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Background. LSTM neural networks are a very promising means to develop time series analysis and forecasting.
However, as well as neural networks for other fields and applications, LSTM networks have a lot of architecture ver-
sions, training parameters, and hyperparameters, whose inappropriate selection may lead to unacceptably poor perfor-
mance (poor or badly unreliable forecasts). Thus, optimization of LSTM networks is still an open question.

Objective. The goal is to ascertain whether the best forecasting accuracy is achieved at such a number of LSTM layer
neurons, which can be determined by the time series lag.

Methods. To achieve the said goal, a set of benchmark time series for testing the forecasting accuracy is presented.
Then, a set-up of the computational study for various versions of the LSTM network is defined. Finally, the computa-
tional study results are clearly visualized and discussed.

Results. Time series with a linear trend are forecasted worst, whereas defining the LSTM layer size by the lag in a time
series does not help much. The best-forecasted are time series with only repeated random subsequences, or seasonality,
or exponential rising. Compared to the single LSTM layer network, the forecasting accuracy is improved by 15 % to
19 % by applying the two LSTM layers network.

Conclusions. The approximately best forecasting accuracy may be expectedly achieved by setting the number of LSTM
layer neurons at the time series lag. However, the best forecasting accuracy cannot be guaranteed. LSTM networks for
time series forecasting can be optimized by using only two LSTM layers whose size is set at the time series lag. Some
discrepancy is still acceptable, though. The size of the second LSTM layer should not be less than the size of the first
layer.

Keywords: time series forecasting; LSTM network; LSTM layer size; forecasting accuracy; root-mean-square error;
maximum absolute error.

Introduction

Time series analysis and forecasting is an im-
portant field of methods to control and predict pro-
cesses comprising sequences of data [1], [2]. It has
both deep theoretical and practical applications in
industrial, socio-economic, ecological, entertain-
ment, and scientific branches [2], [3]. A common
example of a data sequence to be forecasted is a set
of successive equally spaced points in time, at which
practically influential values are registered and thus
are studied [1], [4].

The forecasting accuracy strongly depends on
a model used to generate forecasts. Besides, it de-
pends on the forecasting horizon. As the horizon
is extended, the accuracy decreases and forecasts
become less reliable. It has been recently repor-

ted [5], [6] that, along with statistical forecasting
methods considering averages, regression factors,
and scedasticity of data (like ARIMA-based models,
GARCH-based models), recurrent neural networks
based on long short-term memory (LSTM) are ca-
pable to achieve the same accuracy or even better.
Therefore, LSTM networks are a very promising
means to develop time series analysis and forecas-
ting. However, as well as neural networks for other
fields and applications, LSTM networks have a lot
of architecture versions, training parameters, and
hyperparameters, whose inappropriate selection
may lead to unacceptably poor performance (poor
or badly unreliable forecasts) [5], [7], [8]. Thus,
optimization of LSTM networks is still an open
question.

Pexkomenayemo muryBaT mo crartio Tak: V.V. Romanuke, “Optimization of LSTM networks for time series forecasting”,
Hayxkosi eicmi KITI, Ne 3, c. 14—25, 2021, doi: 10.20535/kpisn.2021.3.230989.

Please cite this article as: V.V. Romanuke, “Optimization of LSTM networks for time series forecasting”.
KPI Science News, no. 3, pp. 14—25, 2021, doi: 10.20535/kpisn.2021.3.230989.

© The Autor(s).
The article is distributed under the terms of the license CC BY 4.0



IHOPOPMALLINHI TEXHONOT 1T, CACTEMHUW AHATI3 TA KEPYBAHHS 15

Problem statement

The most important characteristic of an LSTM
network is its architecture. In particular, it includes
the number of LSTM layers and the number of neu-
rons in each layer. It is believed that the optimal
number of LSTM layer neurons somehow correlates
with time series lags [6], [7], [9]. The lag is an ap-
proximate length of a time series part, which qua-
si-periodically recurs. Lags can be found (or esti-
mated) by the autocorrelation function (ACF) of the
time series [9]. Therefore, the goal is to ascertain
whether the best forecasting accuracy is achieved at
such a number of LSTM layer neurons, which can be
determined by the lag. For this, a set of benchmark
time series for testing the forecasting accuracy will be
presented first. Then, a set-up of the computational
study for various versions of the LSTM network is
defined. Finally, the computational study results are
to be clearly visualized and discussed, whereupon the
corresponding conclusions on optimization of LSTM
networks for time series forecasting will be made.

Time series benchmarking dataset

Denote by 7 the amount of a time series data.
The benchmarking dataset is based on 12 patterns of
random-like sequences with repeatability, where every
sequence is a stack of 6, 7, or 8 identical random-
ly-structured subsequences. These sequences are denot-
ed by {r,(n)}}’,. Every sequence is generated by using
pseudorandom numbers drawn from the standard nor-
mal distribution (with zero mean and unit variance)
[10], [11] by, without losing generality, # =1, T'.

An initial set of benchmark time series is gene-
rated as follows. First, vectors {©,(T)};’, of T pseu-
dorandom numbers used to simulate noise and volati-
lity are generated. Then, a set {a, > 0}%_, of adjustable
coefficients and factor v > 0 indicating an oscillation
frequency are defined for all the 12 patterns [12].

In the simplest case, a time series pattern without
additional properties is

(@) =la, +0.250,(T)]r ) +a,0,(T). (1)
A time series pattern with a linear trend is
¥ () =la, +0.250,(T)]r (1) + a,0,(T) + ast, (2)
and a time series pattern with seasonality is
y3(8) =la, + 0.250,(T)]r,(¢) + a,0,(T) +
[a, +0.250,(T)]as cos(v?) . 3)

Three patterns (1)—(3) are used in various combi-
nations to form the remaining nine patterns including

exponential extinction and rising properties. Thus, a
time series pattern with a linear trend and seasonality is
y.(®) =la, +0.2504(T)]r, () + a,04(T) + a,t +

[a, +0.250,,(T")]as cos(vt) . 4)

Time series patterns with exponential extinction and
rising are

ys(t) =[a, + 0.250, ()]s (H)e ™ +a,0,(T) (5)
and
V(@) =[a, + 0.250 ,(T)r,(H)e* +a,0,,(T), (6)

respectively. Next, a time series pattern with a linear
trend with exponential extinction is

y;(t) =[a, +0.250,,(T)]r (t)e™ +
a,0,,(T) + ayt. (7)

If the seasonality substitutes the linear trend, another
pattern is generated (seasonality with exponential
extinction):
Y.(0) = [a, +0.250 ,(T)r (H)e ™" +
a,0,(T) +[a, +0.250,(T)]as cos(vt)e™ ™. (8)

A time series pattern with a linear trend and season-
ality with exponential extinction is

Yo(1) =[a, +0.250,(T)]r, (e ™ +a,0,,(T) +
a;t +a, +0.250,,(T)]as cos(vt)e™". 9)

The final three patterns are similar to patterns (7)—(9),
where only exponential rising is embedded instead
of the extinction:

V10(?) =1la, +0.250,,(T)]r, (t)e*" +
a,0,,(T) + ajt, (10)
V(@) =la, +0.250,5(T)]r, (1)e” +

a,0,(T) +[a, +0.250,,(T)]a, cos(vt)e™, (11)

V1, (1) =1a, +0.250,4 (7)1, (t)e™ + a,0,(T) +

a,t +[a, +0.250,,(T)]as cos(vr)e®'. (12)

The initial time series benchmarking dataset is
generated by [12]
a =2, a,=0.175, a, =001, g, =5, a;,=0.18,
v=0.02, g, =0.0005 T =1680.
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Then the time series is equidistantly downsampled
so that 168 time points remain. These points are
smoothed. For each of patterns (1)—(12), 200 series are
generated. For each of those 2400 series, ARIMA fore-
casts [12] are made at # =113, 168 (i. e, the forecast
length is one third of the available data). The fore-
casting accuracy is estimated by the corresponding
root-mean-square error (RMSE) and the maximum
absolute error (MaxAE) [4], [13], [14] as follows. If

FORS s (13)

are forecasted data, they are normalized with respect
to the initial data:

0 im0
i(

max f)— min t
k=113, 168y( ) k=113, 168 y( )

by =113, 168.

(14)
Test data

DOLE (15)

are normalized as well:

t)— min t

y( ) k=113, 168 y( )
max_y(f)— min t

k=113, 168 y( ) k=113, 168 y( )

by =113, 168.

u(t) =

(16)

Then the RMSE registering information about the
averaged errors is calculated as

1 168
- J% D lu@) -,

and the MaxAE registering information about the
worst errors [12] is calculated as

|u(t) — (1)].

17)

max (18)

PMaxaE (=113, 168

The 50 time series which are forecasted the
worst are extracted for each pattern. Their respective
RMSEs are sorted in descending order, so each series
is tagged to its number z =1, 50 (z =1 corresponds
to the maximal RMSE). The time series starting val-
ue y,(1), which can be heavily distorted with respect
to the next values y,(2), y,3), ..., as a consequence
of the smoothing, is modified as follows:

y (M) =y, (),

,(1) = ¥,(2)-(0.26 +0.9), (19)

where & is a pseudorandom scalar drawn from the
standard uniform distribution on the open interval
(05 1). Thus, y(1) becomes equal y,(2) multiplied by
a factor between 0.9 and 1.1 (after rounding; speak-
ing more precisely, the minimal value of the factor
is greater than 0.9 by infinitesimal, and the maximal
value of the factor is less than 1.1 by infinitesimal).

Graphical examples of four benchmark time
series per pattern (out of those 50 ones which
are forecasted the worst) are presented in Fig. 1.
The start of forecasting is marked as vertical line.
The line separates the two thirds of the time series
from its one third which is the part to be forecasted.
Fig. 1 allows seeing how patterns (1)—(12) factually
appear representing the most important properties
of a time series (trend, seasonality, exponential ex-
tinction and rising). It is worth noting that the time
series starting value modification by (19) does not
always help. Indeed, the starting value y,(1) for the
first benchmark time series (the top left corner sub-
plot) is clearly seen to be an outlier. Similar “jumps”
can be seen in other patterns, although they are far
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Fig. 1. Four benchmark time series per pattern
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Computational study set-up

First, the time series

v (K (20)
is approximated by a linear trend model
Virena (1) = By + B 1. (21)
Then the ACF of the sequence
e = Ve OB (22)

is found (e. g., see [9]). A set of all different lags in
sequence (22) are determined by this ACF. Denote
this set by P; Because every pattern

ound*
(NS

is a stack of 6, 7, or 8 identical randomly-structured
subsequences, the length of the subsequence is 28, 24,
or 21, respectively. Therefore, the default set of lags is

P =1{21,24,28). (24)

(23)

Sets Py,.q and (24) can coincide, or can have only
one or two mutual elements, or their intersection can
be even empty. This is why their union P U P 4
is considered further. Let this lag union be called
consistent.

The default set of neurons in a LSTM layer is
H ={h}, =120 +10-(k - D}, (25)

1 'sequenceinput' Sequence Input

(Sequence input
with 1 dimension)

2 'lstm' LSTM

(LSTM with 20 hidden units)

3 'fc'

Fully Connected

Since a correlation between the optimal number of
LSTM layer neurons and lags is to be ascertained,
set (25) is supplemented with the sets of lags:

H.=HUP,UP

ound *

(26)
If
|H*

>|H|+|Py| = |H| +3 (27)

then the largest |H*
deleted by

—|H |—3 values in set H are

H ={20+10 - (k — 1)} (28)

whereupon

H.=HUP,UP, (29)

ound »

otherwise H.. = H..

Two versions of the LSTM network are to be
studied: with a single LSTM layer (Fig. 2) and two
LSTM layers (Fig. 3), where the training parameters
are set at values allowing to achieve distinguishable
results. So, these values are not optimal with respect
to the network performance but they are optimal
(appropriate) with respect to the network opera-
tion speed and the performance distinguishability.
The number of epochs is 300, the starting learning
rate is 0.1, the learning rate drop factor is 0.995,
and the learning rate drop period is 25 epochs [5],
[15], [16].

(1 fully connected layer) ®

4 'regressionoutput'

Regression Output
(mean-squared-error
with response 'Response')

®|Fearessionoutpu]

+ [ NAME TYFE ACTIVATIONS

LEARMNABELES TOTAL LEARNABLES STATES

1 sequenceinput
Sequence input with 1 dimensions

Sequence Input 1

z |Istm
LETM with 20 hidden units

LST™M 28

InputWeights 8@l
RecurrentlWeights 88x28
Bias 8@x1

1768 |HiddenState 2@=1

CellState 2@=1

3 |fc
1 fully connected layer

Fully Connected |1

Weights 1x20
Bias 1=1

21| -

Fig. 2. The LSTM network architecture with a single LSTM layer (an example where h, = 20)
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1 'sequenceinput' Sequence Input $ sequenceinput
(Sequence input
with 1 dimension)
» Isim_1
2 'lstm 1°' LSTM
(LSTM with 20 hidden units)
3 'lstm 1°' LSTM ® lstm_2
(LSTM with 40 hidden units)
4 ‘'fc' Fully Connected
(1 fully connected layer) . o
5 'regressionoutput' Regression Output
(mean-squared-error
with response 'Response') .
+ | NAME TYPE ACTIVATIONS LEARMABLES TOTAL LEARNABLES STATES
1 |sequenceinput Sequence Input 1 - 8-
Sequence input with 1 dimensions
2 Istm_1 LSTM 28 InputWeights 8@=1 1768 |HiddenState 28x1
LSTM with 20 hidden units RecurrentlWeights 8e=28 CellState 28=1
Bias 8@x1
3 Istm_2 LST™M 48 InputWeights 168=28 9760 |HiddenState 4@x1
LSTM with 40 hidden units RecurrentWeights 16@x40 CellState 4@=1
Bias 16@=1
4 |fc Fully Connected |1 Weights 1=48 41| -
1 fully connected layer Bias 1=1

Fig. 3. The LSTM network architecture with two LSTM layers (an example where the second layer is twice the size of the first one)

Each LSTM layer has its own set of neurons
within set H... Re-denote this set by

H.. = {h.(g, 7, K)}?,, (30)

where h.(g, z, k) is the k-th number (index) of neu-
rons for the g-th pattern and z-th time series instance,
k=122, g=1,12, z=1,50. Whichever number of
LSTM layers is, regardless of index k, denote by

P(g’ Z) = Bjef U })found = {pl(g9 Z)}le(lg’ &

a set of consistent lags for the g-th pattern and z-th
time series instance, where L(g, z) =|P(g, 2)| is a
number of consistent lags.

€1V

Results

For each triple of g, z, k&, RMSE (17) by
(13)—(16) for (20)—(23) and (24)—(31) is calculated
for the case of a single LSTM layer (Fig. 2). Then,
for set

{Pruse (8> 2 KN (32)
a set
K;MSE = arg /gl% Pruse (&5 2> k) (33)

of indices at which RMSEs (32) are minimal is
found as

Ky = e el (34)
With set (34), integer h..(g, z, kg\y) is the minimal
number of neurons in the LSTM layer, at which the

RMSE is minimized. It is compared to the consis-
tent lags: integer

X’:{MSE (g 2)=

min
I=1, L(g, 2)

(35)

|h*(g, 2, kl:(lM)SE) -p(g Z)|

is the shortest distance (in neurons) between the
LSTM layer size and consistent lags for the g-th
pattern and z-th time series instance.
The number of instances when distance (35) is
zero or, in other terms,
h. (g, z, k]:(lM)SE) e P(g, 2) (36)

is summed up along z =1, 50. (Fig. 4). Besides, the
average distance for the g-th pattern

. 1 50 .
ARMSE (g) = % : Z}\'RMSE (g, 2) (37)
z=1
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is calculated. Averages (37) are compared to

Mg) =

1 L(g, 2)

1 50 1 22
— > =Y (g 7, k) - : , 2 (38
50222; (82070 ;mgz)( )

7=

The difference

Spmse (&) = Mg) - X;MSE (&)

is shown in Fig. 5. Values (38) can be thought of
as “averaged theoretical averages”, whereas (37) are
the averages of real distances (35).

(39)

U
)
TN TN TN TN TN N TN NN TN N TN N TN N TN TN N TN T TN SN T |

_=NDW S UTONN 0O
T T T T T T T T

1 2 3 4 5 6 7 8 9 0 11 12 g

3]
@

ig. 4. The number of the LSTM-layer-size and consistent-lag
coincidences by (36) in the case of a single LSTM layer
(the possible maximum of this number is 50)

Bpwise (g)

Fig. 5. Difference (39) in the case of a single LSTM layer

For each triple of g, z, k, MaxAE (18) by
(13)—(16) for (20)—(23) and (24)—(31) is calculated
for the case of a single LSTM layer (Fig. 2) likewise:
for set

{Paaar (8 25 K1 (40)
a set
K;:AaxAE = arglglli%pMaxAE(gs Z, k) (41)

of indices at which MaxAEs (40) are minimal is
found as

* *\j Kl:/[axAE
KMaxAE = {kl\/}eﬁAE ‘jzl ‘ (42)
With set (42), integer A.(g, 2, kymag) i the mini-
mal number of neurons in the LSTM layer, at which
the MaxAE is minimized. It is compared to the con-
sistent lags: integer

)\‘T\/laxAE (ga Z) =

min
=1, L(g, 2)

h(8, 2 koae) — P1(8: D) (43)
is the shortest distance (in neurons) between the
LSTM layer size and consistent lags for the g-th
pattern and z-th time series instance.

Again, the number of instances when distance
(43) is zero or, in other terms,

h(8, 2, kyigae) < P(8, 2) (44)

is summed up along z =1, 50 (Fig. 6). Besides, the
average distance for the g-th pattern

50

~ % 1 *
Mvaxae (&) = 30 : Z}“MaxAE(ga 2)

z=1

(45)

is calculated. Averages (45) are compared to (38):
the respective difference

Sutaar (€) = M&) = Aypaear (8) (46)
between the “averaged theoretical averages” and (45)
is shown in Fig. 7.

Figs. 4—7 show that the best forecasting accu-
racy can hardly be achieved by defining a number
of LSTM layer neurons as the lag in a time series
generated by patterns (4), (7), (9). Indeed, there is
only one instance (see Fig. 4) of the time series with
a linear trend and seasonality with exponential ex-
tinction (g = 9, see the ninth subplot row in Fig. 1)
at which the RMSE has been obtained minimal by
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setting the number of neurons in the LSTM layer at
35 that is the lag in the instance. This is the 17-th
instance, where, by the way,

PO, 17) = {p,9, 17)}°,, = {21, 24, 26, 28, 33, 35}.

N W A UTOY N 00O
T T T T T T T T T

1 2 3 4 5 6 7 8 9 0 11 12 &

Fig. 6. The number of the LSTM-layer-size and consistent-lag
coincidences by (44) in the case of a single LSTM layer
(the possible maximum of this number is 50)

BpaxaE: (g)

Fig. 7. Difference (46) in the case of a single LSTM layer

For the MaxAE minimization, there are two such
instances (see Fig. 6). Differences (39) and (46)
are distinctly negative at g = 9 (see Fig. 5 and 7),
that is an indicator of integers {Ay,,:(9, 7)), are
significantly large, so the difference between the
number of the LSTM layer size and consistent lags
(in the case of a single LSTM layer) is quite big.

On the contrary, the best forecasting accuracy
is achieved by defining a number of LSTM Ilayer
neurons as the lag in a time series generated by
pattern (8). This is confirmed by Fig. 6, by which
roughly a half of the time series instances are fore-
casted with a minimal MaxAE by the LSTM Ilayer
size definition.

For the case of the two LSTM layers network
(Fig. 3), RMSE (17) by (13)—(16) for (20)—(23) and
(24)—(31) is calculated for each quadruple of g, z, &,
m, where k and m are indices of the first and second
LSTM layer size. Then, for set

{pRMSE(g, 2, k, m) izzl 47)

two indices

*(1)

[kl:(lM)SE Mywise ] € arg —min__ pgyee (g, 2, k, m) (48)

=1, 22, m=1,22
at which RMSEs (47) are minimal are found,
wherein  h.(g, z, kgwsg) and 7. (g, 7, miise)  are
the minimal numbers of neurons in the first and sec-
ond LSTM layers, respectively. As previously, these
indices are compared to the consistent lags for the
g-th pattern and z-th time series instance. Integer

2 kdse) = 118, 2)| (49)

1
7‘11(1\/155(3’, 7) = . 1“'2“

is the shortest distance (in neurons) between the first
LSTM layer size and consistent lags; integer

A

Mrmise (85 2) = o

i . - 50
min_|.(g, 2, mise) = pi(85 2] (50)

is the shortest distance (in neurons) between the
second LSTM layer size and consistent lags. In addi-
tion, distance

(1)

RMSE(g9 7)= min_

I=1, (g, 2) *()

J(m (8, 2, ks ) — P8, ) +
(h.(g, 2, myise) — (8, 2))°

by (48)—(50) is calculated.

The number of instances when (36) is true is
summed up along z =1, 50 (Fig. 8). The number of
instances when

h..(8, 2, Mgyise) € P(g, 2) (52)
is true is summed up along z =1, 50 also (Fig. 9).
These numbers are summed as well (Fig. 10).
Besides, averages

Tt (8) = <5 ng;zm(g, SINNCE)
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and
B 1 50
Aanse(8) = = ; Aaise (&5 2) (54)

are calculated, and (37) is calculated by (51). Averages
(53), (54), (37) are compared to (38). The differences

85{11)\455 (8) =Mg) - 7191‘{(1355 (&), (55)
8(R2K/[SE (g) = X(g) - XEQSE (&), (56)
Spmse (&) = X(g) _X;MSE(g) (57)

are shown in Fig. 11.

=N W UTOY N 0O

1 2 3 4 5 6 7 8 9 0 11 12 g

Fig. 8. The number of the LSTM-layer-size and consistent-lag
coincidences by (36) in the first LSTM layer (the possible
maximum of this number is 50)

=N WS U100

1 2 3 4 5 6 7 8 9 0 11 12 &

3]
3

. 9. The number of the LSTM-layer-size and consistent-lag
coincidences by (52) in the second LSTM layer (the possible
maximum of this number is 50)

IR = BRI NI N NI N NI NN NI WO WD wwwwwwwwh-&ha&agg

RN WE V10V NI O N U U1V IO O MU UTOVNIC00 O RIWE TGV 0O N LA

Fig. 10. The sum of instances when either of (36) and (52) is
true (the possible maximum of this number is 100),
and when both (36) and (52) are simultancously true
(lighter-coloured bars; the possible maximum of this
number is 50)

T T T T
S o
o
=
Z
&
—
oy
—
) I S N TN N N N |

Fig. 11. Polylines of differences (55)—(57)

Figs. 8—11 confirm the inference from
Figs. 4—7 about patterns (4), (7), (9): the best fore-
casting RMSE-accuracy can hardly be achieved by
defining a number of LSTM layer neurons (in each



22 KPI Science News

2021/3

layer) as the lag in a time series generated by those
patterns. This inference may be weakened for pat-
terns (4) and (9), when only the first LSTM-layer
size is set at a consistent lag (because the pattern with
a linear trend with exponential extinction is Fig. 8
clearly appears to be the worst). Although the second
LSTM-layer-size setting appears to be more chaotic
with respect to the lag (Fig. 9), the grand total of the
coincidences by (52) is 220 versus 224 coincidences
by (36). That is, about a third of minimal-RMSE
instances (out of 600) have been obtained by setting
the size of one of the LSTM layers at a consistent
lag. The grand total of instances, when the sizes of
both the layers are set at consistent lags, is just 77
(see lighter-coloured bars in Fig. 10) out of 600.

For each quadruple of g, z, k, m, MaxAE (18)
by (13)—(16) for (20)—(23) and (24)—(31) is calcu-
lated for the case of the two LSTM layers network
(Fig. 3) likewise: for set

{pMaxAE(g’ Z, ka m)}iil (58)

two indices

[k;;;,)(AE mmipMaxAE(g, Z, k, m) (59)

*(1)
my,. € ar:
M‘”‘AE] gk122m122

at which MaxAEs (58) are minimal are found,
wherein h.(g, 7, kyoag) and h.(g, z, m\V..) are
the minimal numbers of neurons in the first and sec-
ond LSTM layers, respectively. As previously, these
indices are compared to the consistent lags for the

g-th pattern and z-th time series instance: distances
20 kO

Miae (& 2) = min_[1.(&, 2, kiiae) = £1(8, 2), (60)
Miac (g, 2) = _min 2 Myoe) — p/(8, 2)|, (61)
I=1, L(g, )

and

€0 mn & D - pg, ) +
Paae(8 2) = L (he(g, 2o M) = D/(8, 2))?

by (59)—(61) are calculated.
The number of instances when (44) is true is

summed up along z =1, 50 (Fig. 12). The number
of instances when

(62)

R (8, 2, Mygap) € P(g, 2) (63)

is summed up along z =1, 50 also (Fig. 13). These
numbers are summed as well (Fig. 14). Besides, av-
erages

50

Z ;Ila)xAE (ga Z)

z=1

Mg (8) = (64)

and

Mioar(®) = 55 Zx’;ziLAE<g, O (69)

are calculated, and (45) is calculated by (62). Averages
(64), (65), (45) are compared to (38). The differences

St (€) = MQ) = At (8), (66)
S (8) = M(8) — Aar (8), (67)
8MaxAE (g) = X(g) - Xy;vlaxAE (g) (68)

are shown in Fig. 15.
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Fig. 12. The number of the LSTM-layer-size and consistent-
lag coincidences by (44) in the first LSTM layer (the
possible maximum of this number is 50)
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Fig. 13. The number of the LSTM-layer-size and consistent-lag
coincidences by (63) in the second LSTM layer (the
possible maximum of this number is 50)
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Fig. 14. The sum of instances when either of (44) and (63) is
true (the possible maximum of this number is 100),
and when both (44) and (63) are simultaneously true
(lighter-coloured bars; the possible maximum of this

number is 50)
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Fig. 15. Polylines of differences (66)—(68)

Fig. 12—15 confirm the inference from
Fig. 4—11 about patterns (4), (7), (9): the minimal
MaxAE is unachievable by defining a number of

LSTM layer neurons (in each layer) as the lag in a
time series generated by those patterns. Despite of
Syaar (2) <0 and 3y, . (8) <0 (Fig. 15), this infer-
ence cannot be supplemented by patterns (2) and
(8) because the respective bars in Figs. 12—14 are
not that low. The grand total of the coincidences by
(44) is 201 versus 211 coincidences by (63). As in
the case of RMSE, about a third of minimal-Max-
AE instances (out of 600) have been obtained by
setting the size of one of the LSTM layers at a con-
sistent lag. The grand total of instances, when the
sizes of both the layers are set at consistent lags, is
fully comparable to that of RMSE: it is just 69 (see
lighter-coloured bars in Fig. 14) out of 600.

In the case of the two LSTM layers network,
the best forecasting accuracy is achieved by defining
a number of LSTM layer neurons as the lag in a time
series generated by patterns (1), (3), (6), (8), (11),
(12). This is confirmed by considering Fig. 8—15 in
the aggregate, where the hardest-to-handle patterns
are (7) and (9). Time series by these patterns (lin-
ear trend and exponential extinction with or without
seasonality, see the seventh and ninth subplot rows
in Fig. 1) are worst-forecasted in the case of a single
LSTM layer, which is straightforwardly confirmed
by Fig. 4, 5, 7.

Discussion

The abovementioned inferences imply that
time series with a linear trend are forecasted worst,
whereas the proper LSTM-layer-size-to-lag setting
(adjustment) does not help much. The best-forecast-
ed are time series with only repeated random subse-
quences, or seasonality, or exponential rising. Mean-
while, adding the second LSTM layer improves the
performance on average: the two LSTM layers net-
works have provided 15.6 % decreased RMSE and
18.8 % decreased MaxAE. Adding the third LSTM
layer, apart from slowing down the forecasting rou-
tine, does not improve the forecasting accuracy.

Fig. 4, 6, 8—10, 12—14 show that over 50 %
of the LSTM-layer-size-to-lag adjustment have not
provided the minimum of either RMSE or MaxAE.
On the contrary, Fig. 5, 7, 11, 15 show that mini-
mal RMSE and MaxAE are obtained by the size set
closer to the lag. Consequently, time series lags are
distinctive pivots, at which the LSTM layer size is
recommended to be set as close as possible.

Unexpectedly, but 46 % of minimal-RMSE
instances obtained by the exact LSTM-layer-size-
to-lag adjustment correspond to the LSTM net-
work architecture, where the second LSTM layer
size is less than the first layer size. It is 47.2 % for
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minimal-MaxAE instances. In other words, in more
than 52 % of best-accuracy instances, the second
LSTM layer size is not less than the first layer size.

Conclusions

Based on the computational study results, it is
ascertained that the approximately best forecasting
accuracy may be expectedly achieved by setting the
number of LSTM layer neurons at the time series lag.
In probabilistic terms, the best forecasting accuracy
likelihood is greater than 30 %. Nevertheless, it is

roughly 50 % probable that the exact setting will
not provide the minimum (of either RMSE or
MaxAE). So, the best forecasting accuracy cannot be
guaranteed. However, compared to the single LSTM
layer network, it is improved by 15 % to 19 % by
applying the two LSTM layers network. Therefore,
LSTM networks for time series forecasting can be
optimized by using only two LSTM layers whose
size is set at the time series lag. Some discrepancy
between the size and lag is still acceptable, though.
The size of the second LSTM layer should not be
less than the size of the first layer.

(1]

2]

3]

[4]

(5]

6]

(7]

8]

91
[10]

(1]
[12]

[13]
[14]

[15]

[16]

References

B. Schelter, M. Winterhalder, and J. Timmer, Handbook of Time Series Analysis: Recent Theoretical Developments and Applica-
tions, Wiley, 2006, doi: 10.1002/9783527609970.

V. Kotu and B. Deshpande, “Chapter 10. Time Series Forecasting”, in: Predictive Analytics and Data Mining, Kotu V. and
Deshpande B., Eds., Morgan Kaufmann, 2015, pp. 305—327, doi: 10.1016/B978-0-12-801460-8.00010-0.

V. Kotu and B. Deshpande, “Chapter 12. Time Series Forecasting”, in: Data Science, 2nd ed., Kotu V. and Deshpande B., Eds.,
Morgan Kaufmann, 2019, pp. 395—445, doi: 10.1016/B978-0-12-814761-0.00012-5.

J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting”, Int. J. of Forecasting, vol. 22, no. 3, pp. 443—473,
2006, doi: 10.1016/j.ijforecast.2006.01.001.

R. DiPietro and G. D. Hager, “Chapter 21. Deep learning: RNNs and LSTM”, in: Handbook of Medical Image Computing
and Computer Assisted Intervention, Zhou S. K., Rueckert D., and Fichtinger G., Eds., Academic Press, 2020, pp. 503519,
doi: 10.1016/B978-0-12-816176-0.00026-0.

M. Fakhfekh and A. Jeribi, “Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory
GARCH models”, Res. in Int. Bus. and Finance, vol. 51, 101075, 2020, doi: 10.1016/j.ribaf.2019.101075.

M. Sangiorgio and F. Dercole, “Robustness of LSTM neural networks for multi-step forecasting of chaotic time series”, Chaos,
Solitons & Fractals, vol. 139, 110045, 2020, doi: 10.1016/j.chaos.2020.110045.

V. V. Romanuke, “Regard of parameters and quality of forecast in selecting the neural net optimal architecture for a problem
of the time series neuronet forecasting”, Sci. and Econ., no. 3 (27), pp. 164—168, 2012.

G. Box et al., Time Series Analysis: Forecasting and Control, Prentice Hall, Englewood Cliffs, NJ, 1994.

V. V. Romanuke, “Decision making criteria hybridization for finding optimal decisions’ subset regarding changes of the decision
function”, J. of Uncertain Syst., vol. 12, no. 4, pp. 279—291, 2018.

R. Kneusel, Random Numbers and Computers, Springer International Publishing, 2018, doi: 10.1007/978-3-319-77697-2.

V. V. Romanuke, “Time series smoothing and downsampling for improving forecasting accuracy”, Appl. Comput. Syst., vol. 26,
no. 1, pp. 60—70, 2021, doi: 10.2478/acss-2021-0008.

R. E. Edwards, Functional Analysis. Theory and Applications, Hold, Rinehart and Winston, 1965.

V. V. Romanuke, “Wind speed distribution direct approximation by accumulative statistics of measurements and root-mean-
square deviation control”, Elect., Control and Commun. Eng., vol. 16, no. 2, pp. 65—71, 2020, doi: 10.2478/ecce-2020-0010.
F. C. Pereira and S. S. Borysov, “Machine Learning Fundamentals”, in: Mobility Patterns, Big Data and Transport Analytics,
Antoniou C., Dimitriou L., and Pereira F., Eds., Elsevier, 2019, pp. 9—29. doi: 10.1016/B978-0-12-812970-8.00002-6.

J.-T. Chien, “Deep Neural Network”, in: Source Separation and Machine Learning, Chien J.-T., Ed., Academic Press, 2019,
pp. 259—320. doi 10.1016/B978-0-12-804566-4.00019-X.

B. B. PomaHtok

ONTUMISALIA LSTM-MEPEX O1A MPOMrHO3YBAHHA YACOBWX PALOIB

Mpobnematuka. HepoHHi LSTM-Mepexi € Haa3BMYanHO NepcrnekTMBHUM 3acob0M Anst PO3BUTKY aHani3y Ta NporHo3yBaHHs Ya-

coBux psaaiB. OgHak, SK | HeMPOHHI Mepexi ANs iHLWMX QUCUMNIIH Ta 3acTocyBaHb, LSTM-mepexi MaloTb HU3KY BEpPCin apXiTekTypu, napa-
METpIB HaBYaHHS i rinepnapameTpiB, HenpaBWUbHUIA NiABIP SKUX MOXE NPU3BECTU 4O HEMPUAHSITHO NMOraHoi NPOAYKTUBHOCTI (NMoraHux abo
ayxxe HeHagiiHux nporHosis). ToMy nuTaHHa onTuMmisauii LSTM-mepex Bce Le € BigkpuTum.

MeTa pocnigxeHHs. BcTaHOBUTY, UM JOCSraeTbCs Havkpalla TOYHICTb MPOrHO3yBaHHS 3a Takoi KifbKOCTi HEMPOHIB y LSTM-wwapi,

AKY MOXHa BU3HA4YUTK 3a JlaromM 4acoBoro paay.
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MeTtoauka peanisauii. [ns JOCArHEHHsI NOCTaBMNEHOI METU MPOMOHYETLCSH Habip KOHTPOMNbHMX YacoBUX PsSAIB ANst TECTyBaHHs
TOYHOCTi NporHo3yBaHHs. [ani BU3HaA4YaeTbCa NOPSAOK 0BYMCIIOBANbHOMO AOCHIMKEHHS ANns pisHMX Bepcii LSTM-mepexi. Y nigcymky
NPOBOAMUTLCS MOBHA Bi3yarnisaLisi 1 06roBopeHHs pesyrnbsraTiB 064nCoBanbHOMO AOCHIAKEHHS.

Pesynbraty gocnigkeHHA. Haviriplie nporHosyTbCst YacoBi psian 3 MiHINHUM TPeHAOM, a BM3Ha4YeHHs1 po3mipy LSTM-wapy
3a naroM y 4acoBoMy psifli He Aye fonomarae. Halkpalle nporHo3yTbCsi YacoBi psiaM, Lo MatkTb NLLIe NOBTOPKOBaHi BUNaAKoBI Nia-
nocnigoBHOCTI, ab0 Ce30HHICTb, abo ekcrnoHeHLianbHe 3pocTanHs. [pu 3acTocyBaHHi Mepexi 3 ABoma LSTM-uapamu TOYHICTb NPOrHo-
3yBaHH$ nokpallyeTbest Ha 15...19 % sik nopiBHATK 3 Mepexeto 3 ogHuM LSTM-wapom.

BucHoBkuU. MNprbn13Ho Halkpalla TOYHICTb NPOrHO3yBaHHS Moxe OyTW O4vikyBaHO AOCSIrHYTa 3a BCTAHOBIIEHHS YMCHa HENPOHIB
y LSTM-wapi, sike popiBHioe nary Yacosoro psigy. OfHak Le He rapaHTye HavKkpally TOYHICTb NporHo3yBaHHsA. LSTM-mepexi ans npo-
rHO3YBaHHS YacoBUX PSIAIB MOXYTb OyTW ONTMMI30BaHi 3a BUKOPUCTaHHS nuLe ABox LSTM-wwapis, po3mip Skux 4OPIBHIOE Nary 4acoBoro
psiay. BTim, geski po3bixkHoCTi € Takox NpunHATHUMU. Po3mip apyroro LSTM-wapy mae 6yTi He MeHLIMM Bifg, po3Mipy NepLLoro.

Knto4yoBi cnoBa: nporHo3yBaHHsi YacoBux psfiB; LSTM-mepexa; poamip LSTM-wapy; TOUHICTb NpOrHo3yBaHHs; cepeiHbokBapa-
TUYHa NOMWIIKa; MakcuMarbHa abcomntoTHa Noxmnobka.

B. B. PomaHtok

OMTUMMUBALINA LSTM-CETEN A1 MPOrHO3MPOBAHWA BPEMEHHbLIX PAOOB

Mpo6nemaTtnka. HeipoHHble LSTM-ceTn sBRAOTCA 4pes3Bbl4alHO MEepCrneKTUBHLIM CPEACTBOM Ans pasBUTUS aHanusa
1 MPOrHO3MpoBaHWs BPeEMEHHbIX psinoB. OfHaKo, Kak U HEMPOHHbIE CETU ANS OAPYrMX AUCUMNIMH U npunoxeHun, LSTM-cetn nmetot
MHOXECTBO BEPCUI apXWUTEKTYpbl, NapameTpoB 0bOyyeHus U runepnapaMeTpoB, HeadeKBaTHbIA Noabop KOTOPbIX MOXET MPUBECTU
K HEMPUEMIIEMO NIIOXOW NPOU3BOAUTENBHOCTM (NSIOXUM UMW OYEHb HEHaAEXHbIM nporHo3am). [ostomy Bonpoc onTumMusaumm LSTM-
ceTel BCE eLLE OCTaETCHA OTKPbIThIM.

Llenb nccnepoBaHUs. YCTaHOBUTb, AOCTUraeTCs N Haumy4yLwas TOYHOCTb MPOrHO3MPOBaHMS NMPU TakoM KONMYECTBE HEeNpOHOB
B LSTM-cnoe, kKoTopoe MOXeT ObITb ONpeaeneHo Mo nary BpeMeHHOro psifa.

Metoauka peanusauuu. [ns OOCTVXEHUsI NOCTaBMNEHHOW Lenu npeanaraetcs Habop KOHTPOSbHbIX BPEMEHHbIX PsiAOB Afst
TECTMPOBaHUSI TOYHOCTW MPOrHo3npoBaHus. [lanee onpenensieTcst NOpsiAoK BbIYUCIMTENBHOMO UCCMNEAOBaHUS Asi Pa3nUYHbIX BEpCUi
LSTM-ceTeil. B koHe4HOM MTOre, NPOBOAUTCS MOSHAasi BU3yanu3auns 1 obcyxaeHne pesynstaToB BbIMUCIMTENbHOMO UCCNefoBaHus.

PesynbraThl uccrneaoBaHUs. Xyxe BCEro NPOrHO3MPYHTCS BPEMEHHbIE psifibl C MIMHEVWHBIM TPEHAOM, a onpeaeneHne pasmepa
LSTM-cnos no nary Bo BpeMeHHOM psiie He 0co6o momoraer. Jlyywe BCero NporHo3upyrTCs BPEMEHHbIE Psfbl, UMEHLMNE TOMbKO
NoBTOpSiEMble ClyyaliHble MOANOCNEAOBaTENbHOCTA, WUINN CE30HHOCTb, MMM 3KCMOHEHLUManbHbll pocT. B cnyyae npumeHeHus cetu
¢ ABymsi LSTM-cnosimm no cpaBHeHUto ¢ ceTamu ¢ ogHUM LSTM-crnoem TO4HOCTb NPOrHo3nmpoBaHus yny4laercs Ha 15...19 %.

BbiBogbl. [pnbnunautensHo Havnyylwasi TOYHOCTb MPOrHO3MPOBaHMS MOXET OblTb OXWAAeMO AOCTUrHyTa Npu yCTaHOBIEHWUM
yncna HenpoHoB B LSTM-croe paBHbIM nary BpemeHHoro psiga. OgHako 310 He rapaHTUpyeT Hauny4yllel TOYHOCTU NPOrHO3MPOBaHUS.
LSTM-ceTv onst n(porHo3MpoBaHnsi BpEMEHHbIX PSA0B MOTYT ObiTb ONTUMMU3NPOBAHbI NPY UCNONb30BaHWUK Tonbko AByx LSTM-crnoés, yei
pa3mep ycTaHaBnMBaEeTCs paBHbIM flary BpEMeHHOro psiga. Bnpoyem, HekoTopble pacxoxaeHust Takke npuemnembl. Pasvep BToporo
LSTM-cnosi gorkeH 6biTb He MeHbLUE pa3Mepa NepBoro.

KntoyeBble cnoBa: nporHo3mpoBaHue BpeMeHHbIX psaoB; LSTM-ceTb; pasmep LSTM-crnos; TO4HOCTb NPOrHO3MpOBaHuWst; cpea-
HekBaZpaTunyeckas olmnbka; MakcumarnbHasi abcontoTHasi MOrPeLLHOCTb.
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