKOBUX (PYHKL. 3aranom, Kpok AUCKPETM3aLlii y KOXXHOIO rpaBLsi Pi3HUiA, | po3nogin
BMBGIPKOBUX TOYOK (3HaYeHb PyHKLi-cTpaTerii) HeogHOPIAHWUNA.

Pe3ynbratn pocnigxeHHA. [lpeacTtaBneHO MeTOo4 CKIHYEHHOI anpokcumadii irop 3 HynbOBOK CyMOW, $Ki po3irpytoTbeCst
y HenepepBHUX MPOCTOPax CXOAMHKOBMX (yHKUiN. MeTog nomnsrae y HeperynspHin guckpetusawii MHOXVMHW 3HaYeHb YMCTOi cTparterii
rpaBus, PO3B’A3yBaHHI MaTPUYHUX irOP MEHLLOro pPo3Mipy, KOXHa 3 SiKMX BM3HaYeHa Ha nigiHTepsani, Ae 3HavyeHHs1 YnCToi cTparterii €
NOCTINHUM, 1 YKNagaHHi iXHiX pO3B’A3KiB, SIKLLO BOHW € Y3rofKeHnMU. Yknag po3B’si3kiB MaTpUYHUX irop MEHLLOTO PO3Mipy € HabnmxeHum
pO3B’sI3KOM BUXiAHOI CXOAMHKOBOI rpu. [JocnimxyeTbes (cnabka) y3romkKeHicTb HabnukeHOro po3B’si3Ky TWUM, HaCKiNbKU 3MiHIOETLCS
BUrpall Ta OMNTUManbHa CUTYyalisl, KOMU LWiNbHICTb AUCKPETM3aLii MiHiManbHO 36inblUyeTbCs TpbOMa crnocobamu: nuvwe npupicTt
y NepLloro rpasLs, NnuLIe NpUPICT Y ApYroro rpasus, NpupicT B 060X rpaBLiB. Y3rooKeHiCTb po3KNafaeTbCsi Ha Y3ro4KeHicTb BUrpaLlis,
Y3ro[XXeHICTb NOTY)XXHOCTI CNEKTPY ONTUMAanbHOI CTpaTerii, y3rofKeHiCTb LUiNbHOCTI AUCKPETU3aLlii ONTMManbHOI cTpaTerii Ta y3rogXeHicTb
CnekTpanbHUX iIMOBIPHOCTEN. 3 MPaKTUYHOI TOYKM 30PpYy AOLIMbHO PO3rnsagaTi penakcoBaHy y3rofXeHicTb BUrpaLliB.

BucHoBKK. 3anponoHoBaHW MeTon CKIHYEHHOI anpoKcumMalii CXOQUHKOBUX irop 3 HyrnbOBOK CYMOIO MOMSrae y He3anexHux
ONCKpPEeTU3aLisx, po3B’a3yBaHHi MaTPUYHMX irOP MEHLLOro PO3Mipy 3a NMPUNHSATHWMIA MPOMDKOK Yacy Ta yKMageHHi IXHiX po3B’si3KiB, SIKLLO
BOHU € Y3rokeHUMMU. CKiHYEHHE HaBMNKEHHSI BBAXAETbCS MPUAHATHUM, SIKWO MpUHAMMHI BiAMNOBIOHWIA HabnWXKeHWN (yknageHuin)
PO3B’A30K € Y3ro[pKEeHNUM 3a g-BUrpatlamu.

KntouoBi crnoBa: Teopis irop; yHKUioHan Burpallis; cTpateris y opMi CXOAMHKOBOI (OYHKLi; MaTpuyHa rpa; HeperynspHa
AVCKPeTU3aLis; y3rodxXeHicTb HabnmkeHoro po3s’A3Ky.
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