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FINITE APPROXIMATION OF ZERO-SUM GAMES PLAYED 
IN STAIRCASE-FUNCTION CONTINUOUS SPACES

Background. There is a known method of approximating continuous zero-sum games, wherein an approximate solution 
is considered acceptable if it changes minimally by changing the sampling step minimally. However, the method cannot 
be applied straightforwardly to a zero-sum game played with staircase-function strategies. Besides, the independence of 
the player’s sampling step selection should be taken into account.
Objective. The objective is to develop a method of finite approximation of zero-sum games played in staircase-function 
continuous spaces by taking into account that the players are likely to independently sample their pure strategy sets.
Methods. To achieve the said objective, a zero-sum game, in which the players’ strategies are staircase functions of time, 
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions of time, and 
the time is thought of as it is discrete. The conditions of sampling the set of possible values of the player’s pure strategy 
are stated so that the game becomes defined on a product of staircase-function finite spaces. In general, the sampling 
step is different at each player and the distribution of the sampled points (function-strategy values) is non-uniform.
Results. A method of finite approximation of zero-sum games played in staircase-function continuous spaces is pre-
sented. The method consists in irregularly sampling the player’s pure strategy value set, solving smaller-sized matrix 
games, each defined on a subinterval where the pure strategy value is constant, and stacking their solutions if they are 
consistent. The stack of the smaller-sized matrix game solutions is an approximate solution to the initial staircase game. 
The (weak) consistency of the approximate solution is studied by how much the payoff and optimal situation change as 
the sampling density minimally increases by the three ways of the sampling increment: only the first player’s increment, 
only the second player’s increment, both the players’ increment. The consistency is decomposed into the payoff, opti-
mal strategy support cardinality, optimal strategy sampling density, and support probability consistency. It is practically 
reasonable to consider a relaxed payoff consistency.
Conclusions. The suggested method of finite approximation of staircase zero-sum games consists in the independent 
samplings, solving smaller-sized matrix games in a reasonable time span, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appropriate if at least the respective approximate (stacked) solution is 
e-payoff consistent.
Keywords: game theory; payoff functional; staircase-function strategy; matrix game; irregular sampling; approximate 
solution consistency.

Introduction

Zero-sum (also known as antagonistic) games 
are usually used to model processes where two sides 
referred to as persons or players interact in struggling 
for optimizing the to-be-paid-or-pay events [1], [2]. 
A possible action of the player called its (pure) stra-
tegy can be intended to bring a particular contribu-
tion into the interaction process in order to receive 
the best payoff for this player [3, 4]. The strategy can 
be as a simple (point) action whose duration is usual-
ly short, as well as a process consisting of an order of 
simple actions [3, 5].

The simplest zero-sum game is a matrix game, 
whichever the pure strategy complexity is. Any matrix 
game has optimal solutions – one, a finite num-
ber, or continuum, either in pure or mixed strategies 
[1, 6, 7]. A more complicated zero-sum game is 
the antagonistic game, in which the game payoff 
function (kernel) is a surface defined on a finite-di-
mensional compact Euclidean subspace. A simple 
example of the subspace is a unit square [1, 6, 7]. 
In such cases, opposed to matrix games, the opti-
mal solution is not always determinable. Addition-
al complications may arise when the surface has 
discontinuities [8, 9]. Moreover, zero-sum games 
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defined on open or half-open subspaces (e. g., open 
square like in the examples from [6, 7]) may not 
have an optimal solution at all [1, 5, 6]. Therefore, 
aiming at assuredly obtaining an optimal solution, 
rendering a zero-sum game to a matrix one becomes 
a crucial task in zero-sum-game modeling. Without 
rendering, a zero-sum game may have an intrac-
table optimal solution (if any), when the optimal 
strategy support is infinite or continuous (e. g., see 
the examples in [6, 7, 10, 11]). A zero-sum game, 
in which the player’s strategy is a function (e. g., of 
time), is a far more complicated case. In such games, 
the payoff kernel must be a functional mapping ev-
ery pair of functions (pure strategies of the players) 
into a real value [7, 8, 12, 13]. A game played with 
such function-strategies is rendered down to a ma-
trix game only when each of the players possesses a 
finite set of one’s function-strategies. Obviously, the 
rendering is theoretically impossible if the set of the 
player’s strategies is infinite.

The question of rendering an infinite game to a 
finite one was studied in [14, 15]. The core consists 
in approximating the infinite game so that the ap-
proximated game would not lose the properties of the 
initial game. There are two fundamental conditions 
in the game approximation core that allow rendering 
a zero-sum game with strategies as functions down 
to a matrix game. First, a time interval, on which 
the pure strategy is defined, should be broken into 
a set of subintervals, on which the strategy could 
be (maybe, approximately) considered constant. 
The second condition requires that the set of possi-
ble values of the player’s function-strategy be finite.

The first fundamental condition is the time 
sampling condition. It can be done according to the 
rules of a system to be game-modelled, where the 
administrator (supervisor, manager, controller, etc.) 
does always define (or constrain) the form of the 
strategies players will use [8, 10, 16, 17]. Moreover, 
any process is interpreted static on a sufficiently 
short time span. Henceforward, the time sampling 
condition is considered fulfilled (automatically, by 
default). Then the function-strategy becomes stair-
case. To keep the terminology simple, the respective 
game can be called staircase.

The second fundamental condition is imposed 
for the natural reason that the number of factual 
actions of the players (in any game) is always finite. 
While the players may use strategies of whichever 
form they want, the number of their actions has a 
natural limit (unless the game is everlasting; but the 
everlasting game is an unreal mathematical object) 
[6, 7, 10, 17]. Thus, the set of function-strategies 

used in a zero-sum game is finite anyway. Therefore, 
any non-everlasting zero-sum game is played as if it 
is a matrix game. However, the size of this matrix 
game depends on how each of the players has decid-
ed on discretizing (i. e., finitely approximating) one’s 
set of function-strategy values. It does not seem that 
a player is likely to independently discretize the set 
identically to the other player’s discretization.

Theoretically, the continuous game approxi-
mation is based on sampling (discretizing) either the 
payoff kernel or the sets of players’ pure strategies. 
Basically, this is the same. A method of approxi-
mating continuous zero-sum games is known from 
[14, 15, 18]. An approximate solution is considered 
acceptable if it changes minimally by changing the 
sampling step minimally. Obviously, the indepen-
dence of the player’s sampling step selection should 
be taken into consideration. Moreover, the method 
cannot be applied straightforwardly to a zero-sum 
game played with staircase-function strategies. 
However, a part of the staircase game considered 
on a time subinterval where the players’ strategies 
are constant can be directly approximated by the 
method taking into account the independence of the 
player’s sampling step selection. 

Problem statement

Issued from the impossibility of solving ze-
ro-sum games played in staircase-function contin-
uous spaces, the objective is to develop a method of 
finite approximation of such games by taking into 
account that the players are likely to independently 
sample their pure strategy sets. For achieving the 
objective, the following six tasks are to be fulfilled:

1. To formalize a zero-sum game, in which the 
players’ strategies are functions of time.

2. To formalize a zero-sum game, in which the 
players’ strategies are staircase functions. In such a 
game, the set of the player’s pure strategies is a con-
tinuum of staircase functions of time, and the time 
is thought of as it is discrete.

3. To state conditions of sampling the set of 
possible values of the player’s pure strategy so that 
the game be defined on a product of staircase-func-
tion finite spaces. By this, the sampling step is to be 
different at each player. In addition, the distribu-
tion of the sampled points (function-strategy values) 
must not be necessarily uniform.

4. To state conditions of the appropriate finite 
approximation. This implies also convergence. The 
independence of the player’s sampling step selection 
is to be discussed also.
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5. To discuss applicability and significance of the 
method for the game theory. In particular, the ques-
tion of how to reconcile the difference of the players’ 
sampling step selection is to be discussed as well.

6. Make an unbiased conclusion with a clear 
prompt of how the research might be extended and 
advanced.

A zero-sum game played with strategies as 
functions

A zero-sum game, in which the player’s pure 
strategy is a function of time, is defined by the fol-
lowing presumptions. Let each of the players use 
time-varying strategies defined almost everywhere 
on interval [t1; t2] by t2 > t1 . The first player’s strate-
gy is denoted by x(t) and the second player’s strategy 
is denoted by y(t). These functions are bounded, i. e.

min max( )a x t a≤ ≤  by min maxa a<           (1)

and

min max( )b y t b≤ ≤  by min max .b b<           (2)

Besides, the square of the function-strategy is pre-
sumed to be Lebesgue-integrable [19]. The sets of 
the players’ pure strategies are 

[ ]{ } [ ]1 2 1 2 min max min max 2 1 2( ), ; , : ( ) by ;X x t t t t t t a x t a a a t t= ∈ < ≤ ≤ < ⊂ 

[ ]{ } [ ]1 2 1 2 min max min max 2 1 2( ), ; , : ( ) by ;X x t t t t t t a x t a a a t t= ∈ < ≤ ≤ < ⊂   (3)

and

( ) [ ] ( ){ } [ ]1 2 1 2 min max min max 2 1 2, ; , : by ;Y y t t t t t t b y t b b b t t= ∈ < ≤ ≤ < ⊂ 

( ) [ ] ( ){ } [ ]1 2 1 2 min max min max 2 1 2, ; , : by ;Y y t t t t t t b y t b b b t t= ∈ < ≤ ≤ < ⊂  , (4)

respectively. Each of sets (3) and (4) is a rectangular 
functional space, in which every element is a bounded 
function of time by (1) and (2).

The first player’s payoff in situation 

{ }( ), ( )x t y t                        (5)

is 

( )( ), ( ) .K x t y t

The payoff is presumed to be an integral functional:

( ) ( )
[ ]1 2;

( ), ( ) ( ), ( ), ( )
t t

K x t y t f x t y t t d t= m∫     (6)

with a function 

( )( ), ( ),f x t y t t                     (7)

of x(t) and y(t) explicitly including time t. Therefore, 
the continuous zero-sum game

{ } ( ), , ( ), ( )X Y K x t y t                (8)

is defined on product 

[ ] [ ]2 1 2 2 1 2; ;X Y t t t t× ⊂ ×             (9)

of rectangular functional spaces (3) and (4) of 
players’ pure strategies. It is worth noting that the 
game continuity is defined by the continuity of 
spaces (3) and (4), whereas payoff functional (6) still 
can have discontinuities.

As it has been argued above, zero-sum game (8), 
in which the players’ strategies are functions of time, 
in practical reality is played discretely during time 
interval [t1, t2]. The time step is the same for each of 
the players because it is presumed to be established 
either by the rules of the system game-modelled or 
by the administrator.

A zero-sum game with staircase-function strategies

Denote by N the number of subintervals at 
which the player’s pure strategy is constant, where 

\ {1}N ∈  . Then the player’s pure strategy is a stair-
case function having only N different values (out of, 
maybe, a continuum of possible values). Then there 
are N - 1 time points at which the staircase-func-
tion strategy changes or can change its value. These 

points are { } 1( )

1

Ni

i

-

=
t , where

(0) (1) (2) ( 1) ( )
1 2.

N Nt t-= t < t < t < < t < t =    (10)

Points { }( )

0

Ni

i =
t  are not necessarily to be equidistant, 

but they are the same for each of the players and 
they do not change as the game is repeated (a finite 
number of repetitions is meant – from the practical 
point of view).

The staircase-function strategies are right-con-
tinuous:

( ) ( )( ) ( )

0
0

lim i ix x
e>
e→

t + e = t               (11)

and

( ) ( )( ) ( )

0
0

lim i iy y
e>
e→

t + e = t              (12)

for 1, 1,i N= -  whereas (if the strategy value changes)

( ) ( )( ) ( )

0
0

lim i ix x
e>
e→

t - e ≠ t              (13)
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and

( ) ( )( ) ( )

0
0

lim i iy y
e>
e→

t - e ≠ t               (14)

for 1, 1.i N= -  As an exception, 

( ) ( )( ) ( )

0
0

lim N Nx x
e>
e→

t - e = t             (15)

and

( ) ( )( ) ( )

0
0

lim ,N Ny y
e>
e→

t - e = t             (16)

so 

( ) ( )( 1) ( )N Nx x-t = t                 (17)

and 

( ) ( )( 1) ( ) .N Ny y-t = t                 (18)

As both functions x(t) and y(t) are constant 

)( 1) ( );i it -∀ ∈ t t  for 1, 1i N= -  and 

( 1) ( ); ,N Nt - ∀ ∈ t t 

then game (8) can be thought of as it is a succession 
of N continuous zero-sum games

[ ] [ ]{ } ( )min max min max; , ; , ,i ia a b b K a b     (19)

defined on product

[ ] [ ]min max min max; ;a a b b×

by 

( ) [ ]min max;i x t a aa = ∈  

and ( ) [ ]min max;i y t b bb = ∈
 

)( 1) ( );i it -∀ ∈ t t

for 1, 1i N= -  and ( 1) ( );N Nt - ∀ ∈ t t       (20)

where the factual payoff in situation 

{ },i ia b                        (21)

is

( ) ( ) ( )
)( 1) ( );

, , ,
i i

i i i iK f t d t
-t t

a b = a b m∫
1, 1i N∀ = -                    (22)

and

( ) ( ) ( )
( 1) ( )[ ; ]

, , , .
N N

N N N NK f t d t
-t t

a b = a b m∫   (23)

Henceforward, game (8) equivalent to the succession 
of N continuous zero-sum games (19) by (20)–(23) 
is called staircase. A pure-strategy situation in stair-
case game (8) is a succession of N situations 

{ }{ }
1

,
N

i i i =
a b                      (24)

in games (19). In staircase game (8), the set of the 
player’s pure strategies is still a continuum of stair-
case functions of time, but the time is discrete. This 
time-discretization property, implying constant val-
ues of the players’ strategies on every subinterval, 
allows, in addition to the succession of N contin-
uous zero-sum games (19), decomposing staircase 
game (8) with respect to the (staircase) payoff.

Theorem 1. In a pure-strategy situation (5) of 
staircase game (8), represented as a succession of N 
games (19), functional (6) is re-written as a subin-
terval-wise sum

( ) ( )
1

( ), ( ) ,
N

i i

i

K x t y t K
=

= a b =∑

( ) ( )
)

( ) ( )
( 1) ( )( 1) ( )

1

1 ;;

, , , , .
N Ni i

N

i i N N

i

f t d t f t d t
--

-

=   t tt t  

= a b m + a b m∑ ∫ ∫
  

( ) ( )
)

( ) ( )
( 1) ( )( 1) ( )

1

1 ;;

, , , , .
N Ni i

N

i i N N

i

f t d t f t d t
--

-

=   t tt t  

= a b m + a b m∑ ∫ ∫          (25)

Proof. Situation (21) is tied to half-subinterval 

)( 1) ( );i i-t t  by 1, 1i N= -

and to subinterval 

( 1) ( );N N- t t   by .i N=

Function (7) in this situation is some function of 
time t. Denote this function by yi(t). For situation 
(21) function 

( ) 0i ty =  )( 1) ( ); ,i it -∀ ∉ t t           (26)

and for situation 

{ },N Na b

function 

( ) 0N ty =  
( 1) ( ); .N Nt - ∀ ∉ t t            (27)
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Therefore, 

( )
1

( ), ( ), ( )
N

i

i

f x t y t t t
=

= y∑            (28)

in a pure-strategy situation (5) of staircase game (8), 
by using (26) and (27). Consequently, 

( ) ( )
[ ]1 2;

( ), ( ) ( ), ( ), ( )
t t

K x t y t f x t y t t d t= m =∫

) ( 1) ( )( 1) ( )

1

1 ;;

( ) ( ) ( ) ( )
N Ni i

N

i N

i

t d t t d t
--

-

=   t tt t  

= y m + y m =∑ ∫ ∫

( ) ( )
)

( ) ( )
( 1) ( )( 1) ( )

1

1 ;;

, , , ,
N Ni i

N

i i N N

i

f t d t f t d t
--

-

=   t tt t  

= a b m + a b m =∑ ∫ ∫

( ) ( )
)

( ) ( )
( 1) ( )( 1) ( )

1

1 ;;

, , , ,
N Ni i

N

i i N N

i

f t d t f t d t
--

-

=   t tt t  

= a b m + a b m =∑ ∫ ∫

( )
1

,
N

i i

i

K
=

= a b∑                   (29)

in a pure-strategy situation (5) of staircase game (8).
It is noteworthy that Theorem 1 can be proved 

also by using the property of countable additivity 
of the Lebesgue integral. Theorem 1 does not pro-
vide a method of solving the staircase game. Nev-
ertheless, it provides a fundamental decomposition 
of the game based on the subinterval-wise summing 
in (25). This decomposition allows considering and 
solving each game (19) separately, whereupon the 
solutions are stitched (stacked) together.

Why the sampling must be different and irregular

There are two main arguments for considering 
different sampling steps at each of the players. First, 
the players cannot agree on the sampling step. If 
even they have identical ranges of function-strategy 
values, an agreement is impossible due to the coop-
eration is excluded. Second, if a player has a wid-
er range of one’s function-strategy values then it is 
likely to be sampled with a greater number of points. 
This, however, does not mean a denser sampling.

The sampling can be non-uniform (irregular). 
Indeed, a player may tend to use greater or lesser 
values of one’s function-strategy more frequently. In 
particular, this may lead to a denser sampling in a 
neighbourhood of those values. Thus, the sampling, 
in a generalized approach to finite approximation of 
zero-sum games played in staircase-function contin-
uous spaces, must be irregular.

Sampling along the pure strategy value axis

In game (19) on subinterval i, the first play-
er has its set [amin; amax] of pure strategies, and the 
second player’s pure strategy set is [bmin; bmax]. Let set 
[amin; amax] be sampled non-uniformly (irregularly) 
with M points, \ {1}.M ∈  :

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
M Mm m

m m
A M a a a a a a

-

= =
= = ⊂

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
M Mm m

m m
A M a a a a a a

-

= =
= = ⊂     (30)

by 

(1)
mina a=  and ( )

max ,
Ma a=           (31)

i. e., the endpoints are always included into the sam-
pling. Similarly to this, let set [bmin; bmax] be sampled 
non-uniformly (irregularly) with J points, \ {1}J ∈  :

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
J Jj j

j j
B J b b b b b b

-

= =
= = ⊂

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
J Jj j

j j
B J b b b b b b

-

= =
= = ⊂       (32)

by 

(1)
minb b=  and ( )

max .
Jb b=            (33)

The roughest sampling is by M = 2 and J = 2, when 

( ) { } { }(1) (2)
min max2 , ,A a a a a= =

and

( ) { } { }(1) (2)
min max2 , , .B b b b b= =

If either of integers M and J is increased by 1, a new 
sampling must comply with the previous one. This 
is a requirement of the proper sampling increment.

Definition 1. Sampling

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

1 , , ;
S Ss s

s s
S

+

= =
Ψ + = λ = ζ λ ζ ⊂ ζ ζ

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

1 , , ;
S Ss s

s s
S

+

= =
Ψ + = λ = ζ λ ζ ⊂ ζ ζ      (34)

by min maxζ < ζ  and \{1}∈S  is a proper sampling 
increment of sampling

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
S Ss s

s s
S

-

= =
Ψ = ζ = ζ ζ ζ ⊂ ζ ζ

( ) { } { }{ } [ ]1( ) ( )
min max min max1 2

, , ;
S Ss s

s s
S

-

= =
Ψ = ζ = ζ ζ ζ ⊂ ζ ζ      (35)
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if

( ) ( )( 1) ( ) ( 1) ( )

1, 1, 1
max max ,s s s s

s S s S

+ +

= = -
λ - λ < ζ - ζ     (36)

i. e. the S + 1 points in 1-incremented sampling (34) 
are selected denser than S points in sampling (35).

With the sampling by (30)–(33), the succession 
of N continuous games (19) by (20), (22), (23) be-
comes a succession of N matrix M J×  games

{ } { }{ } ( )( ) ( )

1 1
, , ,

M Jm j
im j

a b M J
= =

K       (37)

with payoff matrices 

( ) ( ), ,i imj M J
M J k M J

×
 =  K           (38)

whose elements are

( ) ( ) ( )
)( 1) ( )

( ) ( )

;

, , ,
i i

m j
imjk M J f a b t d t

-t t

= m∫
for 1, 1i N= -                    (39)

and

( ) ( ) ( )
( 1) ( )

( ) ( )

;

, , , .
N N

m j
Nmjk M J f a b t d t

- t t 

= m∫  (40)

So, if integers M and J for game (8) by (20) is some-
how selected, the staircase game is represented as a 
succession of N matrix M J×  games (37).

By sampling (30) and (32) the staircase game 
becomes defined on product ( ) ( ),A M B J×  which 
becomes a product of staircase-function finite spac-
es by running through all 1, .i N=  Thus, game (8) 
becomes a finite staircase game. It might be ren-
dered to a matrix game in order to obtain a staircase 
solution (herein, adjective “staircase” gives a hint to 
the type of the game, rather than to the structure of 
its solution). However, there is a much easier way to 
solve a finite staircase game.

Theorem 2. If game (8) on product (9) by conditions 
(3), (4), (6) is made a staircase game as a succession of 
N continuous zero-sum games (19) by (20), (22), (23), 
whe reupon it is sampled by (30) and (32), then the re-
spective finite staircase game is always solved as a stack 
of successive optimal solutions of N matrix games (37) by 
(38)–(40).

Proof. A matrix game always has a solution, 
either in pure or mixed strategies. Denote by

( ) ( )( )

1
, ,m

i i M
M J p M J

×
 =  P

and

( ) ( )( )

1
, ,j

i i J
M J q M J

×
 =  Q

the mixed strategies of the first and second players, 
respectively, in matrix game (37). The respective sets 
of mixed strategies of the first and second players are

( ) ( ) ( )( ) ( )

1

, : , 0, , 1
M

M m m
i i i

m

M J p M J p M J
=

  = ∈ ≥ = 
  

∑P p

( ) ( ) ( )( ) ( )

1

, : , 0, , 1
M

M m m
i i i

m

M J p M J p M J
=

  = ∈ ≥ = 
  

∑P p                (41)

and

( ) ( ) ( )( ) ( )

1

, : , 0, , 1 ,
J

J j j
i i i

j

M J q M J q M J
=

  = ∈ ≥ = 
  

∑Q Q

( ) ( ) ( )( ) ( )

1

, : , 0, , 1 ,
J

J j j
i i i

j

M J q M J q M J
=

  = ∈ ≥ = 
  

∑Q Q                (42)

so 

( , ) ,i M J ∈P p  ( , ) ,i M J ∈Q Q  

and 

{ }( , ), ( , )i iM J M JP Q               (43)

is a situation in this game, i. e. (43) is a situation on 
subinterval i. Let 

( ) ( ){ }{ } ( ) ( ){ }{ }* * ( )* ( )*

1 11 1
, , , , , ,

NN
m j

i i i iM Ji i
M J M J p M J q M J

× ×= =
   =    P Q

( ) ( ){ }{ } ( ) ( ){ }{ }* * ( )* ( )*

1 11 1
, , , , , ,

NN
m j

i i i iM Ji i
M J M J p M J q M J

× ×= =
   =    P Q  (44)

be a set of optimal solutions of N games (37) by (39) 
and (40). Then

( ) ( )
( ) ( ) ( ) T

, ,
max min , , ,

i i
i i iM J M J

M J M J M J
∈ ∈

 ⋅ ⋅ = P Q
P K Q

p Q

( ) ( )
( )

, ,
1 1

max min ,
i i

M J

imjM J M J
m j

k M J
∈ ∈

= =

= ×∑∑P Qp Q

( ) ( )( ) ( ), ,m j
i ip M J q M J× =

( ) ( )
( ) ( )( ) ( )

, ,
1 1

max min , ,
i i

M J
m j

i iM J M J
m j

p M J q M J
∈ ∈

= =

= ×∑∑P Qp Q

( ) ( )
)( 1) ( )

( ) ( )

;

, ,
i i

m jf a b t d t
-t t

× m =∫



25ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ

( ) ( )( )* ( )*

1 1

, ,
M J

m j
i i

m j

p M J q M J
= =

= ×∑∑
( ) ( )

)( 1) ( )

( ) ( )

;

, ,
i i

m jf a b t d t
-t t

× m =∫

( ) ( ) ( ) ( )
T* * *, , , ,i i i iM J M J M J v M J = ⋅ ⋅ = = P K Q

( ) ( )
( ) ( )( ) ( )

, ,
1 1

min max , ,
i i

M J
m j

i iM J M J
m j

p M J q M J
∈ ∈

= =

= ×∑∑Q PQ p

( ) ( )
)( 1) ( )

( ) ( )

;

, ,
i i

m jf a b t d t
-t t

× m =∫

( ) ( )
( )

, ,
1 1

min max ,
i i

M J

imjM J M J
m j

k M J
∈ ∈

= =

= ×∑∑Q PQ p

( ) ( )( ) ( ), ,m j
i ip M J q M J× =

( ) ( )
( ) ( ) ( ) T

, ,
min max , , ,

i i
i i iM J M J

M J M J M J
∈ ∈

 = ⋅ ⋅  Q P
P K Q

Q p   
1, 1i N∀ = -                    (45)

and

( ) ( )
( ) ( ) ( ) T

, ,
max min , , ,

N N
N N NM J M J

M J M J M J
∈ ∈

 ⋅ ⋅ = P Q
P K Q

p Q

( ) ( )
( )
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1 1

max min ,
N N

M J

NmjM J M J
m j

k M J
∈ ∈

= =

= ×∑∑P Qp Q

( ) ( )( ) ( ), ,m j
N Np M J q M J× =

( ) ( )
( ) ( )( ) ( )

, ,
1 1

max min , ,
N N

M J
m j

N NM J M J
m j

p M J q M J
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= =

= ×∑∑P Qp Q

( ) ( )
( 1) ( )

( ) ( )

;

, ,
N N

m jf a b t d t
- t t 

× m =∫
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1 1
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m j
N N

m j

p M J q M J
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( ) ( )

( 1) ( )
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N N
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T* * *, , , ,N N N NM J M J M J v M J = ⋅ ⋅ = = P K Q
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M J
m j

N NM J M J
m j

p M J q M J
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( ) ( )
( 1) ( )
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N N
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( ) ( )
( )

, ,
1 1

min max ,
N N

M J

NmjM J M J
m j
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M J
∈ ∈

= ×
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( ) ( ) T
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(46)

Using Theorem 1 allows concluding that, using a 
wide-sense pure-strategy symbolism,

( ) ( )
( ) ( )( )max min ,

x t X y t Y
K x t y t

∈ ∈
=
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( ) ( ) ( ) ( )
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-
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y t Y x t X
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∈ ∈
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(47)

and, therefore, the stack of successive solutions (44) 
is an optimal solution in staircase game (8) sampled 
by (30) and (32).

It is quite clear that these M J×  matrix games 
are solved in parallel, without caring of the succes-
sion. The succession does matter when the solutions 
are stacked (stitched) together to form the staircase 
solution (the solution to the finite staircase game). 
If all N matrix games are solved in pure strategies, 
then stacking their solutions is fulfilled trivially. When 
there is at least an equilibrium in mixed strategies for 
a subinterval, the stacking is fulfilled as well imply-
ing that the resulting pure-mixed-strategy solution of 
staircase game (8) is realized successively, subinterval 
by subinterval, spending the same amount of time 
to implement both pure strategy and mixed strategy 
solutions (e. g., see [6, 7, 10, 18, 20, 21]).

Approximate solution consistency

The conditions of the appropriate finite ap-
proximation are stated by using the known method 
of obtaining the approximate solution of continuous 
antagonistic games on unit multidimensional cube 
with uniform sampling [18]. There are five items of 
the conditions. The requirement of the smooth sam-
pling of the payoff kernel is inapplicable here [22].

First of all, there is an easy-to-find condition 
of the finite approximation appropriateness. It is 
about the game optimal value change, which must 
not change more by the proper sampling increment. 
Inasmuch as an increment is possible from the side 
of both the players, then this condition is a set of 
3N inequalities:

( ) ( ) ( ) ( )* * * *, 1, 1, ,i i i iv M J v M J v M J v M J- + ≤ - -
 

for  1, .i N=                      (48)

and

( ) ( ) ( ) ( )* * * *, , 1 , 1 ,i i i iv M J v M J v M J v M J- + ≤ - -
  

for  1, .i N=                   (49)

and

( ) ( ) ( ) ( )* * * *, 1, 1 1, 1 ,i i i iv M J v M J v M J v M J- + + ≤ - - -
  

for  1, .i N= .                  (50)

Conditions (48)–(50) mean that, as the sampling den-
sity minimally increases, either from the side of the 
first or second player, the game optimal value change 
in an appropriate approximation should not grow.

Definition 2. An approximate solution (44) to 
staircase game (8) is called payoff-{M, J}-consistent 
if inequalities (48)–(50) hold. The players’ optimal 
strategies in such a solution are called payoff-{M, J}- 
consistent.

The second condition is the change of the op-
timal strategy support cardinality. Denote the sup-
ports of the optimal strategies of the players by

( ) { } ( ) { },*
1 1

supp , iU M J M

i u u m
M J m m

= =
= ⊂P     (51)

by the respective support probabilities 

( ){ } ( ),( )*

1
,

i
u

U M Jm
i u

p M J
=

               (52)

and

( ) { } ( ) { },*
1 1

supp , iW M J J

i w w j
M J j j

= =
= ⊂Q      (53)

by the respective support probabilities 

( ){ } ( ),( )*

1
, .

i
w

W M Jj
i w

q M J
=

              (54)

Then 6N inequalities

( ) ( )1, ,i iU M J U M J+ ≥   for  1, .i N= ,   (55)

( ) ( ), 1 ,i iU M J U M J+ ≥   for 
 1, .i N= ,   (56)

( ) ( )1, 1 ,i iU M J U M J+ + ≥   for  1, .i N= , (57)

( ) ( )1, ,i iW M J W M J+ ≥   for  1, .i N= ,  (58)

( ) ( ), 1 ,i iW M J W M J+ ≥   for  1, .i N= ,  (59)

( ) ( )1, 1 ,i iW M J W M J+ + ≥   for  1, .i N=  (60)
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require that, by minimally increasing the sampling 
density, either from the side of the first or second 
player, the cardinalities of the supports not decrease.

Definition  3. An approximate solution (44) to 
staircase game (8) is called weakly support-cardinality- 
{M, J}-consistent if inequalities (55)–(60) hold. The play-
ers’ optimal strategies in such a solution are called weakly 
support-cardinality-{M, J}-consistent.

Obviously, requirements (55)–(60) can be sup-
plemented (strengthened) by considering a minimal 
decrement of the sampling density. Then another 
6N inequalities

( ) ( ), 1,i iU M J U M J≥ -   for  1, .i N= ,   (61)

( ) ( ), , 1i iU M J U M J≥ -   for  1, .i N= ,   (62)

( ) ( ), 1, 1i iU M J U M J≥ - -   for  1, .i N= , (63)

( ) ( ), 1,i iW M J W M J≥ -   for  1, .i N= ,   (64)

( ) ( ), , 1i iW M J W M J≥ -   for  1, .i N= ,   (65)

( ) ( ), 1, 1i iW M J W M J≥ - -   for  1, .i N=  (66)

are required.
Definition 4. An approximate solution (44) to stair-

case game (8) is called support-cardinality-{M, J}-con-
sistent if inequalities (55)–(66) hold. The players’ optimal 
strategies in such a solution are called support-cardinali-
ty-{M, J}-consistent.

As the sampling density minimally increases, 
the maximal gap between the support indices should 
not increase. Let mu(M, J) and jw(M, J) be the re-
spective support indices corresponding to integers 
{M, J} on a subinterval by (20). Then 6N inequalities

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

u u
u U M J

m M J m M J+
= + -

 + - + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 ≤ -   for 1, .i N= , (67)

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

u u
u U M J

m M J m M J+
= + -

 + - + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 ≤ -   for 1, .i N= , (68)

( )
( ) ( )1

1, 1, 1 1
max 1, 1 1, 1

i
u u

u U M J
m M J m M J+

= + + -
 + + - + + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 ≤ -   for 1, .i N= , (69)

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

w w
w W M J

j M J j M J+
= + -

 + - + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 ≤ -   for 1, .i N= , (70)

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

w w
w W M J

j M J j M J+
= + -

 + - + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 ≤ -   for 1, .i N= , (71)

( )
( ) ( )1

1, 1, 1 1
max 1, 1 1, 1
i

w w
w W M J

j M J j M J+
= + + -

 + + - + + ≤ 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 ≤ -   for 1, .i N=  (72)

are required. 
Definition 5. An approximate solution (44) to stair-

case game (8) is called weakly sampling-density-{M, J}- 
consistent if inequalities (67)–(72) hold. The players’ op-
timal strategies in such a solution are called weakly sam-
pling-density-{M, J}-consistent.

Similarly to strengthening the weak (by Defi-
nition 3) support cardinality to that by Definition 
4, requirements (67)–(72) can be strengthened by 
considering a minimal decrement of the sampling 
density. Then another 6N inequalities

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - ≤ 

( )
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1, , 1
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i
u u

u U M J
m M J m M J+
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 - ≤  for 1, .i N= , (73)
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1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

u u
u U M J

m M J m M J+
= - -

 ≤ - - - 

for  1, .i N= ,                   (74)
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1, , 1
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i
u u

u U M J
m M J m M J+
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 - ≤ 

( )
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1, 1, 1 1
max 1, 1 1, 1

i
u u

u U M J
m M J m M J+

= - - -
 ≤ - - - - - 

  
for  1, .i N= ,                   (75)

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - ≤ 

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

w w
w W M J

j M J j M J+
= - -

 ≤ - - - 

for  1, .i N= ,                   (76)

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - ≤ 

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

w w
w W M J

j M J j M J+
= - -

 ≤ - - - 

for  1, .i N= ,                   (77)
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( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - ≤ 

( )
( ) ( )1

1, 1, 1 1
max 1, 1 1, 1
i

w w
w W M J

j M J j M J+
= - - -

 ≤ - - - - - 

for  1, .i N=                    (78)

are required. 
Definition 6. An approximate solution (44) to stair-

case game (8) is called sampling-density-{M, J}-consis-
tent if inequalities (67)–(78) hold. The players’ optimal 
strategies in such a solution are called sampling-density- 
{M, J}-consistent.

Denote by h1(i; m, M, J) a polyline whose ver-
tices are probabilities 

( ){ }( )*

1
, ,

Mm
i m

p M J
=

and denote by h2(i; j, M, J) a polyline whose vertices 
are probabilities 

( ){ }( )*

1
, .

Jj
i j

q M J
=

Then, by minimally increasing the sampling density, 
the “neighboring” polylines should not be farther 
from each other, i. e. inequalities

[ ]
( ) ( )1 10; 1

max ; , , ; , 1,h i m M J h i m M J- + ≤

[ ]
( ) ( )1 10; 1

max ; , 1, ; , ,h i m M J h i m M J≤ - -

for  1, .i N= ,                   (79)

[ ]
( ) ( )1 10; 1

max ; , , ; , , 1h i m M J h i m M J- + ≤

[ ]
( ) ( )1 10; 1

max ; , , 1 ; , ,h i m M J h i m M J≤ - -

for  1, .i N= ,                   (80)

[ ]
( ) ( )1 10; 1

max ; , , ; , 1, 1h i m M J h i m M J- + + ≤

[ ]
( ) ( )1 10; 1

max ; , 1, 1 ; , ,h i m M J h i m M J≤ - - -

for  1, .i N= ,                   (81)

and

[ ]
( ) ( )2 20; 1

max ; , , ; , 1,h i j M J h i j M J- + ≤

[ ]
( ) ( )2 20; 1

max ; , 1, ; , ,h i j M J h i j M J≤ - -

for  1, .i N= ,                   (82)

[ ]
( ) ( )2 20; 1

max ; , , ; , , 1h i j M J h i j M J- + ≤

[ ]
( ) ( )2 20; 1

max ; , , 1 ; , ,h i j M J h i j M J≤ - -

for  1, .i N= ,                   (83)

[ ]
( ) ( )2 20; 1

max ; , , ; , 1, 1h i j M J h i j M J- + + ≤

[ ]
( ) ( )2 20; 1

max ; , 1, 1 ; , ,h i j M J h i j M J≤ - - -

for  1, .i N= ,                   (84)

along with

( ) ( )1 1; , , ; , 1,h i m M J h i m M J- + ≤

( ) ( )1 1; , 1, ; , ,h i m M J h i m M J≤ - -

in [ ]2 0; 1   for  1, .i N= ,           (85)

( ) ( )1 1; , , ; , , 1h i m M J h i m M J- + ≤

( ) ( )1 1; , , 1 ; , ,h i m M J h i m M J≤ - -

in [ ]2 0; 1   for  1, .i N= ,           (86)

( ) ( )1 1; , , ; , 1, 1h i m M J h i m M J- + + ≤

( ) ( )1 1; , 1, 1 ; , ,h i m M J h i m M J≤ - - -

in [ ]2 0; 1   for  1, .i N= ,           (87)

and

( ) ( )2 2; , , ; , 1,h i j M J h i j M J- + ≤

( ) ( )2 2; , 1, ; , ,h i j M J h i j M J≤ - -

in [ ]2 0; 1   for  1, .i N= ,           (88)

( ) ( )2 2; , , ; , , 1h i j M J h i j M J- + ≤

( ) ( )2 2; , , 1 ; , ,h i j M J h i j M J≤ - -

in [ ]2 0; 1   for  1, .i N= ,           (89)

( ) ( )2 2; , , ; , 1, 1h i j M J h i j M J- + + ≤

( ) ( )2 2; , 1, 1 ; , ,h i j M J h i j M J≤ - - -

in [ ]2 0; 1   for  1, .i N=             (90)

are required. 
Definition 7. An approximate solution (44) to stair-

case game (8) is called probability-{M, J}-consistent if 
inequalities (79)–(90) hold. The players’ optimal strategies 
in such a solution are called probability-{M, J}-consistent.
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The solution consistency by each of Definitions 
3–7 implies that both the players’ optimal strategies 
are consistent as well. Nevertheless, it is not worth 
cancelling the player’s optimal strategy consistency 
when for the other player the consistency conditions 
do not hold. Thus, a player’s optimal strategy may 
be consistent while an optimal strategy of the other 
player is not consistent. For instance, if inequali-
ties (55)–(57) hold, but inequalities (58)–(60) do 
not hold (at least one of those 3N inequalities is 
violated) and thus the second player’s optimal strat-
egy is not weakly support-cardinality-{M, J}-con-
sistent, the first player’s optimal strategy is weakly 
support-cardinality-{M, J}-consistent. If inequalities 
(48)–(50), (55)–(60), (67)–(72), (79)–(90) hold for 
some i, then matrix game (37), assigned to the sub-
interval between t(i-1) and t(i), has a weakly consistent 
approximate solution to the corresponding conti-
nuous game (19) by (20), (22), (23). On this basis, 
the weak consistency of an approximate solution to 
a staircase game (8) is formulated.

Definition 8. The stack of successive solutions (44) 
is called a weakly {M, J}-consistent approximate solution 
of game (8) on product (9) by conditions (3), (4), (6) if in-
equalities (48)–(50), (55)–(60), (67)–(72), (79)–(90) hold. 
The players’ optimal strategies in such a solution are called 
weakly {M, J}-consistent.

Once again, if, say, the second player’s opti-
mal strategy is not weakly {M, J}-consistent (at least 
one of the respective inequalities in Definition 8 
for the second player is violated), it does not mean 
that the first player’s optimal strategy is not weakly 
{M, J}-consistent also. If, in this example, inequa-
lities (48)–(50), (55)–(57), (67)–(69), (79)–(81), 
(85)–(87) do hold, then the first player possesses a 
weakly {M, J}-consistent optimal strategy, regardless 
of the second player’s weak consistency. Similarly 
to strengthening Definitions 3 and 5, the weak con-
sistency can be strengthened by adding the require-
ments with inequalities (61)–(66) and (73)–(78).

Definition 9. The stack of successive solutions (44) is 
called an {M, J}-consistent approximate solution of game 
(8) on product (9) by conditions (3), (4), (6) if inequalities 
(48)–(50) and (55)–(90) hold. The players’ optimal strate-
gies in such a solution are called {M, J}-consistent.

The approximate solution consistency theore-
tically proposes a better approximation than the 
weak consistency. The weak consistency notion by 
Definition 8 may be thought of as it is decomposed 
by Definitions 2, 3, 5, 7. Thus, the consistency 
notion by Definition 9 is decomposed into Defini-
tions 2, 4, 6, 7. Even if an approximate solution is 
not weakly consistent, it may be, e. g., payoff-con-

sistent. The payoff consistency is checked the easi-
est and fastest. A payoff-consistent solution can be 
sufficient to accept it as an appropriate approximate 
solution [1, 6, 14, 18, 22]. However, if a one of 3N 
inequalities (48)–(50) is violated, even this type of 
consistency does not work. Meanwhile, the viola-
tion may be induced by a very small growth of the 
payoff change. Therefore, it is useful and practically 
reasonable to consider the payoff consistency adding 
a relaxation to inequalities (48)–(50).

Definition 10. An approximate solution (44) to 
staircase game (8) is called e-payoff-{M, J}-consis-
tent if inequalities

( ) ( )
( ) ( )

* *

* *

, 1,

1, ,

i i

i i

v M J v M J

v M J v M J

- + -

- e ≤ - -
  

by  some  e > 0  for  1, .i N=          (91)

and

( ) ( )
( ) ( )

* *

* *

, , 1

, 1 ,

i i

i i

v M J v M J

v M J v M J

- + -

- e ≤ - -
  

by  some  e > 0  for  1, .i N=          (92)

and

( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

v M J v M J

v M J v M J

- + +

- e ≤ - - -

by  some  e > 0  for  1, .i N=          (93)

hold. The players’ optimal strategies in such a solution are 
called e-payoff-{M, J}-consistent.

To ascertain whether the stack of successive 
solutions (44) is weakly consistent or not, the seven 
bunches of N matrix games (37) should be solved, 
where the sampling density is defined by integers 

{ }1, 1 ,M J- -
 { }1, ,M J-

 { }, 1 ,M J -
 { }, ,M J

 
{ }1, ,M J+

 { }, 1 ,M J +
 { }1, 1 .M J+ +

It is worth noting once again that the players select 
their respective integers M and J independently and, 
moreover, the sampling by an integer S means that 
those S - 2 points within an open interval can be 
chosen in any way, not necessarily to be uniformly 
distributed through the interval. Only the require-
ment of the proper sampling increment (by Defi-
nition 1) is followed. Nevertheless, the consisten-
cy meant by some sampling density integers {M, J} 
does not guarantee that both the players will select 
such sampling density. Moreover, it is hard to find 
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a continuous zero-sum game, for which a consis-
tent approximate solution could be determined at 
appropriately small integers M and J. However, it is 
quite naturally to expect that, as they are increased 
(i. e., the sampling is made denser), the approximate 
solutions must converge to the solution of staircase 
game (8). Besides, the approximate solutions must 
become “more” consistent, which means that more 
inequalities of the bunch of inequalities (48)–(50), 
(55)–(90) must hold.

A visual exemplification

To visually exemplify how a zero-sum stair-
case game is approximated by using the approximate 
solution consistency along with reconciling the dif-
ference of the players’ sampling step selection, con-
sider a case in which [ ]0.4 ; 1.6 ,t ∈ p p  the set of pure 
strategies of the first player is

( ) [ ] ( ){ } [ ]2, 0.4 ; 1.6 : 5 9 0.4 ; 1.6X x t t x t= ∈ p p ≤ ≤ ⊂ p p

( ) [ ] ( ){ } [ ]2, 0.4 ; 1.6 : 5 9 0.4 ; 1.6X x t t x t= ∈ p p ≤ ≤ ⊂ p p
                

 (94)

and the set of pure strategies of the second player is

[ ]{ } [ ]2( ), 0.4 ; 1.6 : 2 ( ) 8 0.4 ; 1.6 ,Y y t t y t= ∈ p p ≤ ≤ ⊂ p p
 

[ ]{ } [ ]2( ), 0.4 ; 1.6 : 2 ( ) 8 0.4 ; 1.6 ,Y y t t y t= ∈ p p ≤ ≤ ⊂ p p
                 

(95)

where each of the players is allowed to change its 
pure strategy value at time points

{ } { }
5 5( )

11
0.4 0.2 .i

ii
i

==
t = p + p

The payoff functional is

( ) ( )( )
[ ]

2

0.4 ; 1.6

, sin 0.25
11

K x t y t xt
p p

p = + × 
 ∫

( )0.027
sin 0.53 .

8
xtyt e d t-p × - m 

           (96)

So, each of the players possesses 6-subinterval 
staircase function-strategies defined on interval 

[ ]0.4 ; 1.6 ,t ∈ p p . Hence, the zero-sum staircase game is 
represented as a succession of 6 zero-sum games (19)

{ }[5; 9], [2; 8] , ( , )i iK a b             (97)

by 

( ) [5; 9]i x ta = ∈  and ( ) [2; 8]i y tb = ∈

[ )0.2 0.2 ; 0.4 0.2t i i∀ ∈ p + p p + p

for 1, 5i =  and [ ]1.4 ; 1.6 ,t∀ ∈ p p       (98)

where the factual payoff in situation (21) is

( )
[ )

2

0.2 0.2 ; 0.4 0.2

, sin 0.25
11i i i

i i

K t
p+ p p+ p

p a b = a + × 
 ∫

( )0.027sin 0.53
8

- ap × b - m 
 

it
it e d t  1, 5i∀ =    (99)

and

( ) ( )
[ ]

60.022
6 6 6 6

1.4 ; 1.6

7
, sin 0.25 sin 0.53 .

11 8
tK t t e d t- a

p p

p p   a b = a + × b - m   
   ∫

( ) ( )
[ ]

60.022
6 6 6 6

1.4 ; 1.6

7
, sin 0.25 sin 0.53 .

11 8
tK t t e d t- a

p p

p p   a b = a + × b - m   
   ∫       (100)

Payoff functional (96) on each subinterval of set

[ ){ } [ ]{ }5

1
0.2 0.2 ; 0.4 0.2 , 1.4 ; 1.6

i
i i

=
p + p p + p p p  (101)

is shown in Fig. 1.
The irregularity (non-uniformity) in the sam-

pling is modelled as follows:

( )
0

4 4
5

1
m m

a
M

-
= +

-
 and ( ) ( ) 1

0
m ma a

M

x
= +

for 2, 1m M= -                 (102)

by a(1) = 5, a(M) = 9, and

( )
0

6 6
2

1
j j

b
J

-
= +

-
 and

 
( ) ( ) 2

0
j jb b

J

x
= +

for 2, 1j J= -                 (103)

by b(1) = 2, b(J) = 8, where x1 and x2 are values of 
two independent random variables distributed nor-
mally with zero mean and unit variance. The values 
resulting from (102) and (103) are sorted in ascend-
ing order, whereupon they are checked whether (30) 
and (32) are true. When either integer M or J is 
increased by 1, samplings (30) and (32) are checked 
whether they satisfy the proper sampling increment 
by Definition 1, i. e. whether inequality (36) holds 
for samplings (35) and (34).
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[ )0.4 ; 0.6p p

[ ]1.4 ;1.6p p

[ )0.6 ; 0.8p p

[ )1.2 ;1.4p p

[ )0.8 ;p p [ );1.2p p

Fig. 1. The payoff kernels (99), (100) on the 6 subintervals of set (101)

Thus, 6 matrix games (37) with payoff matrices 
(38) are formed from 6 zero-sum games (97), where 

( , )imjk M J =

( )
[ )

( )2 ( ) ( ) 0.02

0.2 0.2 ; 0.4 0.2

7
sin 0.25 sin 0.53

11 8

mm j a t

i i

a t b t e d t-

p+ p p+ p

p p   = + × - m   
   ∫

( )
[ )

( )2 ( ) ( ) 0.02

0.2 0.2 ; 0.4 0.2

7
sin 0.25 sin 0.53

11 8

mm j a t

i i

a t b t e d t-

p+ p p+ p

p p   = + × - m   
   ∫  for 1, 5i =  (104)

and

( ) ( )
[ ]

( )2 ( ) ( ) 0.02
6

1.4 ; 1.6

7
, sin 0.25 sin 0.53 .

11 8

mm j a t
mjk M J a t b t e d t-

p p

p p   = + × - m   
   ∫

( ) ( )
[ ]

( )2 ( ) ( ) 0.02
6

1.4 ; 1.6

7
, sin 0.25 sin 0.53 .

11 8

mm j a t
mjk M J a t b t e d t-

p p

p p   = + × - m   
   ∫      (105)

Although the subinterval length in (104) and (105) 
does not change, every subinterval has its “own” 
matrix game due to time variable t is explicitly in-
cluded into the functions under the integral. This 
means that, as time goes by, the players develop 
their actions subinterval by subinterval.
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Surely, the solutions of these games (and the 
solution of the initial staircase game) badly depend 
on the sampling. Subinterval-wise optimal strategies 
of the players by the sampling for every 3, 10M =  
and 3, 10J =  are shown in Fig. 2 in a bunch (they 
are presented indistinguishable). It is well seen that as 
the sampling density changes at such a relatively wide 
range of small sampling integers M and J, the player’s 
optimal strategy (in every subinterval game, let alone 
the stacked optimal strategy on interval [0.4p; 1.6p]) 
badly varies. The only exception is the first subinter-
val, on which the second player’s optimal strategy 
being the pure one does not vary at all. The first player 
has only pure optimal strategies on this subinterval as 

well. The first player’s payoff ( )* ,iv M J  (at the end of 
the i-th subinterval) and the payoff cumulative sum

( ) ( )( )* *

1

, ,
n

n
i

i

v M J v M J
=

= ∑  by 1, 6n =   (106)

are also badly scattered (Fig. 3), where, according 
to (106), v(6)*(M, J) is the optimal value in this stair-
case game, i. e.

( ) ( )* (6)*, , .v M J v M J=            (107)

The only exception is that payoffs ( )*
6 ,v M J  

received on reaching the final time point (at the end 
of the sixth subinterval) are almost converged (seen 
as dots), unlike optimal values (107) being scattered 
the worst (seen as circles).
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0.4p 0.6p 0.8p 1p 1.2p 1.4p 1.6p

Fig. 2. An indistinguishable bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 3, 10M =  
and 3, 10J =  (here and further below the optimal pure strategy is represented by thicker line, pure strategies from the mixed 
optimal strategy support are represented by thinner lines)
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-0.28
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0.6p 0.8p 1p 1.2p 1.4p 1.6p

Fig. 3. An indistinguishable bunch of the first player’s payoffs at 
the end of every subinterval (dots) and their cumulative 
sum (circles) by 3, 10M =  and 3, 10J =

Nevertheless, as the sampling density is further 
increased, mixed optimal strategies become more 
“condensed” (Fig. 4), where game (97) by (98)–(100) 
is still solved in pure strategies on the first subinter-
val. The pure optimal strategy of the second player 
on [ )0.4 ; 0.6p p  is unchangeable (it is unchangeable, 
whichever the sampling is). Moreover, the payoffs 
“condense” also (Fig. 5): the subinterval payoffs run 
into a distinct polyline, and their cumulative sum 
runs into a polyline as well, although some scatter-
ing of optimal values (107) is still seen.

It is noteworthy that the players’ optimal strat-
egies are e-payoff-{M, J}-consistent just for

( )*0.304 ,iv M Je = ⋅   at  1, 6i =

by every 

15, 20M =  and 15, 20.J =

This is an evidence of that the solution convergence 
is not enough.
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Fig. 4. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 15, 20M =  and 15, 20J =
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Fig. 5. A bunch of the first player’s payoffs at the end of every 
subinterval (dots) and their cumulative sum (circles) by 

15, 20M =  and 15, 20J =

Fig. 6 presenting mixed optimal strategies 
by 25, 30M =  and 25, 30J =  can be easily com-
pared to Fig. 4. The matter is that, along with the 
first player’s pure optimal strategies on subinterval 
[ )0.4 ; 0.6p p , the player’s mixed optimal strategies on 
subintervals

[ ){ } [ ]{ }5

2
0.2 0.2 ; 0.4 0.2 , 1.4 ; 1.6

i
i i

=
p + p p + p p p

[ ){ } [ ]{ }5

2
0.2 0.2 ; 0.4 0.2 , 1.4 ; 1.6

i
i i

=
p + p p + p p p                    (108)

do really converge to the solution of the staircase 
game. The comparison of more “condensed” payoffs 
in Fig. 7 to Fig. 5 allows concluding the same. More-
over, here the players’ optimal strategies are e-payoff- 
{M, J}-consistent for

( )*0.159 ,iv M Je = ⋅   at  1, 6i =

by every 

25, 30M =  and 25, 30J =

additionally supporting the said.
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Fig. 6. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 25, 30M =  and 25, 30J =
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Fig. 7. A bunch of the first player’s payoffs at the end of every 
subinterval (dots) and their cumulative sum (circles) by 

25, 30M =  and 25, 30J =

Further thickening the samplings does not 
change the result much. Along with the first player’s 
pure optimal strategies on subinterval [ )0.4 ; 0.6 ,p p  
the scattering of mixed optimal strategies on subin-
tervals (108) by 31, 40M =  and 31, 40J =  (Fig. 8) 
is slightly less than that in Fig. 6. The “condensation” 
of payoffs in Figures 7 and 9 are nearly the same. 

Although the solution convergence is apparent, 
the players’ optimal strategies are e-payoff-{M, J}- 
consistent for

( )*0.202 ,iv M Je = ⋅   at  1, 6i =

by every 

32, 39M =  and 32, 39.J =

This is an evidence of that the solution convergence 
reaches its saturation, and further thickening the 
samplings will not improve the solution approxima-
tion nor improve the consistency. Therefore, the ap-
proximate solution to the zero-sum staircase game 
by (94)–(96) and (97)–(100) can be accepted by the 
independent sampling at both players’ with the in-
tegers between 25 and 30 (of course, not necessarily 
identical).
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Fig. 8. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 31, 40M =  and 31, 40J =
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Fig. 9. A bunch of the first player’s payoffs at the end of every 
subinterval (dots) and their cumulative sum (circles) by 

31, 40M =  and 31, 40J =

Discussion of the contribution

Clearly, it would be commonly intractable to 
straightforwardly solve the sampled staircase game, 
without considering each subinterval matrix game 
separately. For instance, by sampling the exempli-
fied game, where each of the players uses 6-subin-
terval staircase function-strategies, with, say, M = 25 
and J = 30, the resulting 256 × 306 matrix game 
(in which, e. g., the second player has 729 million 
pure strategies!) cannot be solved in a reasonable 
time span. Therefore, solving subinterval matrix 
games (which are obviously “smaller”) separately 
and then stacking their solutions is a far more effi-
cient way to obtain an approximate solution of the 
initial staircase game. The applicability of this method 
may be limited to the subinterval matrix game size. 
For instance, the computation time has an expo-
nentially-increasing dependence on the size of the 
square matrix. Solving matrix games, in which each 
of the players has at least a few hundred pure strate-
gies, may be time-consuming in applications requir-
ing fast updates of the solution (when the structure 
of the initial staircase game changes itself).

The (weak) consistency of an approximate 
solution is a criterion of its acceptability. However, 
a (weakly) consistent approximate solution may not 

exist at appropriately small (tractable) M and J. So, 
the consistency decomposition into parts by Defini-
tions 2–7 and particularly isolating an e-payoff con-
sistency by Definition 10 is justified and practical-
ly applicable. There are still many open questions, 
though. First, it is not proved that limits

( )*

,
lim ,iM J

v M J
→∞ →∞   

1,i N∀ =        (109)

exist and they are equal to the respective optimal values 
of the subinterval continuous games. Second, if limits 
(109) exist, it is not proved that this is followed by that 
any approximate solution (44) is e-payoff-{M, J}-con-
sistent for any *M M≥  and *J J≥  ( { }* \ 1 ,M ∈   

{ }* \ 1J ∈  ). The inter-influence among the con-
sistency decomposition parts by Definitions 2–7 is 
also uncertain yet.

The question of a possible reconciliation of the 
difference of the players’ sampling step selection is 
indeed that hard. The players can select their sam-
plings simultaneously but not identically. Even if the 
ranges of function-strategy values are identical and 
sampling integers M and J are the same (i. e., M = J), 
implying the uniform samplings, a player’s sampling 
may differ from the other player’s sampling due to 
eventual inaccuracies in selecting points, as it has 
been modelled by (102) and (103) with using normal 
“noise” in the point selection. However, at sufficient-
ly great sampling integers M and J, not necessarily 
equal, significant changes in M and J are expected 
not to influence the approximate solution much. 
Just like in the above-considered example, the play-
er’s optimal strategies converge subinterval-wise and 
the resulting staircase strategy appears to be an ac-
ceptable approximate optimal strategy in the initial 
staircase game (see Figures 6 and 8). Such a conclu-
sion is made easier by the payoff convergence (see 
Figures 5, 7 and 9). 

Therefore, the presented method is a signifi-
cant contribution to the antagonistic game theory 
and its finite approximation supplement. It allows 
approximately solving zero-sum games with stair-
case-function strategies in a far simpler manner 
regardless of the fact that the players may sample 
their sets of function-strategy values differently 
[18, 22]. Once the (weak) consistency is confirmed 
(the respective approximate solution should be at 
least e-payoff consistent by Definition 10), the ap-
proximate pure-mixed-strategy solution (like those 
ones of staircase strategies in Figures 6, 8) can be 
easily implemented and practiced [5, 7, 10, 11, 15, 
18, 20]. 
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Conclusion

A zero-sum game played in staircase-function 
continuous spaces is approximated to a matrix game 
by sampling the players’ pure strategy value sets. Each 
set is irregularly sampled in its own way so that the re-
sulting samplings may be of different cardinalities and 
varying densities. While sampled, the requirement of 
the proper sampling increment (by Definition 1) must 
be followed – the S + 1 points in a 1-incremented 
sampling must be selected denser than S points.

Owing to Theorem 2, the solution of the matrix 
game is obtained by stacking the solutions of the 
“smaller” matrix games, each defined on a subin-
terval where the pure strategy value is constant. The 
stack of the “smaller” matrix game solutions is an 
approximate solution to the initial staircase game. 
The (weak) consistency of the approximate solu-
tion is studied by how much the payoff and optimal 
situation change as the sampling density minimal-
ly increases by the three ways of the sampling in-
crement: only the first player’s increment, only the 
second player’s increment, both the players’ incre-
ment. Thus, the consistency, equivalent to the ap-
proximate solution acceptability, is decomposed into 
the payoff (Definition 2), optimal strategy support 
cardinality (Definitions 3 and 4), optimal strategy 
sampling density (Definitions 5 and 6), and support 
probability consistency (Definition 7).

The most important parts are the payoff consis-
tency and optimal strategy support cardinality (weak) 
consistency. They are checked in the quickest and 
easiest way. In addition, it is practically reasonable 
to consider a relaxed payoff consistency. The relaxed 
payoff consistency by (91)–(93) means that, as the 
sampling density minimally increases (in each of the 
three ways of the sampling increment), the game 

optimal value change in an appropriate approxima-
tion may grow at most by e. The weak consistency 
itself is a relaxation to the consistency, where the 
minimal decrement of the sampling density is ig-
nored. Therefore, the suggested method of finite ap-
proximation of staircase zero-sum games consists in 
the independent samplings, solving “smaller” matrix 
games, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appro-
priate if at least the respective approximate (stacked) 
solution is e-payoff consistent (Definition 10).

One can notice that, in staircase game (8) de-
composed into games (19), the payoff value depends 
only on the subinterval length if time t is not ex-
plicitly included into the function under the integral 
in (6). If the subinterval length does not change, 
every subinterval has the same matrix game. The 
triviality of the equal-length-subinterval solution is 
explained by a standstill of the players’ strategies. 
Time variable t explicitly included into (6) means 
that the players may develop their actions due to the 
game-modelled system changes (develops) as time 
goes by.

Finite approximation of games played in stair-
case-function continuous spaces will be extended 
and advanced also for the case of non-antagonistic 
interests of two players sampling their strategy value 
sets irregularly. An approach to solving the corre-
sponding “smaller” bimatrix games is not straight-
forwardly deduced from Theorem 2 as the optimality 
in the matrix game does not have an analogy for the 
bimatrix game [1, 6, 12, 14, 15]. The independence 
of the player’s sampling step selection may have a 
deeper incompatibility impact in the bimatrix game 
case, where multiple and non-equivalent solutions 
are very often possible, which requires additional 
reconciliation of the varying profitability.
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В. В. Романюк

СКІНЧЕННА АПРОКСИМАЦІЯ ІГОР З НУЛЬОВОЮ СУМОЮ, ЩО РОЗІГРУЮТЬСЯ У НЕПЕРЕРВНИХ ПРОСТОРАХ 
СХОДИНКОВИХ ФУНКЦІЙ

Проблематика. Існує відомий спосіб апроксимації неперервних ігор з нульовою сумою, де наближений розв’язок 
вважається прийнятним, якщо він змінюється мінімально за мінімальної зміни кроку дискретизації. Однак цей метод не можна 
прямо застосувати до гри з нульовою сумою, що розігрується зі стратегіями у формі сходинкових функцій. Крім того, слід брати 
до уваги незалежність вибору гравцем кроку дискретизації.

Мета дослідження. Мета полягає у тому, щоб розробити метод скінченної апроксимації ігор з нульовою сумою, які 
розігруються у неперервних просторах сходинкових функцій, беручи до уваги, що гравці, ймовірно, дискретизують множини своїх 
чистих стратегій самостійно.

Методика реалізації. Для досягнення зазначеної мети формалізується гра з нульовою сумою, в якій стратегії гравців 
є сходинковими функціями часу. У такій грі множина чистих стратегій гравця є континуумом сходинкових функцій часу, і час 
вважається дискретним. Умови дискретизації множини можливих значень чистої стратегії гравця викладаються так, що гра стає 
визначеною на добутку скінченних просторів сходинкових функцій. Загалом, крок дискретизації у кожного гравця різний, і розподіл 
вибіркових точок (значень функції-стратегії) неоднорідний.

Результати дослідження. Представлено метод скінченної апроксимації ігор з нульовою сумою, які розігруються 
у неперервних просторах сходинкових функцій. Метод полягає у нерегулярній дискретизації множини значень чистої стратегії 
гравця, розв’язуванні матричних ігор меншого розміру, кожна з яких визначена на підінтервалі, де значення чистої стратегії є 
постійним, й укладанні їхніх розв’язків, якщо вони є узгодженими. Уклад розв’язків матричних ігор меншого розміру є наближеним 
розв’язком вихідної сходинкової гри. Досліджується (слабка) узгодженість наближеного розв’язку тим, наскільки змінюється 
виграш та оптимальна ситуація, коли щільність дискретизації мінімально збільшується трьома способами: лише приріст 
у першого гравця, лише приріст у другого гравця, приріст в обох гравців. Узгодженість розкладається на узгодженість виграшів, 
узгодженість потужності спектру оптимальної стратегії, узгодженість щільності дискретизації оптимальної стратегії та узгодженість 
спектральних імовірностей. З практичної точки зору доцільно розглядати релаксовану узгодженість виграшів.

Висновки. Запропонований метод скінченної апроксимації сходинкових ігор з нульовою сумою полягає у незалежних 
дискретизаціях, розв’язуванні матричних ігор меншого розміру за прийнятний проміжок часу та укладенні їхніх розв’язків, якщо 
вони є узгодженими. Скінченне наближення вважається прийнятним, якщо принаймні відповідний наближений (укладений) 
розв’язок є узгодженим за e-виграшами.

Ключові слова: теорія ігор; функціонал виграшів; стратегія у формі сходинкової функції; матрична гра; нерегулярна 
дискретизація; узгодженість наближеного розв’язку.
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