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MODEL PREDICTIVE CONTROL TOOLBOX DESIGN FOR NONSTATIONARY PROCESS

Background. Model predictive control (MPC) approach is the basic feedback scheme, combined with high adaptive
properties, which determines its successful use in the practice of design and operation of control systems. These
advantages allow managing multidimensional objects with a complex structure, including nonlinearity, optimizing
processes in real time within the constraints on controlled and managed variables, taking into account uncertainties
in the task of objects and perturbations.

Objective. The purpose of the paper is to design and analyse control system of carbon monoxide oxidation in the
convector cavity based on MPC with linear-quadratic cost functional with constraint.

Methods. The design of MPC is based on mathematical model of an object (relatively simple). At the current step,
the prediction of object dynamic response on some final period of time (prediction horizon) is carried out; control
optimization is performed, the purpose of which is to approximate the control variables of the prediction model to
the corresponding setpoint on the predict horizon. The found optimal control is applied and measurement of an
actual state of object at the end of a step is carried out. The prediction horizon is shifted one step further, and this
algorithm are repeated.

Results. The results of modeling the automatic control system show that the MPC approach provides maintenance
of carbon dioxide content when changing oxygen consumption and overshoot caused by introduction bulk does not
exceed 0.6 % that meets the technological requirements of the process.

Conclusions. A fuse of the MPC and the quadratic functional given the constraints on the input signals is proposed.
The problems of control degree of carbon oxidation in the convector cavity include non-stationarity, so the use of
classical control methods is difficult. The MPC approach minimizes the cost function that characterizes the quality
of the process. The predicted behaviour of a dynamic system will usually differ from its actual motion. The obtained

quadratic functional is optimized to find the optimal control of degree of CO oxidation to CO,.
Keywords: model predictive control; linear-quadratic cost functional; state space model; control system.

Introduction

The idea of optimizing the predicted control
action, which forms the basis of model predictive
control (MPC) methods, has arisen within the
framework of two independent approaches. The first
one is known as Model Algorithmic Control (MAC)
presented by Richalet et al. [1] proceedings and the
second one is Dynamic Matrix Control (DMC)
presented by Cutler and Ramaker [2] proceedings.
The evolution of the MPC and the overview of its
industrial applications are described in [3]. Although
90 % of all controllers use PID-laws [4], MPC has
quickly became famous, particularly in the chemical
process industries due to simplicity of the algorithm
and to the use of the impulse or step response model.

The general set of MPC strategy components
consists of a process model, a performance index,
constraints and an optimization method. Process
models can be both linear and nonlinear or even a
set of model combination [5—7] with input and/or
output constraints as an explicit part of the models.
P. Tatjewski, M. Lawrynczuk in [8] assume that
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such processes exist under influence of external dis-
turbances and their models are not precise. A com-
prehensive comparison of disturbance state model-
ling approaches is described. A performance index,
also known as the cost function, is designed in such
way that makes possible to get a convex space of
solution variations. It requires application of op-
timization algorithms. In some cases [9] it is not
so difficult to relate the cost function to economic
performance. The receding horizon — a quantity of
computing steps of the future model states based on
the present and past system conditions — is an ad-
ditional adjustment parameter of a final control law.

Some researchers combine MPC with differ-
ent control approaches like fuzzy-logic [10], ar-
tificial neural networks [11] or it can be used for
optimal set points or tracking trajectories [12] for
local control loops with familiar controllers. Hier-
archical structures of MPC because of complexity
of closed solutions are proposed in [13]. The trade-
off between the achieved performance and com-
plexity of the implementation in an application
for process control industry is investigated in [14].
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Nowadays MPC is used not only for direct control
or process optimization but also as supervisor for
other control technologies. For example, Hewing
et al. [15] use MPC to ensure safety of a data-driv-
en control approach during a self-learning phase.
There are many ways how to design the MPC
system depending on goals, chosen models, existing
constraints, expected system behaviour and distur-
bances. So, the application of MPC to the particular
technological system can give great opportunities but
still it is an actual scientific and practical problem.

Problem statement

The aim of the study is design and analysis
of MPC system with quadratic cost function, and
with constraint and features of MPC applications.

To achieve this goal, it is necessary to solve
the following tasks:

— explore the strategy of the MPC;

— analyse the features of quadratic cost func-
tion with constraint;

— perform design of the control system.

MPC strategy

In the control strategy with the principle of
feedback of dynamic objects is used the basic idea

of all the MPC approaches (Fig. 1):

1. A mathematical model of control object
(relatively simple) is considered, which initial con-
ditions are determined by its current state. At the
current control action, the prediction of object
dynamic response on some final period of time
(prediction horizon) is carried out.

2. The control optimization is performed, the
purpose of which is to approximate the control vari-
ables of the prediction model to the corresponding
set-point on the prediction horizon.

3. Then the found optimal control is applied
and measurement of an actual state of the control
object at the end of a step is carried out.

4. The prediction horizon is shifted one step
further, and points 1—3 of this algorithm are repeated.

The main advantage of the MPC approach,
which determines its successful use in the practice
of design and operation of control systems, is the
relative simplicity of the basic feedback scheme,
combined with high adaptive properties. The latter
allows managing multidimensional objects with a
complex structure, including nonlinearity, opti-
mizing processes in real time within the constraints
on controlled and managed variables, taking into
account process uncertainties and perturbations. In
addition, it is possible to take into account changes
in control quality criteria and sensor failures.
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Fig. 1. MPC strategy
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MPC with quadratic cost function with
constraints on input and output variables

The task of MPC is reduced to the usual pro-
portional feedback controller on the state of an ob-
ject, which is not fundamentally different from the
LQ-optimal controllers. But the situation changes
fundamentally, given the constraint on the control
effect and the state of the control object, which
significantly limits the set of controllers in the
problem of LQ-optimization. Obtaining an accu-
rate optimal solution for controls in real time is
quite problematic, which significantly increases the
validity of the MPC strategy.

Here the equation of the predictive model (1)
is used:

Xii1 :Axi + Bl"is
y,=Cx,
i=k+j,j=0,1,2.., (1)

where k — step; x; e E" — state; y; € E” — measure-
ment; u; e E” — control action;

The predictive model is close to the real ob-
ject in terms of dynamic properties. Let the pre-
dictive model (1) at the current time (j=0) be
initialized by the state of the actual control object
and the equality u, =4, for Vi=k, k+1..,k+ P
is satisfied. The quality of optimal control is char-
acterized by the linear-quadratic functional:

J, =J,.(y, Au) =
P T
Z|:(yk+j _rk+j) Rk+j (yk+j _rk+j)+
j=1
Au[+j—le+_/Auk+j—l:|a (2)
where R, ; and 0Q,.,; are positively defined sym-

metric matrices.
Here additional vectors are:

V=V Vo wYep) € ET,
u=(Au Au,,,..Au, ) e E™.
The use of the functional (2) allows ensuring

the astatism of a closed system. Consider the opti-
mization problem:

T =J,(¥(8k), M) = J (Aif) > min, (3)
regarding finding the sequence of vectors that
minimizes the functional (2) without taking into
account the constraints. In accordance with the

approach adopted to ensure astatism, we will form
additional predictive model:

pi+l :Zpi +EV[,
Z =6Pi’
i=k+j,j=0,12.., 4)

where p, = [%J, with matrices 4, B, C:
Xk

- (A4 0 = (B) 5
A — nxr B — C — O
[CA E] [CBJ’ (O

The inputs for the model (4) are in the vector,
v, = Au, and the outputs are z, = y,. Given (4), the
functional (3) can be represented in the equivalent
form:

Erxr ) °

‘]k:‘]k(

(v).v)=
£ T
Z|:(Zk+j _rk+j) Rk+j <Zk+/ _rk+j)+ V/cT+j—le+jvk+j—l:| =

J=1

N

(7-7) R(z-7)+v'0v, (5)
where
7 =% Zi "'Zk+P)T e E”,
V=0 Vi o Veupy) € E™.

Given Z = Lp, + Mv, the matrices L, M are
determined as follows:

CcA CA E,,
CA> CA* E
. c4” | _ |
............ E.
cA” cA” E,,

CA 0 o 0
CAB CB 0
M = =

CA™™'B CA"”B CB
CB 0 e 0
CAB+CB CB 0

sPICA'B  s2CA'B CB
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The cost function (5) can be represented as
follows:

J, =4, (") =V Hv +2f"v + g,
where H=M"RM +0Q, f= MTRka - MTRr,
g= kaLTRka + rTRF—2kaLTRF.

And the following constraints are taken into
account:

Vi <y <y, (6)

where u;, u, Au;, Au, y;, y; are given vectors.
Given (6) the following notation can be intro-
duced:
ymin = (y7k+l yik+2 yik+P)5
Umin = (Uik Llikﬂ ui/ﬁp,l),

Attmin = (A, AU,y . AU, p ),

o + + +

ymax :(y k+1 y k+2 *°* y k+P)7

- ot + +

Umax —(Ll v U o U k+P—l)’

- _ + + +
Atmax = (AU™ AUy o AT p ).

The control action u,_, is known. Then for the
step k it is fair u,= u,, + Au,; from here

i =Mu,  +MAI, (7)
E. E. 0 .. 0
mxm mem mem """ 0
M 0= , Mu = 0
E E E .. E

Given 7 = Lp, + Mv and (7), constraints (6)
can be represented as the system of linear inequalities:

AV <A, + Appk + AP -

Now instead of problem (5) it is possible to
substitute the problem with constrains

J,=J, V)=V HV +2f"v+g—> min_ (8)

veV cE™

on the admissible set of controls as follows:

V= {\7 e E™ AV <A, +A,p, +Aqu71}'

The result of solving this problem
will determine optimal sequence of vectors
vi=Au, i=k, k+1,...,k+P—-1. The formula

u, = u, , + Au, determines the control action at the
current step and according to the MPC strategy
the process of determining the optimal trajectory
is repeated.

It should be noted that if the matrix H in the
functional (8) is positive, then minimization of the
functional in the presence of constraints is reduced
to the standard problem of numerical analysis —
convex quadratic programming.

MPC application

The basic oxygen furnace is an appropriate
object for automatic MPC system. The degree of
carbon oxidation to carbon dioxide in the convec-
tor cavity was taken for the study of MPC appli-
cation. The obtained study results can be extrapo-
lated to the objects with similar dynamics. The
problems of control degree of CO oxidation in the
convector cavity include non-stationarity of the
decarburization rate, complexity of measurements,
and disturbances: changes in the flow rate of oxy-
gen, introduction of bulk, etc. The control object
in the channel “the lance distance to the level of
a quiet bath — the degree of CO oxidation to CO,”
is described by the differential equation [15]:

d2YC0 dyco H
velrco, g2 +(Tv +T/CU2) dt + Yco, :k~,C02H )]

where yco, is the degree of carbon oxidation to
carbon dioxide, %; H is the distance of the lance to
the level of a quiet bath, m; Tvi , TYCO2 [s] is time con-
stant; ky’;z is the transmission coefficient through
the channel distance of lance to the level of a quiet

bath — the degree of carbon oxidation, ﬁ.
m

The process of changing the rate of decarbu-
rization is non-stationary model (9) also depends
on the melting period:

T =215s;

Yco,
T, ,s=
1,143+ 4,446 -1 — 0,484 - 1*, 1 period
11,267, 2 period
11,267 — 4,446 - (1 — 16) + 0,484 - (r — 16)%, 3 period
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0w % _

Yco, m
4,75+2,43-1-0,26-t> +0,013-7°, 1 period,
11,87, 2 period
11,87 -3,63-(1—16)+ 0,4 - (1 —16)* +
0,019 - (t - 16)*, 3 period,

where t — purging time, min.

The equation of the predictive model is used
by MPC (10):

0’
{x{ (’)} _ | T, (1)+T,. |:x1(t):| .
X, (t) - Tvc (t)Tvcoz > T Tvc (t)y;wz x,(1)
0
1 H(1),
L.oT,,
Yeo, () =kl ()x,(1) (10)

Here the following constraints are taken into
account:

0.5< H <20,
-0.01<AH <0.01.

{

The purpose of control is achievement of a
given degree of carbon oxidation to carbon dioxide
within acceptable constraints, so the energy savings
on the movement of the lance is not taken into ac-
count in the cost function (11). The quality of control
is characterized by the linear-quadratic functional:

Jo =, (vco,(AH)) =

Zj. [((Ycoz Dies = (0, ke )2}

For the control system of CO, concentration,
the main task is the problem of stabilization (Fig. 2)
in the event of disturbances availability: changes in
the flow rate of oxygen, change in the rate of decar-
burization, introduction of bulk etc. The transitions
through the disturbances for perturbation-output
channel are shown in Fig. 2.

The simulation of process during purging for
a 160-ton converter is shown in Fig. 3. Oxygen
flow is changing sinusoidally; the disturbances (in-
troduction of bulk) are applied at 220 s.
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Fig. 2. The process in the control system of purging through the

channel change in the lance distance — CO, degree in the flue gases
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Fig. 3. The processes of the automatic control system for oxygen converter melting

The processes in the automatic control sys-
tem show that the MPC approach provides main-
tenance of carbon dioxide content when changing
oxygen consumption. The overshoot caused by in-
troduction of bulk at 220s (Fig. 3) does not exceed
0.6 % that meets the technological requirements of
the process.

Conclusions

A fuse of the MPC and the quadratic func-
tional given the constraints on the input signals
is proposed. The problems of CO, concentration
control in the convector cavity include non-sta-
tionarity, so the use of classical control methods
is difficult. The MPC approach minimizes the
cost function that characterizes the quality of the
process. The predicted behaviour of dynamic sys-
tem will usually differ from its actual motion. The
obtained quadratic functional is optimized to find

the optimal control of the carbon oxidation degree.
The approach takes into account the constraints im-
posed on the control input and output. To operate
the control system in real time, it is necessary that
the solution to the optimization problem is carried
out quickly enough. The degree of CO oxidation
to CO, was simulated. The simulation results show
that the control system satisfies the necessary re-
quirements for the system. This control approach
can be extended to other heat power facilities with
similar dynamics. The cost function can vary de-
pending on the goal, including the exergy analysis
of energy consumption for value production.
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1O.1. Mapisw, O.B. CtenaHeub

PO3POBJEHHA MOOENBHO-NMPOMHO3HOIO PEMYIIATOPA AJ1A HECTALIOHAPHOIO TEXHONOTNYHOIO MPOLIECY

MpobnemaTuka. MogensHo-nporHo3He kepyBaHHs (MIMK) BukoprcToBye 6a30By CXeMy 3BOPOTHOTO 3B’si3KY, MOeAHaHY 3i 3Hay-
HUMW aganTUBHMMK BACTUBOCTAMMU, LLO BU3HAYaE i yCnillHEe 3aCTOCYBaHHS B NPOEKTYBaHHI Ta ekcnnyaTtauii cuctemM ynpaeniHHs. Ll
nepesarv 4alTb 3MOry kepyBaTy 6araToBUMipHUMU 06’ eKTaMU 3i CKNagHOK CTPYKTYPOHO, LLIO MOXKYTb MICTUTU HEMIHIMHOCTI, ONTUMI3Y-
BaTM LinNboBy (PYHKLt0 B pEXMMIi peanbHOro Yacy B paMkax 0OMexXeHb Ha KepoBaHi Ta KepiBHi 3MiHHi, BpaxoByBaTW HEBU3HAYEHOCTI
B onuci 06’ekTiB i 36ypeHb.

Meta pocnipxeHHsl. Po3pobutu Ta npoaHaniayBaTu CUCTEMY KepyBaHHsSI OKUCIEHHSIM MOHOOKCWUAY BYFMeEL0 B MOPOXHUHI
KOHBekTOopa Ha 6a3i MIK i3 niHiiHo-kBagpaTUYHUM yHKLiOHANoM 3a HasiBHOCTi OBMEXEeHb.

Metoguka peanisauii. Po3pobka MINK 6a3yeTbcsi Ha MaTemaTuyHin NPOrHo3Hin Mopeni ob’ekta (noBuHHa ByTW BiAHOCHO
npocrtot). Ha noToyHOMy KpoLi NporHo3ytoTb NoBefiHKy 06’ekTa Ha MEBHWI KiHLEBUI NMPOMiIXOK Yacy (FOPU3OHT MPOrHO3yBaHHs);
ONTUMI3YIOTb KpUTepii 3aans HabnxeHHs BiANOBIAI NPOrHO3HOI MoAeni A0 BiAMNOBIAHOIO 3aBAAHHSI HA FOPWU30OHTI MPOrHO3YyBaHHS.
[ani 3acTocoByoTb NepLle 3HaYEHHs1 3HaMAEHOro KepyBarnbHOro BMNIMBY Ta BUMIPHOOTbL (PaKTUYHUIA CTaH 06’ekTa HampUKiHLI KPOKY.
[OpPM30OHT NPOrHo3yBaHHS 3MiLLylOTb Ha KPOK ynepes, i Len anroputm nOBTOPHOIOTh.

PesynbraTty gocnigxeHHs. Pe3ynstati MoAentoBaHHsi aBTOMaTUYHOI CUCTEMU KepPYBaHHS NMoKasytoTb, o MIMK-niaxia 3abes-
neyye NiATPUMaHHS BMICTY BYIIEKMCMOrO rady 3a 3MiHW CMOXWBAHHS KUCHIO, @ TaKoX MepeperynioBaHHsi, CNpudMHeHe BBEAEHHSIM
CUMYYMX KOMMOHEHTIB, ske He nepesuLlye 0,6 % (ue Bianosigae TEXHONOMYHNUM BMMOram npoLecy).

BucHoBku. 3anponoHosaHo cuHTe3 MK i3 kBagpaTu4HUM pyHKLIIOHANoOM 3 ypaxyBaHHsIM 0bMexeHb Ha BXiAHi curHanu. Mpobne-
MW KOHTPOIO CTYMEHS! OKUCNEHHS BYTMELIO B MOPOXHWHI KOHBEKTOPA MICTSATb HECTaLOHaPHICTb, TOMY BUKOPUCTAHHS KIMaCUYHUX Me-
TodiB ynpaeniHHA ycknagHeHe. MNigxig MK miHiMiaye LinboBy yHKLIlO, L0 XapakTepuaye AKiCTb npouecy. lNporHo3oBaHa nosegiHka
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06’ekTa kepyBaHHs 3a3BMYan BigpPi3HATUMETbLCS Bif, M0oro dpakTuyHoro pyxy. OnTumaneHe KepyBaHHs cTyneHem 3ropsiiHs CO go CO,
3HaxXoAATb ONTUMI3alield OTPUMAHOIO NiHINHO-KBAAPaTUYHOIO (OyHKLioHana.

Knto4oBi cnoBa: MoaenbHO-NPOrHO3He KepyBaHHS; MiHIMHO-KBaApaTUYHUIA (byHKLIOHaN; MoAernb B NPOCTOPi CTaHiB; cuctema
KepyBaHHs.

10.U. Mapusw, A.B. CtenaHel

PA3PABOTKA MOLENLHO-MPOrHO3UPYIOLETO PEMYNIATOPA ANA HECTALMOHAPHOIO TEXHOMOMMYECKOIO
MPOLIECCA

Mpo6nemaTuka. MogensHo-nporHosupytoLee ynpaeneHve (MIY) ncnonb3yet 6a3oByto cxemy 06paTHO CBS3W, 06 bEAVNHEHHYIO
CO 3HaYUTENbHLIMY aAanTUBHbIMK CBOMCTBaMU, YTO ONpefensieT ee yCrnellHoe UCNoNnb30BaHWe B MPOEKTUPOBaHUM U SKCMnyaTaumnm
cucTeM ynpaeneHusl. 3T NpenMyLLEecTBa No3BOMSOT YNpaBnsTe MHOTOMEPHbIMU OGbEKTaMK CO CIOXHOW CTPYKTYPOM, KOTOpbIe MOTyT
BKIOYaTb HENMHENHOCTW, ONTUMMU3NPOBATh LieNneBy OYHKLMIO B peXXMME pearibHOro BpEMEHM B pamMKax orpaHUYeHuUii Ha ynpasnsie-
Mble W yNpaBnsitoLLiMe NepeMeHHble, YUMTbIBaTb HEONPEeOENEeHHOCTY B ONUCaHNN OGLEKTOB U BO3MYLLEHWIA.

Llenb uccnegoBaHus. Pa3paboTtaTb 1 npoaHan1M3nMpoBaTb CUCTEMY YNpaBneHUsi OKUCNEHNEM MOHOOKCUAA Yrrepoaa B NonocTu
KOHBekTopa Ha 6a3e MIK ¢ nuHenHo-kBaapaTUYHbIM DYHKLMOHANOM NPYU HANMUYUK OrpaHNYEHNA.

Metoauka peanusaumm. Paspabotka MITY 6a3svpyetcs Ha maTemaTUyeckon NpOrHo3upylLen Mopenu obbekTa (HormkHa
ObITb OTHOCMTENbBHO MPOCTOM). Ha Tekyllem Lware NporHo3vpyoT noBedeHne obbekTa Ha onpenerneHHbIi KOHEYHbIA NMPOMEXYTOK
BPEMEHW (FOPMU3OHT MPOrHO3MPOBaHMS); ONTUMU3UPYIOT KPUTEPUIA C LIENbI NPUBMNUKEHNS OTKIMKa NPOrHO3MpYHLLEA MOAENN K CO-
OTBETCTBYHOLLEMY 3a4aHUI0 Ha FOPU3OHTE NPOrHO3MpPOBaHUs. [lanee NpYMEHSIOT NEPBOE 3HAYEHNE HaAEHHOTO YrNpaBnsioLLEero Bo3-
OEeNCTBUA U U3MEPSIOT (PaKTUHECKOE COCTOsIHME OObeKTa B KOHLE Liara. FOpM30HT NPOrHO3MpoBaHMS CMeLLaloT Ha Liar Brnepen,
1 [aHHbIN anropyMTM NOBTOPSIIOT.

Pesynbratbl uccnegoBaHus. PesynbtaTbl MOAENUPOBAHUS aBTOMATUYECKOW CUCTEMbI YrpaBrieHWsi MOKasblBalT, 4YTO
MIMY-noaxon obecnevnBaeT nogaepxaHve cogepXaHus Yrnekucrnoro rasa npu U3MeHeHun notTpebneHus kucropoga, a Takke ne-
peperynupoBaHue, Bbi3BaHHOE BBEEHNEM CbiMy4rX KOMMNOHEHTOB, He npeBbiwatollee 0,6 % (3TO COOTBETCTBYET TEXHONOMMYECKAM
TpeboBaHuaAM npoLecca).

BbiBopbl. MpeanoxeH cuHtes MIMY ¢ kBagpaTnyHbIM OyHKLIMOHANOM MPU y4eTe OrpaHUYeHUn Ha BXOAHbIE curHanbl. [Mpobnems!
KOHTPOIs1 CTEMNEHUN OKUCIEHNS Yrrepoaa B NONOCTY KOHBEKTOPA BKIHOHAT HECTALMOHAPHOCTb, MOSTOMY UCMOSb30BaHME KIacCUYeckmx
MeTo[0B ynpaeneHus 3atpyaHeHo. MNMoaxon MIMY MUHUMK3MPYET Lienesyto dyHKLMIO, KOTOpasi XapaKTepuayeT ka4ecTso npouecca. [1po-
rHo3upyemoe nosefeHne obbekTa ynpaeneHust 0bbIMHO ByaeT oTnmyaThes OT ero haKkTUYeckoro ABvkeHus. OnTuMarnbsHoe ynpaeneHue
crenenu cropaHus CO go CO, HaxoauTca nyTem ONTUMMU3aLMK MOSTyHEHHOTO NMHEeNHO-KBaApaTUYHOro (hyHKLMOHana.

KntoyeBble crnoBa: MoAenbHO-NPOrHO3MpYtoLLee ynpaeneHue; NMHenHo-KBaapaTuYHbIA yHKLMOHAI; MOAENb B NPOCTPaHCTBE
COCTOSIHUIA; CUCTEMA YNpaBrieHus.
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