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MATHEMATICAL PENDULUM MODEL WITH MOBILE SUSPENSION POINT

Background. The new dynamic problem, which is posed and solved in this article, is a theoretical generalization of the
well-known classical problem of free oscillations of a mathematical pendulum. In the proposed setting, it is new and
relevant, and can be successfully used in such fields of technology as vibration protection, vibration isolation and seismic
protection of high-rise flexible structures, long power lines, long-span bridges and other large-sized supporting objects.
Objective. The aim of the work is to derive the equations of own oscillations of a new mathematical pendulum-absorber,
to find a formula for determining the frequency of its small own oscillations and to establish those control parameters
that allow you to tune the single-mass pendulum absorber to the frequency of the fundamental tone of the carrier
object.

Methods. To achieve this goal, we used the methods of analytical mechanics, namely, the Appel’s formalism, as well
as the linearization of the obtained differential equations.

Results. A mathematical model is constructed in the work that describes the own oscillations of a new-design mathe-
matical pendulum with a movable (spring-loaded) suspension point with length L. The model is a system of differential
equations obtained using the Appel’s formalism. Based on them, after linearization of nonlinear equations, a formula
is established for the frequency of small own oscillations of a pendulum with a mobile suspension point.

Conclusions. It is shown that the frequency of own oscillations of the new mathematical pendulum coincides with the
frequency of own oscillations of the classical mathematical pendulum with an equivalent suspension length, which is

equal to Leq =L+ % . In the case where the suspension point is fixed (k— ), the frequency formula turns into a

well-known formula for the frequency of small own oscillations of a classical mathematical pendulum w = \/% . If the

stiffness coefficient of elastic elements tends to zero (kK — 0), then the frequency o of the damper also tends to zero.
An important structural feature of the proposed pendulum is noted, consisting in the fact that due to the appropriate
choice of the three control parameters of the pendulum (k, L, m), its frequency in magnitude can be made any in the

range from zero to \/% .

Keywords: mathematical pendulum; moving suspension point; small own oscillations; frequency; Appel’s formalism;
linearization.

Introduction

This work is a continuation of the previous the-
oretical and experimental studies of the author in
the field of vibration protection of large-sized bear-
ing objects [1—5]. Such objects include flexible long
structures, such as TV towers, radio masts, metal
exhaust pipes, long-span bridge crossings and high
voltage power lines. The most dangerous for such
bearing objects are forced oscillations of various na-
ture, especially in the range of the main frequencies
of their own oscillations. To solve this problem, spe-
cial devices called vibration dampers are used, which
are installed on the supporting object and are tuned
to the frequency of its main oscillation tone [6—13].

Modern scientific research in the field of de-
veloping new methods of vibration protection of
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bearing objects using vibration dampers is aimed at
simplifying their designs, at increasing their reliabil-
ity, efficiency and durability, reducing size and
weight.

There are various types of vibration dampers;
they are specially designed for a specific supporting
object to combat specific dynamic effects [1, 2,
8—13]. After installation on a supporting object,
these devices become its integral structural elements
with all the ensuing requirements for their reliability,
durability, corrosion resistance, and ease of tuning,
work efficiency.

The theory of vibration protection of load-
bearing objects using dampers as additional attached
masses is based on Den—Hartog’s fundamental re-
search [6, 7].
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Recently, considerable attention has been paid
to theoretical and experimental questions of vibra-
tion suppression of forced oscillations of high-rise
buildings [8—13]. This is due to the massive recon-
struction of high-rise flexible structures (especially
TV towers, radio-musts, metal exhaust pipes, steel
chimneys, bridge spans), which have served for
more than 30—40 years and require either reinforce-
ment of dangerous sections or other design solutions
in connection with the modernization and installa-
tion of new equipment on them. In the latter case,
new (additional) loads arise that are not provided
for by the initial design. Under these conditions, one
of the cheapest and structurally simplest solutions is
also the development and application of various
types of absorbers: pendulum, roller, shock [1, 2,
14-20].

Today, there are a number of vibration damp-
ers that are time-tested and to some extent removed
the acuteness of the problem of suppressing forced
oscillations. For example, the theory of the dyna-
mics of vibration protection systems with the use of
pendulum dampers of forced oscillations has been
developed quite deeply [3, 4, 8, 10, 13, 18, 19,
20—25]. A number of works propose both theoretical
and experimental methods for determining the op-
timal parameters and tuning the pendulum dampers
in order to reduce the level of dynamic effects on
various load-bearing objects [1, 2, 7, 8, 16, 18—24].

However, the development of new methods of
vibration protection and the search for means of
their implementation continue [4, 5, 13—15, 22].

A rather acute problem is the development,
construction and implementation of simple and
compact dampers with a low frequency of natural
oscillations [1—5], which could provide vibration
protection for load-bearing objects in the low-fre-
quency range (0.5—2.0 rad/s). This is due to the fact
that at such low frequencies, the carrier bodies can
have very large amplitudes of forced oscillations. For
example, in some cases, the deviations of the upper
points of the TV towers can be up to 1.5—2 meters
or more. Therefore, the absorber tuned to the fre-
quency of the fundamental tone of the supporting
object will also have the same amplitudes of its
working body (or attached mass).

Structurally close to the proposed damper is a
pendulum damper with a fixed suspension point,
which is recommended for use by regulatory docu-
ments of the construction industry [8, 24, 25]. In its
physical essence, it is a mathematical pendulum
made in the form of a working body, which is fixed
at the lower point of the suspension. The suspension

itself is usually a flexible cable (bundle of cables) or
a hinge rod. The opposite end of the suspension is
rigidly fixed in the upper part of the high-rise struc-
ture (supporting body). In addition, the suspension
is connected with a high-rise structure by an elastic
element with adjustable stiffness, which limits the
amplitudes of oscillations (deviations) of the damper
working body from the vertical. The damper’s work-
ing body itself is a steel, cast-iron or reinforced con-
crete element, and in some cases a liquid tank. The
elastic element is made in the form of a steel spring
or a system of springs, in a design close to the design
of the vibration isolator. Damping in pendulum
dampers is realized due to local bending of the cable
at the upper point of its fastening relative to the
structure.

A significant drawback of such absorbers is that
their natural frequency is determined only by the
suspension length L of the working body. This de-
sign limitation makes it impossible to use them in
the low-frequency range of 0.2-2.0 rad/s. The pro-

posed pendulum dampers with a movable suspen-
sion point do not have this design flaw and can be
successfully used in the low frequency range. The
theoretical rationale for this statement will be pre-
sented below. The technical solution of the damper
in question is protected by the copyright certificate
of Ukraine.

For the correct adjustment of the damper, first
of all, it is necessary to know the frequency of nat-
ural vibrations, which is in a certain dependence on
its design parameters. Since in this work an absorber
of a new design is considered, first of all it is neces-
sary to determine its natural frequency.

Problem statement

The goal is to derive the equations of natural
vibrations of a new mathematical pendulum-ab-
sorber, find a formula for determining the frequency
of its small natural oscillations, and establish those
control parameters that allow to tuned the pendu-
lum absorber to the frequency of the fundamental
tone of the carrier object.

Geometric relations and the derivation of the
equations of natural oscillations of a new math-
ematical pendulum-absorber

Thus, let us consider a new dynamic problem
of the natural oscillations of a mathematical pendu-
lum with a suspension length, at which the suspen-
sion point is movable in the horizontal direction.
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Moreover, it is associated with the initial (equilib-
rium) position of the pendulum suspension point by
a system of elastic elements with equivalent stiffness.
In addition, the damper with a viscous drag coeffi-
cient C prevents the deviation of the suspension of
such a pendulum from the vertical (Figure). The
suspension mass in this study is neglected.

A

X(p ‘Ix .I _z(p

Absorber in the form of a mathematical pendulum with
a mobile suspension point

We choose a Cartesian coordinate system XOZ
as shown in the Figure. Let us place the origin O at
the starting point of the suspension and direct the
axis OX horizontally to the right, and the axis OZ
vertically up. The mass of the mathematical pendu-
lum (material point) is equal m. The suspension
mass is neglected. The system of elastic elements
that prevent the movement of the pendulum suspen-
sion point in the horizontal direction OX , has an
equivalent stiffness coefficient k. We introduce the
coordinates x and ¢, where x — the horizontal move-

ment of the pendulum suspension point and ¢ —
the deviation angle of the suspension line from the
vertical. In addition, we denote by Xo moving the
mass m along the axis OX, and by z, — moving

the mass m along the axis OZ. Let us write the
corresponding geometric relationships that relate the
entered parameters and coordinates:

xq,:x—Lsin(p, (1)
Zo = L(1 - cos ¢). 2)

To derive differential equations that describe
the natural oscillations of the pendulum, let us use
the Appel’s formalism, which very quickly and easily
leads to the goal [26]. First, let us write the function

S — of acceleration energy (or the Appel’s func-
tion) in general form:
_m(%g +%2)
= 5 .

Using relations (1) and (2) let us find expres-
sions for projections of accelerations X, and Z, on

3

coordinate axes:

X, =X+ L(¢” sing—ipcosg) , 4)

Z, = L(¢? - cos o+ §-sing) . (&)

Let us substitute expressions (4) and (5) into
formula (3) and write only those terms of the accel-
eration function S that contain the second deriva-
tives of the corresponding coordinates. Denote this

new function as S
S = %(jc'2 + I2¢%) - mLxpcos o . (6)

Now let us find the expression for the sum of
the elementary work 64 of the elements of the me-
chanical system at all virtual movements:

A = —kx - &x — (mgLsin o+ CQ) - ¢, (7

where g — the acceleration of gravity, dx — ele-

mentary (virtual) movement of the pendulum sus-
pension point along the OX axis; d¢ — elementary

angle of deviation of the suspension line from the
vertical OZ.

Let us write the Appel’s equations in general
form:

28" X

_— y T = 5 8
% 5% (8)
where O, and Q(p — generalized forces related to
the entered coordinates X and ¢ respectively.

Using the introduced generalized forces, we
write the expression for virtual work:

84 =0,-x+0, 3¢. 9)

Having determined the generalized forces Q,
and Q, from expressions (7) and (9), we substitute

them into the system of equations (8) taking into
account the expression (6):

mx —mLpcos o =—kx, (10)
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mI*§—mLxcosp=-mgLsing—Cp.  (11)
After some transformations, system (10), (11)
will take the following form:

X—L('pcosq)=—£x, (12)
m

L(p—)'éCOS(p=—gsin(p—£(p. (13)
mlL
The system of nonlinear differential equations
(12), (13) is a mathematical model that describes
the dynamic behavior of a new mathematical pen-
dulum-absorber.

Definition and analysis of the formula for the
frequency of small natural oscillations of a new
pendulum-absorber

Consider the oscillatory process of a pendulum
at small angles ¢ . Thus, assuming that the angles

¢ are small and there is no damping (provided
C =0), we linearize the system of equations (12),
(13). As a result, we obtain a new system of linear
differential equations that describes the small own
oscillations of a new pendulum:

$-Lp=-Kx, (14)
m

(15)

Comparing equations (14) and (15), we imme-
diately obtain the relationship between the coordi-
nates X ando:

Lo—-X=-go.

K =g or x=-"E®
m

k

Substituting relation (16) into equation (15),

we obtain a differential equation with respect to the
angle @ :

(16)

[L+%j(p+g(p=0. (17)

From equation (17) it is already easy to obtain
the formula for the desired frequency:

w=

gmg . (18)
L =
Tk

Let us analyze formula (18).

Firstly, the frequency of a new pendulum with
a moving suspension point coincides with the fre-
quency of the equivalent classical mathematical
pendulum with a suspension length that is equal to

Ly=L+72.

Secondly, it is obvious that the frequency of
such a pendulum non-linearly depends not only on
the length L of its suspension, but also on two new
parameters: the mass m of the body on the suspen-
sion and the stiffness coefficient & of the system of
elastic elements installed at the suspension point.

This makes it possible to simply change the fre-
quency of the natural oscillations of the pendulum

in a wide range, namely from the magnitude \/%

(frequency of the classical mathematical pendulum),
when k£ — o, and to zero, when m — « or k — 0.

In the case when k& — -, the pendulum sus-
pension point is fixed (it is rigidly fixed), and the

formula for the frequency = \/% of natural oscil-

lations coincides with the well-known formula for
the frequency of small oscillations of a classical
mathematical pendulum with a suspension length L.

If the stiffness coefficient k is small (that is
k — 0), then the length of the equivalent suspen-

sion of the pendulum tends to infinity: L, — oo.

Thus, if the damper parameter k& — 0, then
the frequency o of the natural oscillations of the
pendulum tends to zero. That is why the damper
parameter k is one of the powerful regulators of the
damper’s natural frequency, which has a low natural
vibration frequency and can be used to dampen
forced oscillations of load-bearing objects in the low
frequency range.

Another interesting case of degeneration of the
pendulum damper arises when the suspension length
of the pendulum is zero (L =0). In this case, the
formula for the natural frequency of the pendulum
is simplified and takes the following form:

k
0)=4{—.
m

In this case, the pendulum turns into a har-
monic oscillator with a point mass m, which per-
forms horizontal oscillations near the equilibrium
point O due to compression-tension of a system of
elastic elements with a stiffness coefficient 4.

Thirdly, the denominator of the radical expres-
sion is always larger than the value L, that is
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L +% > L, since all parameters on the left in the

inequality are positive. This fact is new and im-
portant in the design of effective dampers of forced
vibrations in the low frequency range. This explains
the phenomenon that was noted above.

While the frequency in classical pendulum
dampers is determined by the choice of only one
parameter L, in the new technical solution it can be
adjusted by changing three parameters m, k, L.

Moreover (which is very important), it can be made
close to zero, while this cannot be done using clas-
sical pendulums, the frequency of which is limited

from below by a value \/% . For example, in order

to realize a low oscillation frequency equal to
1 rad/s, it is necessary to select a pendulum suspen-
sion length of approximately ten meters. Obviously,
such a damper is simply physically impossible to
place on a carrier body.

Thus, the design of the new pendulum allows
us to offer such a damper in which it is possible to
realize frequencies from the lowest range due to the
appropriate choice of its three parameters m, k, L.

Conclusions

In this paper, a new mathematical model is pro-
posed that describes the natural oscillations of a math-
ematical pendulum with a moving suspension point
with length L . Structurally, the mobility of the pen-
dulum suspension point in the horizontal direction
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B.M. Jleresa

MOJENb MATEMATUYHOIO MAATHNKA 3 PYXOMOIO TOYKOLO NiABICY

Mpo6nematuka. HoBa AvHamiyHa 3agada, ska NocTaBreHa Ta po3B’si3aHa B Uil CTaTTi, € TEOPETUYHMUM y3aranbHEHHSAM BiJOMOI Knacuy-
HOI 3aJauyi Npo BiNbHi KONMBAHHA MAaTEMAaTUYHOIO MAasATHMKA. Y 3anponoHOBaHI MOCTAHOBL,i BOHA € HOBOK, aKTyarbHO 1 YCMiLLHO MOXe
OyTV BUKOPUCTaHa B Takux ranyssix TEXHiKW, sk BIBpO3axuCT i CeMCMO3axMCT BUCOTHUX FHYYKMX CMOpyA, NPOTSKHUX NiHii enekTponepe-
[ad, MOCTIB i3 AOBIMMMW NPOroHaMu Ta iHWKX BenmkorabaputHux Hecy4mnx o6’ ekTiB.

MeTa gocnigxeHHsi. BuBecTy piBHAHHSA BNacHMX KONMMBaHb HOBOrO MaremMaTU4HOrO MasiTHMKa-racHuka, 3Hamtu copmyny Ans Bu3Ha-
YEHHS YacTOTM MOro Manux BIacHWX KONMUBaHb | BCTAHOBUTY Ti PErynioloYi napameTpu, siki JaloTb 3MOry HanawToByBaTV OAHOMAacOBUM
MasITHUKOBMIM FAaCHUK Ha 4aCTOTYy OCHOBHOIO TOHY Hecy4oro ob’ekTa.

MeTopuka peanisauii. [Ina gocsarHeHHs noctaBrneHoi MeTu B poboTi BUKOPUCTOBYBaNMCA METOAWN aHamniTUYHOI MexaHiku, a came
piBHAHHA Anens, a TakoX NiHeapu3sauis oTpUMaHnx andepeHuianbHUX PiBHSAHb.

Pe3ynbTaTtu gocnigxeHHs. [NobyaoBaHo MaTemMaTuUyHy MOAEnNb, sika ONUCYE BracCHi KOMMBAHHS MaTeMaTU4HOro MasiTHMKa HOBOI KOH-
CTPYKLUIi 3 pyxomoto (Mianpy>XMHEHOK) TOYKO MiABicy AoBXMHU L. Mogenb saBnsie coboto cucteMy andepeHuianbHuX PiBHSAHb, OTPUMaHMX
i3 3anyyeHHam cdopmaniamy Annens. Ha ix ocHoBi nicns niHeapu3auii HeMiHIMHNX PiBHAHb BCTAHOBNEHO YOPMYny AN 4acTOTU Manux
BMacHMX KOMNMBaHb MasiTHMKa 3 PyXOMO TOUYKOH MiaBicy.

BucHoBku. [oka3aHo, Lo YacToTa BMacHUX KONMMBaHb HOBOrO MaTeMaTUYHOro MasiTHMKa 36iraeTbCs 3 4acTOTOK BIIACHUX KONMMBaHb

KInaCn4yHOro MmatemMaTu4HOro MasdaTHMKa 3 eKBIBarieHTHOR JOBXUHOK NIABICY, AKa AOPIBHIOE leq =L+ Tg LY BMNaaKy, Konuv To4Kka nigeicy

€ HepyxoMoto (k — o), YacTOTHa opMyria NepeTBOPIOETLCS Ha BiOMYy OpMyny AN 4acTOTWM Manux BMACHUX KOMMBaHb KNacU4HOro

MaTeMaTU4HOro MasiTHUKa = /% . AKLL0 X BenuymHa KoediLjieHTa >KOPCTKOCTi NPYXXHUX eneMeHTIB npsimye Ao Hyns (k — 0), To yactoTa

) racUTensi TakoX NPSIMYE A0 Hynsi. Big3HauyeHo BaXnmBy KOHCTPYKTUBHY OCOGSIUBICTb 3anpONOHOBAHOTO MasiTHIUKA, SIka MOJArae B TOMY,
LU0 3a 3aBASKY BigNoBiAHOMY BUGOPY TPLOX PErymniolumx napameTpiB MasiTHUKa (k, L, m) oro 4acToTy 3a BeIMuMHO 3a noTpe6u MoxHa

3pobuTK JOBINLHOI B fjanasoHi Big Hyns Ao \/% )

KntouyoBi cnoBa: MaTemMaTU4HUA MasiTHWK; pyxoMa Toudka MigBicy; Mani BNacHi KonMBaHHS; YacTtoTa; doopmManiam Annens; niHeapusauisi.
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B.M. Jleresa

MOAENb MATEMATUYECKOIO MAATHUKA C MOABUXXHOW TOYKOW NOOBECA

MNpo6nemaTunka. HoBas guHamuyeckasi 3a4adva, KoTopasi NocTaBlieHa U pelleHa B JaHHON cTaTtbe, SABSeTcs TeopeTuieckum obobLue-
HMeM U3BECTHOW KIacCM4eckon 3ajaydm o cBoboAHbIX konebaHnsax maTemaTnyeckoro MasiTHuMKa. B npeanoxeHHoON nocTtaHoBKe OHa SiB-
NAeTCA HOBOW, akTyarlbHON, U C YCNEeXOM MOXeT ObiTb NCNOMb3oBaHa B Takmx 06nacTax TEXHWKM, kak BMbposaluuTa, Bubpounsonaums n
CelricMOo3aLUMTa BbICOTHbIX TMOKUX COOPYXKEHWIA, MPOTSXKEHHbIX NIUHWIA anekTponepeaay, MOCTOB C ANNHHBIMK NponeTaMun u Apyrnx Kpyn-
HorabapuTHBIX HECYLLMX OOBEKTOB.

Llenb nccnepoBaHus. BeiBecTn ypaBHEHNS COGCTBEHHBIX kKonebaHui HOBOro MaTemMaTU4eCcKoro MasTHVUKa-racuTens, Hantn dopmyny
ANs onpeeneHns YacToTbl €ro Manblx COBCTBEHHbIX KonebaHwin 1 yCTaHOBUTL Te perynupyiolime napameTtpbl, KOTOpble MO3BONSAT
HacTpanBaTb OAHOMACCOBbIN MasTHUKOBbIN racUTENb Ha YaCTOTy OCHOBHOIO TOHA HecyLlero obbekTa.

MeToamka peanusaumuun. [Ins JOCTWKEHWSI MOCTaBMIEHHON Lenu B paboTe MCNoNb3oBanuCb METOAbl aHaNUTUYECKON MEexaHuku, a
MMEHHO ypaBHeHus Annens, a Takke nNuHeapusaums nonyyeHHelx guddepeHumnanbHblX ypaBHEHN.

PesynbTaTtbl uccnepoBaHua. [NocTpoeHa matemaTnyeckas Modenb, KoTopasi onuckiBaeT cObCTBEHHbIE konebaHus MaTemaTnyeckoro
MasiTHUKa HOBOW KOHCTPYKLMW C NMOABWXHON (NOAMPYXMHEHHOW) TOYKOW noaseca ¢ AnvHon L. Mopenb npeactaBnset coboi cucremy
andepeHumanbHbIX ypaBHeHWUIA, NOMYyYeHHbIX C NpuBneyYeHnemM gopmanuama Annens. Ha nx ocHose nocrne nuHeapusauun HenmHew-
HbIX ypaBHEHWI ycTaHoBeHa hopmyna Afsi 4acToTbl MarnbiX COGCTBEHHbIX KonebaHuin MasTHUKa C NOABWDKHOWM TOYKOW noaBeca.
BeiBoabl. [oka3aHo, YTO YacToTa COBCTBEHHbIX kKoNnebaHui HOBOro MaTemMaTU4eCcKoro MasiTHUKa CoBNaaaeT C YacToToN COBCTBEHHbIX

g
k

KOrZja Touka nofBeca sIBNSETCS HENOABWXHOM (K — o), YacToTHas hopmyna npeBpaLlaeTcs B U3BECTHYIO (hOpMyIy AN HacToTbl Marnbix

Kone6aHuMin Knaccu4eckoro MaTemMaTU4eckoro MasiTHka C 3KBMBAJIEHTHOW ANUHOW NOABeca, KoTopasi paBHa leq =L+ . B cnyvae,

COBCTBEHHbIX kKONebaHMi KNaccu4eckoro MaTemMaTu4ecKoro MasiTHuKa = % . Ecnun xe BennuvHa KOSCbeI/ILWIeHTa XeCTKOCTU ynpyrux

3NeMeHTOB CTpeMuTcs K Hynto (k — 0), To YacToTa ® racutens Takke cTpemuTcs K Hymo. OTMeYeHa BaxHasi KOHCTPYKTUBHAs 0COGEH-
HOCTb MPEANOXEHHOro MasiTHUKa, COCTOsILLast B TOM, YTO 3@ CHET COOTBETCTBYIOLLErO BbIGOpa TPEX PErynupYHOLLUX NapaMeTpoB MasiT-

HUKa (k, L, m) €ro 4acTtoTy no BennynHe npu HeobxoauMOCTM MOXHO caenaTtb noboin B AnanasoHe oT Hyna oo % .

KnioueBble crioBa: MaTeMaTUYECKMI MasSiTHWK; MOABWXHAsi ToYka noaseca; marble cobCcTBeHHble konebaHusi; YyacTtoTa; dopmanmam
Annens; nuHeapu3auusi.

PexomennoBaHa Panoro Hagpiiinura no penakitii
(hakynbTeTy NMPUKIATHOT MATEMaTUKU 09 numnust 2020 poky
KIII im. Iropst CikopchKoro
IIpuitnsata no myoGrikanii
10 rpyaHsa 2020 poky
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