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SORTING APPROACHES IN THE HEURISTIC BASED ON REMAINING AVAILABLE
AND PROCESSING PERIODS TO MINIMIZE TOTAL WEIGHTED TARDINESS
IN PROGRESSIVE IDLING-FREE 1-MACHINE PREEMPTIVE SCHEDULING

Background. In preemptive job scheduling, total weighted tardiness minimization is commonly reduced to solving a
combinatorial problem, which becomes practically intractable as the number of jobs and the numbers of their processing
periods increase. To cope with this challenge, heuristics are used. A heuristic, in which the decisive ratio is the weighted
reciprocal of the maximum of a pair of the remaining processing period and remaining available period, is closely the
best one. However, the heuristic may produce schedules of a few jobs whose total weighted tardiness is enormously huge
compared to the real minimum. Therefore, this heuristic needs further improvements, one of which already exists for
jobs without priority weights with a sorting approach where remaining processing periods are minimized. Three other
sorting approaches still can outperform it, but such exceptions are quite rare.

Objective. The goal is to determine the influence of the four sorting approaches and try to select the best one in the
case where jobs have their priority weights. The heuristic will be applied to tight-tardy progressive idling-free 1-machine
preemptive scheduling, where the release dates are given in ascending order starting from 1 to the number of jobs, and
the due dates are tightly set after the release dates.

Methods. To achieve the said goal, a computational study is carried out with applying each of the four heuristic approaches
to minimize total weighted tardiness. For this, two series of 4151500 scheduling problems are generated. In the solution of
a scheduling problem, a sorting approach can “win” solely or “win” in a group of approaches, producing the heuristically
minimal total weighted tardiness. In each series, the distributions of sole-and-group “wins” are ascertained.

Results. The sole “wins” and non-whole-group “wins” are rare: the four sorting approaches produce schedules with the
same total weighted tardiness in over 98.39 % of scheduling problems. Although the influence of these approaches is
different, it is therefore not really significant. Each of the sorting approaches has heavy disadvantages leading sometimes
to gigantic inaccuracies, although they occur rarely. When the inaccuracy occurs to be more than 30 %, this implies
that 3 to 9 jobs are scheduled.

Conclusions. Unlike the case when jobs do not have their priority weights, it is impossible to select the best sorting
approach for the case with job priority weights. Instead, a hyper-heuristic comprising the sorting approaches (i. e., the
whole group, where each sorting is applied) may be constructed. If a parallelization can be used to process two or even
four sorting routines simultaneously, the computation time will not be significantly affected.

Keywords: preemptive 1-machine job scheduling; total weighted tardiness; heuristic; sorting approach; remaining pro-
cessing periods; remaining available periods.

Introduction

Minimization of total weighted tardiness
(TWT) in job schedules is an important task which
aims at reducing costs of production delays [1].
This task is commonly reduced to solving a com-
binatorial problem which becomes practically in-
tractable as volumes of jobs increase (i. e., as the
number of jobs and/or the numbers of their pro-
cessing periods increase) [2, 3]. The tractability can
be slightly stretched and strengthened by using an
optimal substitute for infinity in respective integer
linear programming models [4, 5] and re-arrang-
ing jobs for either job ascending order input or job
descending order input [6, 7]. After solving long se-
ries of thousands of job scheduling problems, these
methods can really decrease computation time on
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average, but the impact on the tractability is too
tiny [8].

The tractability problem is resolved by apply-
ing heuristics which allow finding schedules whose
TWT is approximately minimal [9, 10]. However,
the heuristically minimal TWT is not always the
exact one. So, the tradeoff here is accuracy ver-
sus speed (i. e., computation time). A heuristic, in
which the decisive ratio is the weighted reciprocal
of the maximum of a pair of the remaining pro-
cessing period (RPP) and remaining available period
(RAP) [3], is closely the best one [11]. The accuracy
of this heuristic (henceforward, let it be named the
RPP-RAP heuristic) was studied in [3] on a pattern of
tight-tardy progressive idling-free single machine pre-
emptive (TPIFIMP) scheduling [8]. In general, the
RPP-RAP heuristic produces about 92 % schedules [3]
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whose TWT is exactly minimal, i. e. an integer linear
programming model in about 92 % of the cases is
needless. Besides, the heuristic schedules 2 jobs al-
ways with the exactly minimal TWT. However, the
RPP-RAP heuristic may produce schedules of a few
jobs whose TWT is enormously huge compared to
the real minimum of TWT. For instance, a prob-
lem of scheduling 4 jobs divided into 6, 4, 5, and
5 processing periods with their respective priority
weights 10, 4, 9, 8, whose due dates are 11, 5, 15,
18 by the progressive release dates 1, 2, 3, 4, re-
spectively, has the TWT minimum of 16, whereas
the RPP-RAP heuristic produces a schedule whose
TWT is 36 (i. e., the relative gap [2, 3, 12] here is
125 %, which is obviously unacceptable). Therefore,
this heuristic needs further improvements. One of
such improvements is suggested in article [13] which
considers minimization of total tardiness (i. e., with-
out job priority weights) in TPIFIMP scheduling,
where the release dates are given in ascending order
starting from 1 to the number of jobs, and the due
dates are tightly set after the release dates. Whereas
the RPP-RAP heuristic sorts maximal decisive ratios
by release dates, where the scheduling preference is
given to the earliest job (this is the earliest-job sort-
ing), three other sorting approaches are presented
in [13]. In accordance with article [13], the earli-
est-job sorting ensures a heuristically minimal total
tardiness in more than 97.6 % of scheduling prob-
lems, but it fails to minimize total tardiness in no
less than 2.2 % of the cases. Nevertheless, a sorting
approach with minimizing remaining processing pe-
riods produces a heuristically minimal total tardiness
for almost any scheduling problem. If an exception
occurs, this sorting approach “loses” to the other
sorting approaches very little. Moreover, the excep-
tions are quite rare as just a one scheduling problem
was registered (out of 31914 cases followed by a sole
“win” of a heuristic version) whose minimal total
tardiness was achieved by the earliest-job sorting.

Problem statement

In order to improve the RPP-RAP heuristic,
the goal is to determine the influence of the four
sorting approaches and try to select the best one.
For this, a few series of TPIFIMP scheduling prob-
lems will be generated to minimize TWT, in which
the distribution of sole “wins” is to be ascertained.
The distribution of group “wins” is to be ascertained
also. The possibility of the best sorting approach se-
lection will be discussed and the corresponding con-
clusions on it will be made.

The earliest-job sorting and three other sorting
approaches

Given N jobs to be scheduled, N € N\ {1}, with
their respective processing periods [14, 15]

H=[H,].yeN", (1)
priority weights

W=[w,],.y eN", 2)
release dates

R=[r],.y eN", 3)
and due dates

D=[d,],y eN", 4)

the RPP-RAP heuristic originally based on the earli-
est-job sorting builds stepwise a schedule S =[3,], ;,

N
where T=ZHn, as time ¢ progresses [2, 3, 8,
n=1

16, 17]. The RPP of the job which is currently sche-
duled is updated, but all the starting RPPs (before the
scheduling starts) are set at processing periods (1):

qg,=H, Yn=1, N. ®)]
For every set of available jobs
A(t)={ief{l, N}:r<tand g, >0} c {l, N} (6)

the respective RAPs are

b =max{0,d, —-t+1} VieA@). 7
Then a subset
A'(f) = arg max ——i (8)
i<4(n max{q;, b}
is determined. If | A"(¢)| = 1, then
§=i" by A(1)={i"fcA(<{l,N| O
and the RPP of job i is updated as
g™ =q. and g. =¢"™ -1, (10)
otherwise
A0 ={i}f, c A< {l, N} by L>1, (1)
whence
5 =i (12)
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and the RPP of job i is updated as

g™ =q. and gq.=¢" -1.
1 1 1

( (13)
Assignment (12) executed by condition (11) implies
that the earliest job is preferred to be scheduled [18]
when there are two or more maximal decisive ratios

in subset (8). Thus, job # is completed after moment
o(n; H,) if

§é(n;h):n th:L Hn by é(nahn)e{lz_T}
and 6(m; h,) <B(n; h,+1) for h =1, H, —1

in schedule S:[E,]W returned by the heuristic.
Finally, amount

N
H(N) = Z w,-max{0, 0(n; H)-d} (14)
n=1

is an approximately minimal TWT corresponding to
this schedule [3, 8, 18]. So, in the case when (11) is
true, the RPP-RAP heuristic sorts maximal decisive
ratios in subset (8) by release dates, where the sche-
duling preference is given to the earliest job (whose
release date is the least). However, along with this
earliest-job sorting, the other three approaches to
sorting might be used: the RPP-or-due-date sorting,
the min-RPP sorting, and random sorting [13].
The RPP-or-due-date sorting is executed as

follows. If the RAP of job i is b. >0, then

W,-* oK L
Ao=—= by i e{i}., (15)
q,
else
w. PR
A :d—’ by i el{ii}},. (16)
Subsequently, a subset
F7(1) =arg min 2. = (i}, (17)
ie n !
is found and job i is scheduled:
5 =i, (18)
whereupon the RPP of job i is updated as
qlf].‘ibs) =q. and q. = qlflffbs) ~1. (19)

For example, a TPIF1MP scheduling problem with

H=[H,1]:=13 5 4 4 3], (20)
priority weights
W=[w].=[6 6 7 9 3], (21)

by release dates r, =n Vn= 1,_5 and due dates

D=[d]..=[2 12 19 7 7] (22)

is solved by the RPP-RAP heuristic using the
RPP-or-due-date sorting which produces schedule

S=Bl,=1 11444422

2 225553333 (23)
whose TWT is
5
§5) = D w, - max{0, 8(n; H,)~d,} =
n=1
6 - max{0, 3 -2} +6 - max{0, 12 - 12} +
7-max{0, 19 -19} +
9-max{0, 7-7}+3-max{0,15-7} = 30. (24)

The RPP-RAP heuristic using the earliest-job sorting
produces schedule

S=[5lo=0 114 4 4 422

2 22333351595 (25)
whose TWT is greater by 12 units (i. e., the in-heuris-
tic gap here is 40 %, implying the inaccuracy with
respect to the approach producing a lesser value of
TWT, although, generally speaking, that TWT is not
guaranteed to be the real minimum of TWT):

5
8(5) = an -max{0, 6(n; H,)-d,} =
n=1

6 - max{0, 3 -2} +6 - max{0, 12 - 12} +
7 -max{0, 16 =19} + 9 - max{0, 7 - 7} +

3-max{0, 19 -7} = 42. (26)
This is the example of that the RPP-or-due-date
sorting can outperform the earliest-job sorting at
least by 40 %.

The min-RPP sorting consists in scheduling
a job whose RPP is minimal. A subset

H" (1) =arg p}ii'r(l)q_* ={i"}E (27)
i e t !
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is found, and job i is scheduled as (18) by (19)
if |[H'(9| =L =1. Otherwise, if |[H"(f)| =L > 1,
a subset

H™ () =arg min g, =("},  (28)
is found, and job i, is scheduled:
5 =i, (29)
whereupon the RPP of job i, is updated as
g =gq.. and g = qflfi?s’ ~1. (30)

For example, a TPIFIMP scheduling problem with

H=[H,]=[55 3 4 3| (31)
priority weights
W=[w,l].s=[9 55 6 4], (32)

by release dates r, =n Vn= 1,_5 and due dates
D=[d,].s=[10 5 7 2 7] (33)

is solved by the RPP-RAP heuristic using the min-RPP
sorting which produces schedule

S=[5lo=11 114444113

33555222272 (34)
whose TWT is
5
3(5) = an -max{0, &(m; H,)—d,} =
n=l1
9-max{0, 9 —10} + 5 - max{0, 20 — 5} +
5-max{0,12 -7} +6 - max{0, 7 - 2} +
4 - max{0, 15-7} = 162. (35)

It is noteworthy that the RPP-RAP heuristic using
the earliest-job sorting produces the same schedule
(34), whereas the RPP-or-due-date sorting for job
lengths (31), priority weights (32), and due dates
(33) produces schedule

S=[5)=01222221T1T19]1

33344445355 (36)

whose TWT is greater by 15 units (i. e., the in-heuris-
tic gap here is 9.26 %):

5
305) = an -max{0, 6(n; H,)-d,} =
n=1

9-max{0, 10 =10} + 5- max{0, 6 - 5} +
5-max{0, 13- 7} +6-max{0, 17 - 2} +

4 - max{0, 20 - 7} = 177. (37)
This is the example of that the min-RPP sorting
can outperform the RPP-or-due-date sorting, and
the latter, unlike the example with job lengths (20),
priority weights (21), and due dates (22), can be
outperformed by the earliest-job sorting.

Finally, the random sorting consists in just a
random selection of a job from subset (8). Thus, in
the case when (11) is true, number m is randomly

selected from subset {1, L} and job 1':1 is scheduled:

~ oK

5, =i, (38)
whereupon the RPP of job i is updated as
g™ =q. and q. =¢" -1. (39)

However, if a schedule is built by using the ran-
dom sorting by (38), (39), instead of (12) by (11),
then, generally speaking, the heuristic produc-
es random schedules and TWT. Nevertheless, the
random sorting can outperform each of the three
above-described sorting approaches. For example, a
TPIF1MP scheduling problem with

H=[H,]., =14 3 4 3], (40)
priority weights
W=[w]l.=[7 3 10 2], (41)

by release dates r, =n Vn= 1, 4 and due dates

D=(d,].=[8 3 11 9] (42)

is solved by the random-sorting RPP-RAP heuristic
producing two different schedules, one of which is

S=[le=M12221113

3334 44 4 4 (43)

whose TWT is
4
84 =Y w, - max{0, 8(n; H,)~d,} =
n=1
7-max{0, 7 — 8} + 3 - max{0, 4 — 3} +
10-max{0, 11 -11} + 2 - max{0, 16 -9} = 17. (44)
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The other schedule

S=[5]e=[1 11123333

2 2 2 4 4 4 4 4], (45)
whose probability is equal to the probability of
schedule (43), is much worse because its TWT is
21 units greater:

9(4) = an -max{0, 8(n; H,)-d,} =

7. max{0, 4 — 8} + 3 - max{0, 11 -3} +
10 - max{0, 8 — 11} + 2- max{0, 16 — 9} = 38. (46)

At the same time, the RPP-RAP heuristic using the
earliest-job sorting and the min-RPP sorting also
produces schedule (45). However, the RPP-or-due-
date sorting produces schedule (43). So, the ran-
dom sorting here outperforms (by 21 units of TWT)
the earliest-job sorting and the min-RPP sorting at
50 % rate. In another example, where

H=[H,, =14 3 55 6 6 5], @7
priority weights
W=[w,].,=[2 8 56 10 2 1], (498)

by release dates r, =n Vn= 1, 4 and due dates

D=[d].,=[7 12 3 6 7 15 9], (49)

the random-sorting RPP-RAP heuristic produces
a few schedules, one of which

S=[5]=01233555S%5

6 6 6 77 7 7 17] (50)
has TWT
7
87 =D w, -max{0,8(n; H,)-d,} =
n=1
2-max{0, 23 -7} + 8 - max{0, 12 - 12} +
5-max{0, 15 - 3} + 6 - max{0, 20 — 6} +
10 - max{0, 10 - 7} + 2 - max{0, 29 - 15} +
1 - max{0, 34 — 9} = 259. (51)

The other schedules by the random sorting have
9(7) = 269. The same TWT is produced by the ear-
liest-job sorting, the RPP-or-due-date sorting, and

the min-RPP sorting. Despite the random sorting
produces more than two schedules, they have only
two possible TWT (whose probabilities are equal):
9(7) = 259 and §(7) = 269. Thus, the random sorting
here outperforms (by 10 units of TWT) the other
three sorting approaches at 50 % rate.

Generation of TPIF1IMP scheduling problems

As there is no an obvious “leader” among the
above-described four sorting approaches, the possi-
bility of such a “leadership” (implying the capability
to produce heuristically minimal TWT more often
than others) should be ascertained via a statistical
analysis of the performance. In TPIF1MP scheduling,
the release dates for (3) can be given in ascending
order as follows:

r,=n Vn=1 N. (52)

The due dates for (4) are generated as [8, 18]
d=r,+H, -1+b VYn=1, N (53)

by the respective random due date shift [7, 8]
b,=y(H, ¢) for n=1, N (54)

with a pseudorandom number ¢ drawn from the stan-
dard normal distribution (with zero mean and unit
variance), and function y(§) returning the integer
part of number ¢ (e. g., see [7, 8]). The job lengths
for (1) are generated as [3]

H, =y(Av+2) for n=1, N by A=2,20 (55)

with a pseudorandom number v [19, 20] drawn from
the standard uniform distribution on the open inter-
val (0; 1). So, the job length is randomly generated
between 2 and A -1 [3]. The job priority weights
for (2) are generated similarly to (55):

w, =y(bv+1) for n=1, N (56)
by a weight amplitude factor
b e {10u},’,, {100z},}. (57)

Once a vector of job lengths (1) is generated, due
date shifts (54) are generated until
d>l vn=1 N (58)

and TWT is not 0 (i. e., the due dates are not very
great, so at least one tardy job would exist).
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Computational study

A first series of TPIF1MP scheduling problems
is generated by (52)—(58), where 500 scheduling

problems are generated for every N =3, 25 (owing
to that the schedules of 2 jobs by the RPP-RAP
heuristic always have the exactly minimal TWT)
and A=2,20 and (57). So, altogether 4151500
scheduling problems are generated in the first se-
ries. Each scheduling problem is solved by the RPP-
RAP heuristic using the four sorting approaches: the
earliest-job sorting (which initially constitutes the
RPP-RAP heuristic itself) by (11)—(13), the RPP-
or-due-date sorting by (15)—(19), the min-RPP
sorting by (27) with (18) by (19) or (28)—(30), and
the random sorting by (38), (39).

Table 1 presents the number and percentage
of generated scheduling problems whose TWT has
been revealed to be minimal for the given sorting ap-
proach, whereas the other three sorting approaches
have produced greater values of TWT (i. e., the heu-
ristic with the given sorting approach “has won”).
The most “winning” sorting approach is the min-

RPP sorting covered nearly a half of all sole “wins”.
Despite its rather probabilistic nature, the random
sorting has had almost a quarter of all sole “wins”.

Table 1. The number of sole “wins” in the first series

Sorting |Earliest-job| ¥ P~ | Min-RPP| Random
approach sorting due-date sorting sorting
sorting
“Wins” | 4245 3216 | 10914 | 5761
Percentage) ., ¢ 13.3 452 23.9

of “wins

In the case of TPIFIMP scheduling problems
without priority weights, sole “wins” constitute
about 2.39 % to 2.44 % of the volume of generated
problems [13]. Here, in the first series, the percent-
age is just 0.5814 % (for 24136 sole “wins” out of
4151500 generated scheduling problems). Never-
theless, this is the average value. The sole “wins”
percentage decreases as the weight amplitude factor
increases (Fig. 1). Meanwhile, the interrelationship
among the percentages of “wins” given in Table 1
remains almost the same (Fig. 2).

random 1000

Fig. 1. The number of sole “wins” in the first series versus the weight amplitude factor and the sorting approach type
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Fig. 2. The percentage of “wins” in the first series versus the sorting approach
type by varying the weight amplitude factor

10 —— ‘
earliest-job RPP-or-due-date

|
min-RPP

Table 2. The number of group “wins” in the first series

random

Obviously, group “wins”, where
two to four sorting approaches have pro-
duced the same (minimal) TWT, dom-
inate. They constitute 99.4186 % (for
4127364 group “wins” out of 4151500
generated scheduling problems) of the
volume of generated problems, where
11 “winning” groups have been revealed
(in fact, this is the total set of groups;
there cannot be other groups). The dis-
tribution of the number of group “wins”
is presented in Table 2 where the group
membership is highlighted with a gray
color. The highest and dominating per-
centage (98.397 %) of group “wins” has
been revealed to be for the group con-
sisting of all four sorting approaches.
As the weight amplitude factor increas-
es, this whole-group “wins” percentage
increases (Fig. 3, where dotted mark-
ers are used), whereas the 10 numbers
of non-whole-group “wins” decrease
(Fig. 4). The polyline of the interrela-
tionship among the percentages of non-
whole-group “wins” almost vanishes as
the weight amplitude factor becomes suf-
ficiently great (Fig. 5).

Earliest-job
sorting

RPP-or-due-
date sorting

Min-RPP
sorting

Random
sorting

Group of sorting Approaches which
produce the same value of TWT

Group number, # 1 2 3 4 5 7 8 9 10 11
Group “wins” 3926 | 8107 | 3734 | 7729 | 3040 | 9712 | 10966 | 4006 | 7679 | 7250 | 4061215
Percentage of “wins” | 0.095 | 0.196 | 0.091 | 0.187 | 0.074 | 0.235 | 0.266 | 0.097 | 0.186 | 0.176 | 98.397
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Fig. 3. The whole-group “wins” percentage in the first series versus the weight amplitude factor
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Fig. 4. The 10 numbers of non-whole-group “wins”

Unlike the case of TPIFIMP scheduling
problems without priority weights [13], here the
min-RPP sorting is not the incontestable “winner”
because it does not belong to every non-whole
group (i. e., to groups ##1—10). However, it is
worth to note that it has had 51443 non-whole-
group “wins” in the first series, whereas the ear-
liest-job sorting, the RPP-or-due-date sorting,
and the random sorting have had 38418, 36917,

in the first series versus the weight amplitude factor

and 35421 non-whole-group “wins”, respectively.
So, the min-RPP sorting does have nonetheless
some advantage, which might be taken into account
when a preference to a single sorting approach is
to be given (because applying simultaneously two
or more sorting approaches to solving a scheduling
problem will slow down the process of obtaining a
solution, whichever short computation time is).
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Fig. 5. The percentage of non-whole-group “wins” in the first
series versus the group number type by varying the weight
amplitude factor

To get convinced that the obtained results are
statistically reliable and repeatable, a second series of
TPIFIMP scheduling problems is analogously gen-
erated by (52)—(58). Table 3 presents the number of
sole “wins” in the second series along with the relative
difference from the first series. Sole “wins” constitute
0.5836 % of the volume of generated problems in the
second series. The difference between the series does
not exceed 7.5 %. This is why the barred plot of the
number of sole “wins” versus the weight amplitude
factor (Fig. 6) is very similar to that for the first series
(Fig. 1). The difference between the barred plots in
Figs. 1 and 6 is tiny, indeed. Besides, the interrela-
tionship among the percentages of “wins” given in
Table 3 remains almost the same (Fig. 7) by just near-
ly repeating the plot in Fig. 2. The difference between
the polylines in Figs. 2 and 7 is not that tiny, but the
shape of those two polyline bunches is the same.

Table 3. The number of sole “wins” in the second series

Sorting | Earliest-job| NE¥ 29" [ Min-RPP| Random
approach sortin due-date sortin sortin
pp g sorting g 2
“Wins” 3927 3273 11168 5862
Percentage | ¢, 135 | 461 | 242
of “wins
Difference
(%) from the 7.49 1.77 2.33 1.75
first series

carliest-job RPP-or-due-date

min-RPP

random 1000

Fig. 6. The number of sole “wins” in the second series versus the weight amplitude factor and the sorting approach type
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48
46/~
441

41

earliest-job RPP-or-due-date

Fig. 7. The percentage of “wins” in the second series versus the sorting

|
min-RPP

approach type by varying the weight amplitude factor

Table 4. The number of group “wins” in the second series

random

Group “wins” constitute 99.4164 %
(for 4127270 group “wins” out of
4151500 generated scheduling problems)
of the volume of generated problems in
the second series. The distribution of the
number of group “wins” is presented in
Table 4 along with the relative difference
from the first series. The difference be-
tween the series does not exceed 2.5 %,
where the difference for whole-group
“wins” is just 0.01 %. As the weight am-
plitude factor increases, this whole-group
“wins” percentage increases (Fig. 8)
similarly to that in the first series, as well
as the 10 numbers of non-whole-group
“wins” decrease (Fig. 9). The difference
between the barred plots in Figs. 4 and
9 is tiny, indeed. The polyline of the in-
terrelationship among the percentages of
non-whole-group “wins” similarly van-
ishes as the weight amplitude factor be-
comes sufficiently great (Fig. 10). Even
the peaks and cavities in Figs. 5 and
10 are very resembling that additional-
ly confirms the repeatability of the first
series.

Earliest-job
sorting

RPP-or-due-
date sorting

Group of sorting approaches which
produce the same value of TW1

the first series

Min-RPP
sorting
Random
sorting
Group number, # 1 2 3 4 5 7 8 9 10 11
Group “wins” 3931 | 8119 | 3768 | 7919 | 2969 | 9835 | 10860 | 3932 | 7703 | 7292 | 4060942
Percentage of “wins” | 0.095 | 0.197 | 0.091 | 0.192 | 0.072 | 0238 | 0.263 | 0.95 | 0.187 [ 0.177 | 98.393
Difference (%) from | 15 | 15 | 091 | 246 | 234 | 127 | 097 | 185 | 031 | 058 | 0.01
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Fig. 9. The 10 numbers of non-whole-group “wins” in the second series versus the weight amplitude factor

Fig. 10. The percentage of non-whole-group “wins” in the second
series versus the group number type by varying the weight
amplitude factor

Finally, it is worth to note that, in the second
series, the earliest-job sorting, the RPP-or-due-date
sorting, the min-RPP sorting, and the random sorting
have had 38313, 36903, 51728, and 35499 non-whole-
group “wins”, respectively. These numbers differ from
those in the first series by no more than 0.56 %, so it
is valid (along with the above-mentioned similarities
between the barred plots and polyline bunches) to
affirm the series repeatable and statistically reliable. The
repeatability, however, does not imply itself that it will
be so easy to select the best sorting approach in order
to make the RPP-RAP heuristic more accurate (or, in
other words, to improve the RPP-RAP heuristic).

Discussion

The min-RPP sorting appears to have an ad-
vantage but it is hard to select this approach as the
best. Indeed, there are examples of the scheduling
problem in which the min-RPP sorting fails to be as
accurate as other sorting approaches are. Moreover,
the inaccuracy (with respect to the approach pro-
ducing a lesser value of TWT) can be just gigantic.
For instance, a TPIFIMP scheduling problem with

H=[H,,=19 16 3], (59)
priority weights
W =[], =[24 63 13], (60)
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by release dates r, =n Vn= 1,_3 and due dates
D=[d,].,=[23 36 4] (61)

is solved by the min-RPP heuristic producing schedule

S=[§]s=I1 23332222
2222222222

21111 1111] (62)

whose TWT is

93) = an -max{0, 6(n; H,)-d,} =

24 - max{0, 28 — 23} + 63 - max{0, 20 — 36} +

13- max{0, 5 — 4} = 133. (63)

However, both the earliest-job sorting and the
RPP-or-due-date sorting produce schedule

S=[§]s=01 23332222
2222221111

111122222 (64)

whose TWT is 120 units lesser:

93) = an -max{0, 6(n; H,)-d,} =

n=1

24 - max{0, 23 — 23} + 63 - max{0, 28 — 36} +

13- max{0, 5-4} =13. (65)
The in-heuristic gap here is more than 923 % (!),
which defies the min-RPP sorting best-selection
outright. Such shocking counterexamples exist for
the earliest-job sorting and the random sorting also.
The RPP-or-due-date sorting, however, produce
less shocking counterexamples. Table 5 contains a
numerical description of the shocking counterex-
amples along with ordinary counterexamples in the
first series, in which the inaccuracy of the sorting
approach (with respect to the approach producing a
lesser value of TWT) is that gigantic. The minimal
and maximal number of jobs, at which the instances
with TWT exceeding the in-heuristic gap have been
registered, are given also. The similar results in the
second series are given in Table 6.

Table 5. The number of ordinary and shocking counterexamples per sorting approach in the first series

Earliest-job sorting RPP-or-due-date sorting Min-RPP sorting Random sorting
In-heuristic Number of Number of Number of Number of
gap, % Number of jobs Number of jobs Number of jobs Number of jobs
nstances - nstances - nstances - Instances -
min | max min | max min | max min | max
10 840 3 18 637 3 23 645 3 16 1047 3 23
20 373 3 9 120 3 11 329 3 8 442 3 9
30 236 3 8 57 3 9 217 3 8 280 3 9
40 168 3 7 33 3 6 148 3 6 205 3 7
50 134 3 6 21 3 5 119 3 6 159 3 6
60 100 3 6 14 3 4 89 3 6 121 3 6
70 78 3 5 13 3 4 71 3 6 101 3 6
80 68 3 5 9 3 4 60 3 5 87 3 6
90 57 3 5 6 3 3 51 3 5 77 3 5
100 45 3 5 6 3 3 39 3 5 59 3 5
200 16 3 5 1 3 3 16 3 4 24 3 5
300 6 3 4 1 3 3 7 3 4 11 3 3
400 3 3 3 0 - — 3 3 3 8 3 3
500 3 3 3 0 - - 3 3 3 6 3 3
600 1 3 3 0 - - 1 3 3 2 3 3
700 1 3 3 0 — — 1 3 3 2 3 3
800 0 — - 0 — — 1 3 3 1 3 3
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Table 6. The number of ordinary and shocking counterexamples per sorting approach in the second series

In-heuristic Earliest-job sorting RPP-or-due-date sorting Min-RPP sorting Random sorting
gap, % Number of Nurpber of Number of Nurpber of Number of Number of Number of Number of
instances jobs instances jobs instances jobs instances jobs
min | max min | max min | max min | max
10 834 3 21 587 3 25 641 3 20 1011 3 25
20 408 3 9 139 3 11 325 3 10 447 3 9
30 271 3 7 72 3 8 213 3 7 289 3 8
40 207 3 7 44 3 7 160 3 7 201 3 7
50 161 3 7 31 3 7 128 3 6 152 3 7
60 128 3 6 22 3 5 103 3 6 133 3 6
70 115 3 6 19 3 5 90 3 6 123 3 6
80 93 3 5 11 3 5 71 3 5 94 3 6
90 76 3 5 8 3 5 62 3 5 81 3 6
100 60 3 5 7 3 5 51 3 5 64 3 6
200 15 3 4 2 3 3 16 3 4 21 3 5
300 5 3 4 1 3 3 9 3 4 10 3 5
400 2 3 3 1 3 3 5 3 4 7 3 5
500 0 - - 0 - - 4 3 4 3 3 4
600 0 — — 0 - — 3 3 4 2 3 4
700 0 - - 0 - - 3 3 4 2 3 4
800 0 - - 0 - - 3 3 4 1 4 4

It is worth noting that the shocking counter-
example with (59)—(65) falls beyond the statistics of
Tables 5 and 6. Overall, Tables 5 and 6 allow see-
ing that the shocking counterexamples occur when
3 to 9 jobs are scheduled (when the in-heuristic
gap is more than 30 %). To exclude the occurrence
of gigantic inaccuracies, the respective integer lin-
ear programming model to exactly minimize TWT
should be used instead of the heuristic. This model
will be applicable owing to that scheduling up to 10
jobs is practically tractable [2, 3, 15, 21, 22].

It is also seen that the RPP-or-due-date sorting
can produce an in-heuristic gap in more than 20 %
by scheduling up to 11 jobs. This upper number is
9 for the earliest-job sorting and the random sort-
ing, and is 10 for the min-RPP sorting. A pretty
huge in-heuristic gap in more than 10 % can be
produced by the min-RPP sorting when up to 20
jobs are scheduled (see Table 6, in which all the
maximal numbers of jobs in the first row are greater
than those in Table 5). This upper number is 21 for
the earliest-job sorting, but it is 25 for the RPP-or-
due-date sorting and the random sorting. Scheduling
such numbers of jobs is unlikely to be tractable by
the respective integer linear programming model.

Therefore, each of the sorting approaches has
heavy disadvantages, although they occur rarely.
As sole “wins” and non-whole-group “wins” are
rare also, it is impossible to select the best sorting
approach. Instead, a hyper-heuristic comprising the
sorting approaches (i. e., the whole group, where
each sorting is applied) may be constructed (although
the process of obtaining a solution will be slowed
down, unless a parallelization is used) [23, 24].

Conclusions

Pairwise comparison of Tables 1 and 2 to Ta-
bles 3 and 4 allows affirming that it is sufficient to
generate 500 scheduling problems for obtaining sta-
tistically reliable results. This is confirmed by com-
paring Figs. 1-5 to Figs. 6—10, which are a deeper
dissection of the tables. Figs. 1, 4, 6, 9 also confirm
that the four sorting approaches become more indis-
tinguishable as the weight amplitude factor increases.

In minimizing TWT by the RPP-RAP heuristic,
the earliest-job sorting, the RPP-or-due-date sort-
ing, the min-RPP sorting, and the random sorting
approaches produce schedules with the same TWT
in over 98.39 % of TPIFIMP scheduling problems.
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Although the influence of these approaches is differ-
ent, it is therefore not really significant. The RPP-
RAP heuristic is truly improved only by applying all
the four sorting approaches to solving a scheduling
problem. If a parallelization can be used to process
two or even four sorting routines simultaneously,
the computation time will not be significantly af-
fected.

Based on Tables 5 and 6 with the shocking
counterexamples, it is recommended to use the
RPP-or-due-date sorting for scheduling up to a few
tens of jobs. To reduce the likelihood of gigantic
inaccuracy, the volume of a scheduling problem
should be as great as possible. An open question is
how to recognize a shocking counterexample in a
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B.B. PomaHtok

naoxoan 0o COPTYBAHHA B EBPUCTULI HA OCHOBI SANTMLKOBMX HAABHMX PECYPCIB | MEPIOAIB 4O OBPOBKU
ANA MIHIMI3ALT 3ATANIBHOIO 3BAXXEHOTMO 3AMI3HIOBAHHS Y MOCTYNAIBHOMY OOHOMALUMHHOMY MNAHYBAHHI
3 NEPEMWKAHHAMWM BE3 MPOCTOHO

MpobnemaTtuka. Y nnaHyBaHHi 3aBAaHb i3 NepeMmnkaHHsIMU MiHiMi3aLis 3aranibHOro 3BaXKeHOro 3ani3HioBaHHS 3a3BUYai 3BOANTLCS
[0 po3B’s3aHHsA KOMGIHATOPHOT 3agaui, KOTpa CTae NPaKTUYHO HEPO3B'A3HOLD, LLOMHO KiNbKICTb 3aBAaHb i iX nepioais 4o 06pobku 3pocTae.
LLlo6 ynopatucs 3 UMM BUKIIMKOM, BUKOPUCTOBYHOTb EBPUCTMKW. Brinabkoto 40 HavKkpalloi € eBpuCcTrKa, Y SKil BUpILLanbHUM CriBBigHO-
LLIEHHSIM € 3BaXkeHe 0BepHeHe 3Ha4YeHHs MakCUMyMy napu 3anuLLIKOBOro nepiogy Ao 06pobku Ta 3anmLLKOBOro HasiBHOro pecypcy. OgHak
L1 eBPUCTUKA MOXe BUMPOONSATU po3knaam AeKinbkox pobiT, 3aranbHe 3Ba)keHe 3ami3HioBaHHS SIKUX € BKpal BENUKUM, SIK MOPIBHIOBATH
3i cnpaBXHiM MiHiMymoM. ToMy Lisi eBpUCTUKa NoTpebye yaockoHaneHb, oaHe 3 SKUX yxe iCHye Ans 3aBdaHb 6e3 Bar npiopuTeTis, Ae BU-
KOPWUCTOBYIOTb NiAXia A0 COPTYyBaHHS 3 MiHiMi3aLlieto 3anuLLKoBKX nepiogiB 4o 06po6ku. Tpu iHLWMX Nigxoam OO COPTYBaHHS BCE X MOXYTb
nokasyBaTu HaBiTb KpaLli pe3ynsrati, 0gHaK Taki BUHATKU € Haa3BUYaNHO PigKICHUMM.

Meta pgocnipxeHHA. BuaHauit BNNvMB YOTMPLOX MiAXOAiB A0 COpPTyBaHHS Ta cnpobyBaTu BMOpaTW Havkpalmid Ans Bunagky
3aBAaHb i3 Baramu npioputeTiB. EBpucTrka Byae 3actocoBaHa A0 LWiNbHOMO NOCTYyNanbHOro 0OA4HOMALUMHHOTO MlaHyBaHHSA 3 NepeMuKaH-
HsIMU 63 NPOCTOt0, B IKOMY MOMEHTM 3arycKy 3aBAaHb NoAakoTh y NMopsiAKy 3pocTaHHs Big 1 [0 KinNbKOCTi 3aBAaHb, @ MOMEHTU NpUiMaH-
HS1 BUKOHaHHS 3aBAaHb BCTAHOBIIOIOT LUINIbHO 32 MOMEHTaMWM 3anycky.

MeTtoauka peanisauii. [poBegeHo oG4vcnoBanbHe AOCNIMKEHHS i3 3aCTOCYBaHHSAM KOXHOTO 3 YOTMPbOX E€BPUCTUYHUX NIOXOAIB ANst
MiHiMi3aLjii 3aranbHOro 3BaXKeHOro 3ani3HioBaHHS. [N LbOoro 3areHepoBaHo ABi nocnigoBHOCTI No 4151500 3agad nnaHyBaHHA. Y po3B’A3Ky
3afadi NnaHyBaHHS Nigxia 4O COPTyBaHHsSt MOXe “BUrpaTi” O4HOOCIOHO YuM “BUrpaT” B rpyni 3 iHLUMMK Migxodamu, NPoAyKYyHUM eBPUCTUHHO
MiHiMarbHe 3aranbHe 3BaXeHe 3ani3HoBaHHS. Po3noainy ogHooCiBHMX | rpynoByX “nepemMor” BCTaHOBIIOKTL A5t KOXKHOI MOCHIAOBHOCTI.

PesynbraTtu gocnigkeHHA. OgHoOCIGHI “nepemorn” Ta “nepemMorn” HeMoBHYWX rpyn € piaKiICHUMU: 4 NigXoAn 4O COPTyBaHHS Npoay-
KytOTb PO3KNaau 3 TUM caMyM 3aranbHVM 3BaXXeHUM 3ani3HioBaHHSAM y noHag 98,39 % 3agay nnaHyBaHHs. BignosigHo, xo4a BNAMB Lnx
nigxodis Pi3HWN, BiH HE € NO-CMPaBXHLOMY 3HaYyLLMM. KOXeH i3 Nigxo4iB 40 COPTYBaHHSA Mae cepyo3Hi Hedoniku, KOTpi iHoAI Npu3BoasTb
[0 riraHTCbKMX HETOYHOCTEMN, Xo4a BOHM i TpannsitoTbes HevacTo. Konu HeTouHicTb BuxoanTb Ginblie 30 %, Lue o3Havae, Lo ckrnagatTbes
po3knaau Bia 3 4o 9 3aBAaHb.

BucHoBkW. Ha BigMiHy Big BUMagKy, Konu 3aBAaHHA He MatloTb Bar NpiopuTeTiB, AN BUNAAKY 3 BaraMu nNpiopuTeTiB HEMOXITUBO
BMGpaTK HavKkpaLuii Niaxig 4o copTyBaHHs. HaTomicTb MoxHa nobyaoBaTu rinepeBpuCTUKy, KoTpa Byae MiCTUTKM Bei Li niaxoau Ao copTy-
BaHHS (TOBTO NOBHY rpyny, Ae 3aCTOCOBYBaTUMYTb KOXEH Miaxia). BukopuctaHHs napanenisadii 4ns ogHovacHoro o6pobneHHst ABox abo
HaBiTb YOTMPLOX aNropUTMiB COPTYBaHHS OCOBMMBO HE BMAUHE Ha Yac 0B4MCIEHb.

Knto4yoBi cnoBa: ogHOMaLUMHHE NMnaHyBaHHS 3aBAaHb 3 NepeMyKaHHAMY; 3araribHe 3BaXKeHe 3amni3HIoBaHHS; eBPUCTUKA; Miaxif
[0 COpTyBaHHS; 3anvLLUKOBi nepioan 4o 06pobKuM; 3anuLLKOBi HasiBHI pecypcu.

B.B. PomaHtok

noaxonbl K COPTUPOBKE B 3BPUCTUKE HA OCHOBE OCTATOYHbIX MMEILLNXCA PECYPCOB U MEPNOOOB K OBb-
PABOTKE A1 MMHUMU3ALINW OBLLIEFO B3BELWWEHHOIO 3AMA30bIBAHNA B NMPOrPECCUPYHOLWLEM OAHOMALLNMHHOM
MITAHUPOBAHWN C NEPEKMIOYEHNAMM BE3 MPOCTOA

Mpo6nemaTuka. B nnaHMpoBaHum 3agaHnii ¢ nepektodeHns MM MUHUMU3aunst obLLero B3BeLLEHHOro 3anasabiBaHust 06bI4YHO CBO-
OUTCA K pelleHnto KomBrHaTopHOM 3aauun, KoTopasi CTaHOBUTCS NPakTUYECKN Hepa3peLuMMON, Kak TOMbKO KOMMYECTBO 3adaHui u nx
nepuogoB k obpaboTke Bo3pacTaer. YToObl CNpaBUTLCSt C 3TUM BbI3OBOM, MUCMOSb3YHOT 3BPUCTUKW. Brnnskon k Hauny4lien sBnsieTcs
3BPUCTMKA, B KOTOPOW peLUaoLLM COOTHOLLEHNEM SIBMSIETCS B3BELLEHHasi obpaTHas BenvyMHa MakcMmMyma napbl OCTaTOYMHOrO Nepuo-
0a k obpaboTke 1 ocTaToyHOro umetoLlerocs pecypca. OgHako 3aTa 3BPUCTUKA MOXET NPOU3BOAUTL PacnmnCaHns HECKOMNbKUX 3afaHui,
obLee B3BeLLUeHHOe 3anasablBaHMe KOTOPbIX SBMSETCH UCKIIOYUTENIbHO OFPOMHBIM B CPaBHEHWUM C HACTOSALLMM MUHMMYMOM. [loaTomy
3Ta 3BPUCTUKA TPeByeT ynyyLleHWin, OQHO U3 KOTOPbIX YXe CyLLecTBYeT ANs 3ajaHui 6e3 BecoB NPMOPUTETOB, rAe MCMONb3YT NOAXOA,
K COPTMPOBKE C MUHUMM3ALMEN OCTATOYHbIX NepuodoB k obpaboTke. Tpu ApyrMx Noaxoaa K COPTUPOBKE BCE e MOryT nokasbiBaTb pe-
3ynbTaThl Aaxe Nyulle, OAHaKo Nogo6HbIE UCKITHOYEHMS YpE3BbIYANHO PeaKu.

Llenb uccnegoBaHus. YCTaHOBUTL BMUSIHUE YETbIPEX NOAXOL0B K COPTUPOBKE M MOMbITaTbCs BbIOpaTh HAaUMyyWwWuin Ans cnyyasi
3afaHnin ¢ BecaMu NpMopuTETOB. OBPUCTMKA ByaeT NpMMeHeHa K NIIOTHOMY NporpeccupyoLlemMy OgHOMAaLLUMHHOMY NaHUPOBaHWIO C ne-
pekntoveHnsiMu 6e3 NpocTosi, B KOTOPOM MOMEHTbI 3anycka 3aJaHuii nofdatoT B MopsiAke Bo3pacTaHusi oT 1 K KonnyecTBy 3agaHuii, a Mo-
MEHTbI MPUéMa BbIMOMHEHNS 3aaHWIn yCTaHaBNVBAOT MIIOTHO MO MOMEHTaM 3arycka.

MeToauka peanusauuu. [poBegeHo BbIMUCIIUTENBHOE UCCregoBaHMe C NPYMEHEHNEM KaXa0ro U3 YeTbIPEX 3BPUCTUYECKUX NOA-
XOOOB 4SS MUHMMM3aumMm o6LLero B3BELLEHHOrO 3anasabiBaHust. [ns aToro creHepupoBaHbl ABe nocnegosatensHocTy no 4151500 3agay
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nnaHWpoBaHus. B pelueHun 3agaun nnaHMpoBaHUSI NMOAXOM K COPTUPOBKE MOXET “BblMrpaTh’ eauHONMUYHO nnbo “Bbivrpath”’ B rpynne
C ApYyrvMMu noaxodamu, Npou3BOAst 3BPUCTUHECKU MUHMMarnbHOe obliee B3BelLeHHoe 3anasfblBaHve. PacnpeneneHns eamHONMYHbIX
1 rpynnoBbIx “noben” yctaHaBnvBatkoT ANs KaXaow nocrnenoBaTenbHOCTY.

PesynbraTthl uccnegoBaHus. EqvHonuyHble “nobeapl” 1 “nobenbl” HEMOMHbIX rpynn peaku: 4 NoaxoAa K COPTUPOBKE NPOU3BOASAT
pacnucaHua ¢ Tem e obLMM B3BeLLeHHbIM 3anasfbiBaHneM B G6onee yem 98.39 % 3agayax nnaHupoBaHusi. COOTBETCTBEHHO, XOTs
BMUSIHWE STUX NOAXOAO0B Pa3HOE, OHO HE SBMSIETCS MO-HACTOALEMY 3HaYMMbIM. Kaxapbii U3 NOAXOA0B K COPTUPOBKE MMEET CepbE3Hble
HegocTaTKM, KOTOpble MHOrAA NPUBOASAT K TMraHTCKMM HETOYHOCTSIM, XOTSl OHU U cryyatoTesl peako. Korga HeTouHocTb nony4vaeTcst bonee
30 %, 3TO 03HaYaEeT, YTO COCTABNSOTCA pacnucaHust ot 3 Ao 9 3agaHui.

BbiBoAbl. B oTnnumne ot cnyvasi, korga 3agaHusi He UMeloT BECOB NPUOPUTETOB, ANS Criyvasi C BECaMu NPUOPUTETOB HEBO3MOXHO
BblOpaTh Hauny4LLKniA Noaxon K COpTUpoBKe. BMecTo 3Toro MoXHO NMOCTPOUTL MNEPIBPUCTUKY, BMELLAIOLLLYHO BCE 3TU NOAXOAbl K COPTU-
poBKe (TO ecTb MOMHyt rpynny, rae 6yayT NPUMEHSTb Kaxabli nogxon). Vicnonb3oBaHve napannenusaummn anst oaHoBpeMeHHon obpa-
BOTKM ABYX UNW faxe YeTbIPEX anropuTMOB COPTUPOBKM 0CODO HE MOBMNUSIET HA BPEMS BbIYUCIIEHWIA.

KnioueBble cnoBa: ogHOMalUMHHOE MiiaHMpPOBaHMe 3a4aHuii ¢ nepeknioyeHnsamm; obllee B3BeLLEHHOe 3anasablBaHne; 9BPUCTUKE;
noaxoZ K COPTUPOBKE; OCTaTOMHbIE NEpUoApbl K 06paboTke; ocTaTouHbIE MEIOLLMECST PECYPChI.

PexomennoBana Pamoro Haniiia no penaxitii
GakyIbTeTy NpUKIaIHOI MaTeMaTUKU 17 6epesns 2021 poky
KIII im. Iropst CikopcbKoro
IIpuiinsara no myOGikarii
14 yepBHsa 2021 poky





