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A SORTING IMPROVEMENT IN THE HEURISTIC BASED ON REMAINING AVAILABLE
AND PROCESSING PERIODS TO MINIMIZE TOTAL TARDINESS IN PROGRESSIVE
IDLING-FREE 1-MACHINE PREEMPTIVE SCHEDULING

Background. In preemptive job scheduling, which is a part of the flow-shop sequencing tasks, one of the most crucial
goals is to obtain a schedule whose total tardiness would be minimal. Total tardiness minimization is commonly
reduced to solving a combinatorial problem which becomes practically intractable as the number of jobs and the
numbers of their processing periods increase. To cope with this challenge, heuristics are used. A heuristic, in which
the decisive ratio is the reciprocal of the maximum of a pair of the remaining processing period and remaining
available period, is closely the best one. However, the heuristic may produce schedules of a few jobs whose total
tardiness is 25 % greater than the minimum or even worse. Therefore, this heuristic needs a corrective branch which
would further try to minimize total tardiness under certain conditions.

Objective. The goal is to ascertain what is to be corrected in the heuristic so that the total tardiness value could be
obtained lesser. The heuristic will be applied to tight-tardy progressive idling-free 1-machine preemptive scheduling,
where the release dates are given in ascending order starting from 1 to the number of jobs, and the due dates are
tightly set after the release dates. In this scheduling problem, the inaccuracy of finding the minimal total tardiness
has the strongest negative impact, so this is almost the worst case, which defines the accuracy limit of the heuristic
and positively serves just as the principle of minimax guaranteeing decreasing losses in the worst conditions.
Methods. The heuristic sorts maximal decisive ratios by release dates, where the scheduling preference is given to
the earliest job. To achieve the said goal, three other sorting approaches are presented and a computational study is
carried out with applying each of the four heuristic approaches to minimize total tardiness. For this, two series of
266000 and 1064000 scheduling problems are generated.

Results. The earliest-job sorting ensures a heuristically minimal total tardiness value in more than 97.6 % of sched-
uling problems, but it fails to minimize total tardiness in no less than 2.2 % of the cases. Nevertheless, a sorting ap-
proach with minimizing remaining processing periods produces a heuristically minimal total tardiness for almost any
scheduling problem. If an exception occurs, this sorting approach “loses” to the other sorting approaches very little.
Moreover, the exceptions are quite rare as it has been registered just a one scheduling problem (out of 31914 cases
followed by a sole “win” of a heuristic version) whose minimal total tardiness is achieved by the earliest-job sorting.
Conclusions. The best heuristic version is that one which uses the sorting approach with minimizing remaining pro-
cessing periods. This, however, is confirmed only for the case where jobs do not have any priorities. The case when
jobs have their priority weights is to be yet analyzed.

Keywords: preemptive 1-machine job scheduling; total tardiness; heuristic; sorting approach; remaining processing
periods; remaining available periods.

Introduction

Flow-shop sequencing optimization is a very
important problem whose solutions determine
high economic and human-resource performance
in multistep processes of assembling, building, dis-
patching, manufacturing, etc. [1, 2]. In preemptive
job scheduling, which is a part of the flow-shop
sequencing tasks, one of the most crucial goals is
to obtain a schedule whose total tardiness would
be minimal [3, 4]. Total tardiness minimization
is commonly reduced to solving a combinatorial
problem. In particular, the well-known Boolean
linear programming model [5, 6] is used for that.
Nevertheless, struggling to compute a schedule

© The Autor(s).

The article is distributed under the terms of the license CC BY 4.0

with the exactly minimal total tardiness may be-
come very resource-consuming (implying processor
clock speed, memory space, and time of compu-
tations) even for a few jobs divided into more than
10 processing periods [6]. Thus, as the number of
jobs and the numbers of their processing periods
increase, the exact solution of the total tardiness
minimization problem may become practically in-
tractable [5, 7, 8]. The problem of tractability can
be slightly stretched and strengthened by using an
optimal substitute for infinity in the Boolean linear
programming model [9] and re-arranging jobs for
either job ascending order input or job descending
order input [6, 10, 11]. However, these methods
allow decreasing computation time only on average,
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after solving long series of thousands of job scheduling
problems.

Along with obtaining an exact solution, there
are a lot of heuristics allowing to find an approx-
imate solution, which often coincides with the
exact one and ensures thus the minimal total tar-
diness also [3, 8, 11, 12]. In general, the heuristics
operate with the remaining available period [8, 12],
remaining slack [3, 8, 11], and remaining pro-
cessing period [5, 8, 11, 12]. A heuristic, in which
the decisive ratio is the reciprocal of the maxi-
mum of a pair of the remaining processing period
(RPP) and remaining available period (RAP) [8],
is closely the best one [12, 13]. The accuracy of
this heuristic (henceforward, let it be named the
RPP-RAP heuristic) was studied in [8] on a pat-
tern of tight-tardy progressive idling-free single
machine preemptive (TPIFIMP) scheduling [11].
In the TPIFIMP scheduling, where the release
dates are given in ascending order starting from
1 to the number of jobs, the inaccuracy of finding
the minimal total tardiness has the strongest negative
impact. Therefore, this is almost the worst case,
which defines the accuracy limit of the RPP-RAP
heuristic (and other heuristics as well) and posi-
tively serves just as the principle of minimax guaran-
teeing decreasing losses in the worst conditions (the
maximum of unfavorable states) [8, 13, 14].

Article [8] ascertained that the RPP-RAP
heuristic schedules 2 jobs always with the minimal
total tardiness. In scheduling 3 to 7 jobs whose
lengths (processing periods) are randomly gene-
rated within an integer interval from 2 to 5, the risk
of missing the minimal total tardiness is just 1.5 %
to 3.2 %. Moreover, it is expected that scheduling
12 and more jobs (divided into 2 to 5 processing
periods) has at the most the same risk or even lower.
In general, the RPP-RAP heuristic produces about
92 % schedules [8] whose total tardiness is exactly
minimal, i.e. the Boolean linear programming model
in about 92 % of the cases is needless.

In spite of such a promising performance, the
RPP-RAP heuristic may produce schedules of a
few jobs whose total tardiness is 25 % greater than
the minimum or even worse. For instance, a prob-
lem of scheduling 4 jobs divided into 7, 7, 11, and
7 processing periods, respectively, whose due dates
are 14, 20, 4, 13 by the progressive release dates
1, 2, 3, 4, has the total tardiness minimum of 29,
whereas the RPP-RAP heuristic produces a schedule
whose total tardiness is 37 (i.e., the relative gap
[7, 8, 15] here is 27.5862 %, which is obviously
unacceptable). Therefore, this heuristic needs a

corrective branch which would further try to mini-
mize total tardiness under certain conditions.

Problem statement

As the RPP-RAP heuristic has “weak” places,
the goal is to ascertain which they are and try to
correct them. For this, a few series of TPIF1MP
scheduling problems will be generated, in which
the “weak” places are to be analyzed. The “weak-
ness” will be treated with respect to using RPP
and RAP in an alternative way allowing to obtain
a total tardiness lesser than that by the RPP-RAP
heuristic. Eventually, the corrected and updated
RPP-RAP heuristic (henceforward, let it be named
the CU-RPP-RAP heuristic) will be discussed and
the corresponding conclusions on it will be made.

The RPP-RAP heuristic and its corrections

Given N jobs to be scheduled, N e N\/{l},
with their respective processing periods

H=[H,].yeN", (M
release dates

R=[r,],.y eN", ()
and due dates

D=(d,].y eN", 3)

the RPP-RAP heuristic builds stepwise a schedule

N
S =151, where T = ZH,,, as time ¢ progresses
n=1

[7, 8, 11]. Before the start, RPPs are

g, =H, vn=1N. 4)

For every set of available jobs
A(t)={ie{l, N}:r,<tand g, >0} = {I, N} (5)

the respective RAPs are

b =max{0,d, —1+1} VieAr).  (6)
Then a subset
A'(1) = argmax(max{g;, b,}) " (7
is determined. If |47 (7)| = 1, then
5= by A ={"Yc A {l, N} (8
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and the RPP of job i" is updated as

g™ =¢q. and q. = ¢ -1, 9)

otherwise

A'(t) =i/}, < A(t) < {1, N} by L>1, (10)
whence
(11)
and the RPP of job i is updated as

g™ =q. and gq. =g - 1. (12)

h

Assignment (11) executed by condition (10) implies
that the earliest job is preferred to be scheduled [16]
when there are two or more maximal decisive ratios
in subset (7). Thus, job #n is completed after mo-
ment 8(n; H,) if

Ssnny =N Vh =1 H, by &m hn)e{l,_T}

and 6(m; h,) < 6(n; b, +1) for h, =1, H, -1

in schedule S=[5],,, returned by the heuristic.
Finally, amount

§(N) = Z max{0, 8(n; H,)—d,}

n=1

(13)

is an approximately minimal total tardiness that
corresponds to this schedule [8, 11, 16].

Thus, in the case when (10) is true, the
RPP-RAP heuristic sorts maximal decisive ratios
in subset (7) by release dates, where the scheduling
preference is given to the earliest job (whose re-
lease date is the least). However, along with this
earliest-job sorting, other approaches to sorting
might be used. They consist in sorting by RPPs
and due dates. Consider them as follows.

If the RAP of job i is b. >0, then

Ao=qi by i elil)h (14)
else
Ao =d' by i e i}t (15)
Subsequently, a subset
F* (1) = arg igi%)xf ={i"}5, (16)
is found and job i is scheduled:
s i (17)

whereupon the RPP of job i is updated as

q;l.?b” =g, and ¢. = ql_‘]ffbs) -1. (18)
So, instead of (11) by (10), this approach cor-
rects the RPP-RAP heuristic by scheduling the job
with its either maximal RPP or maximal due date
depending on the RAP. Henceforward, let it be
named the RPP-or-due-date sorting. For example,
a TPIF1IMP scheduling problem with

H=[H,(], =6 253 44 (19
by r, =n Vn:l,_6 and due dates
D=[d].,=[1 6 10 4 8 4] (20)

is solved by the RPP-RAP heuristic using the
RPP-or-due-date sorting which produces schedule

S=[5l,=I1 22444555566

6 6 3333311111 @21
whose total tardiness is
6
8(6) = D" max{0, 8(m; H,)-d,} -
n=1
max{0, 24 — 1} + max{0, 3 -6} +
max{0, 19 - 10} + max{0, 6 — 4} +
max{0, 10 — 8} + max{0, 14 -4} =46.  (22)

The RPP-RAP heuristic using the earliest-job sorting
produces schedule

S=l5]y=01 11111224445
555666633333 (23)

whose total tardiness is greater by 4 units:
6
8(6) = > max{0, 6(m; H,)-d,} =
n=l1

max{0, 6 — 1} + max{0, 8 — 6} +
max{0, 24 — 10} + max{0, 11 -4} +

max{0, 15 -8} + max{0,19 -4} =50. (24)

This is the example of that the RPP-or-due-date
sorting can outperform the earliest-job sorting.

An approach based on sorting only RPPs in
ascending order can be used as well: a subset

H" (1) = arg *rr}}l;l)qﬁ ={i"}E, (25)
ie t !
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is found, and job i, is scheduled as (17) by (18).
Henceforward, let it be named the min-RPP sorting.
For example, a TPIF1MP scheduling problem with

H=[H,].,=12 3 2 2| (26)
by r,=n Vn= 1,_4 and due dates
D=[d,].,=[2 6 6 3 (27)

is solved by the RPP-RAP heuristic using the
min-RPP sorting which produces schedule

S=[5l.,=I1 13 4 4 322 2] (28

whose total tardiness is

4
34 = > max{0, 8(m; H,) - d,} =

max{0, 2 — 2} + max{0, 9 — 6} +

max{0, 6 — 6} + max{0,5-5}=3.  (29)

The RPP-RAP heuristic using the earliest-job sorting
produces schedule

S=[5].,=0[ 12 4 4 2 2 3 3] (30)

whose total tardiness is greater by 1 unit:

4
84 =D " max{0, 8(n; H,) - d,} =

max{0, 2 - 2} + max{0, 7 - 6} +

max{0, 9 — 6} + max{0, 5-5} = 4. (31)
This is the example of that the min-RPP sorting
can outperform the earliest-job sorting as well as the
RPP-or-due-date sorting can. It is worth noting that
the RPP-or-due-date sorting for job lengths (26)
and due dates (27) also produces schedule (30).
Finally, an approach based on just a random
selection of a job from subset (7) will be tried.
Thus, in the case when (10) is true, number m is

randomly selected from subset {l,_L} and job i,:
is scheduled:

5, =1i,, (32)
whereupon the RPP of job i is updated as
g™ =q. and gq. =g -1. (33)

However, if a schedule is built by using the ran-
dom sorting by (32), (33), instead of (11) by (10),

then such a corrected RPP-RAP heuristic will pro-
duce, generally speaking, random schedules and
total tardiness values. Nevertheless, the random
sorting can outperform the earliest-job sorting. For
example, a TPIFIMP scheduling problem with

H:[Hn]lx12:

[7 9 13 8 11 16 17 4 12 5 3 13] (34)
by r,=n Vvn :1,_12 and due dates

D:[dn]lx12:

16 12 9 1 5 16 19

[ 11 18 12 31] (35)

is solved by the random-sorting RPP-RAP heuris-
tic producing different schedules, one of which is

S=[lus=121111118S8

11 11 11 8 8 10 10 10 10 10 2 2
222222 444444
4 45555555555
599999999999
9333333333233

3312 12 12 12 12 12 12 12 12 12

12 12 12 6 6 6 6 6 6 6 6 6
6 6 666 66777717
777777777777 (36)

whose total tardiness is

8(12) = Z max{0, 8(n; H,)—d } =

max{0, 8 — 11} + max{0, 28 — 11} + max{0, 72 — 16} +

max{0, 36 — 12} + max{0, 47 — 9} + max{0, 101 -1} +

max{0, 118 — 5} + max{0, 15 - 16} + max{0, 59 — 19} +
max{0, 20 - 18} + max{0, 13 - 12} +

max{0, 85— 31} = 445. (37)
The other schedules have total tardiness values of
446, 447, 448, and 451. Thus, the random-sorting
RPP-RAP heuristic produces here five possible
total tardiness values whose probabilities are about
0.083, 0.177, 0.25, 0.334, and 0.156, respectively.
It is worth noting that the RPP-or-due-date sorting
for job lengths (34) and due dates (35) produces a
schedule whose total tardiness is 3(12) = 451, and
the min-RPP sorting produces schedule
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S=[lus=01 11111144 4
11 11 11 8 8 8 8 4 4 4 4 4
10 10 10 10 10 2 2 2
225555555
599999999
933333333
3312 12 12 12 12 12 12 12 12 12
1212126 6 6 6 666 66
66 6666677777
777

77 77 77 7 7 7 (38)

whose total tardiness is 2 units greater than (37):
12
8(12) = Zmax{O, O(m; H)—d )=
n=l1

max{0, 7 — 11} + max{0, 36 — 11} + max{0, 72 - 16} +

max{0, 22 — 12} + max{0, 47 — 9} + max{0, 101 -1} +

max{0, 118 — 5} + max{0, 17 — 16} + max{0, 59 — 19} +
max{0, 27 — 18} + max{0, 13 - 12} +

max{0, 85— 31} = 447. (39)
The RPP-RAP heuristic using the earliest-job
sorting also produces schedule (38) which is out-
performed by schedule (36). Consequently, each
of the three described alternative approaches to
sorting can outperform the earliest-job sorting.
Along with that, one should remember that the
random-sorting RPP-RAP heuristic may be out-
performed as well in the same scheduling problem.
So, stating that the random sorting produces a
schedule or schedules with a definite total tardiness
must be followed with a respective (approximate)
probability.

Generation of TPIF1MP scheduling problems

In TPIFIMP scheduling, the release dates
can be given in ascending order as follows:

r,=n Vn=1 N. (40)
The due dates are generated as [11, 16]
d=r,+H, -1+b, vn=1 N (41)

by the respective random due date shift [10, 11]

b, =w(H, -¢) for n=1, N (42)

with a pseudorandom number { drawn from the
standard normal distribution (with zero mean and
unit variance), and function wy(§) returning the
integer part of number & (e.g., see [10, 11]). The
job lengths are generated as [8]

H,=y(Av+2) for n=1, N by A=2,20 (43)

with a pseudorandom number v [17] drawn from
the standard uniform distribution on the open in-
terval (0; 1). So, the job length is randomly gene-
rated between 2 and A—1 [8]. Once a vector of job
lengths (1) is generated, due date shifts (42) are
generated until

d,>1 vn=1, N (44)
and the total tardiness value is not 0 (i.e., the due
dates are not very great, so at least one tardy job
would exist).

Computational study

A first series of TPIF1MP scheduling problems
is generated by (40) — (44), where 1000 scheduling

problems are generated for every N =2,15 and

A =2,20. So, altogether 266000 scheduling prob-
lems are generated in the first series. Each scheduling
problem is solved by the RPP-RAP heuristic using
the four sorting approaches: the earliest-job sorting
(which initially constitutes the RPP-RAP heuristic
itself) by (10) — (12), the RPP-or-due-date sorting
by (14) — (18), the min-RPP sorting by (25) with
(17) by (18), and the random sorting by (32), (33).

Table 1 presents the number of generated
scheduling problems whose total tardiness has been
revealed to be minimal for the given sorting ap-
proach, whereas the other three sorting approaches
have produced greater total tardiness values (i.e.,
the heuristic with the given sorting approach “has
won”). Amazingly enough, neither the earliest-job
sorting, nor the RPP-or-due-date sorting “has won”
at all, whereas the min-RPP sorting “has won”
6486 times; the random sorting has only one “win”
with an approximate probability of 0.083 for job
lengths

Table 1. The number of sole “wins” in the first series

Sorting | Earliest-job [ RPP-or- | Min-RPP | Random
approach sorting | due-date| sorting | sorting
sorting
“Wins” 0 0 6486 1
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H = [Hn]]><12 =

2 6 4 8 8537 23 8 6] (45

and due dates
D:[dn]lx12:
4 4 8 20 32 1 12 12 9 10 32 20], (46)

where

S=[5l.o=101 12333379977
10 10 10 2 2 222 6 6 6 6
6 12 12 12 12 12 12 8 8 8 8 8
8 8 4 4 4 4 4 4 4 411 11
1111 11 11 11 11 555555 5 5] (47)

is that “winning” schedule whose total tardiness is
12
812) = Y max{0, 8(m H,)-d,} =
n=l1

max{0, 2 — 4} + max{0, 20 — 4} + max{0, 7 - 8} +
max{0, 46 — 20} + max{0, 62 — 32} + max{0, 25 -1} +
max{0, 12 — 12} + max{0, 38 — 12} + max{0, 10 — 9} +

max{0, 15 - 10} + max{0, 54 — 32} +

max{0, 31 - 20} = 161. (48)

The other two total tardiness values of 162 and 163
by the random sorting for (45), (46) have probabili-
ties of 0.5 and 0.417, respectively. The min-RPP
sorting for (45), (46) produces a schedule whose total
tardiness is 162 being just 0.6211 % worse than the
random-sorting 8.3 % probable schedule (47).

Table 2. The number of group “wins” in the first series

The 6487 sole “wins” in the first series con-
stitute just 2.4387 % of the series volume. The
remaining 97.5613 % are group “wins”, where two
to four sorting approaches have produced the same
(minimal) total tardiness. Table 2 presents the dis-
tribution of the number of group “wins”, where
seven “winning” groups have been disclosed. The
highest and dominating percentage (93.4836 %)
of group “wins” has been revealed to be for the
group consisting of all four sorting approaches.
Moreover, every group contains the min-RPP
sorting which is the incontestable “winner” in the
consideration of sole “wins” (see Table 1). This
implies that the min-RPP sorting itself is capable
of producing a total tardiness value, which either
is minimal among the total tardiness values by the
other three sorting approaches or is not greater
(this is the 97.5613 % of the 266000 cases in the
first series) than these values.

To get convinced that the obtained results are
statistically reliable, a second series of TPIFIMP
scheduling problems is analogously generated by
(40) — (44), where 4000 scheduling problems are
generated forevery N =2, 15 and A4 =2, 20, Table
3 presents the number of generated scheduling prob-
lems (among those 1064000 generated scheduling
problems) whose total tardiness has been revealed to
be minimal for the given sorting approach, whereas
the other three sorting approaches have produced
greater total tardiness values. As in the case of the
first series, here the number of sole “wins” consti-
tute just a small percentage (which is 2.3901 %) of
the series volume, whereas the min-RPP sorting
“has won” almost everywhere, expect for three
scheduling problems. Now the random sorting
“has won” two times for scheduling problems with

Group of Earliest-job _ _ Earliest-job | Earliest-job _ Earliest-job
sorting sorting sorting sorting sorting
approaches RPP-or- RPP-or- RPP-or- RPP-or-

which — due-date - due-date - due-date due-date
produce sorting sorting sorting sorting
thf} same Min-RPP Min-RPP Min-RPP Min-RPP Min-RPP Min-RPP Min-RPP
minimal sorting sorting sorting sorting sorting sorting sorting
ta:g;[r?l:ss _ _ Random _ Random Random Random
sorting sorting sorting sorting
Group 5222 587 4831 662 4961 648 242602
wins
Percentage | 155 0.2262 1.8616 0.2551 1.9117 0.2497 93.4836
of “wins
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H=[H,],,=[15 15 11 3 10 13

total tardiness is 3(14) = 454 “losing” thus 0.2208 %

12 19 4 8 11 9 17] (49) to the earliest-job sorting.
Table 3. The number of sole “wins” in the second series
D=[d].,=[06 4 30 6 19 14
Sorting | Earliest-job| RPP-or- | Min-RPP | Random
199379 21 22 24 30] (50) approach | sorting | due-date | sorting sorting
and sorting
“Wins” 1 0 25428 2
H=[H,], .,=I59 4 7 10 12
16 17 56 13 4 4 13| (51) Table 4 presents the distribution of the number
’ of group “wins”, where the same seven “winning”
B _ groups have been disclosed in the second series.
D=ld }, =14 4 10 13 4 46 31 The group “wins” do not much differ from those in
26 14 15 18 18 18 51| (52) Table 2 (for a working accuracy, see the bottom row

producing the respective schedules by 3(13) = 597
for (49), (50) and 9(14) = 437 for (51), (52), and
the earliest-job sorting has one “win” for a scheduling
problem with

H=[H,],,=[8 2 11 9 3 10 11

71357 10 8 7], (53)

D=[d,].,=[16 4 11 14 9 17 39

16 17 14 23 36 17 4] (54)
producing the respective schedule by 3(14) = 453.
It is worth noting that the min-RPP sorting for
job lengths (49) and due dates (50) produces a
schedule whose total tardiness is 3(13) = 601, and
9(14) = 438 for job lengths (51) and due dates (52),
i.e. the min-RPP sorting “loses” to the random
sorting just 0.67 % and 0.2288 %, respectively.
Moreover, for job lengths (53) and due dates (54),
the min-RPP sorting produces a schedule whose

Table 4. The number of group “wins” in the second series

of Table 4). This confirms the statistical reliability
of the results in Tables 1 and 2. Therefore, the min-
RPP sorting is really the incontestable “winner” in
minimizing total tardiness of TPIFIMP scheduling
problems generated by (40) — (44).

A special case when all the jobs have identical
volumes is to be studied also. For this, a series
of TPIFIMP scheduling problems of N jobs, each
of which is of A processing periods, is generated
by (40) — (42) and (44), where 1000 scheduling
problems are generated for every N =3,15 and
A =2,10. So, altogether 117000 scheduling prob-
lems are generated in this series. There are no sole
“wins”, and the group “wins” are distributed only
among four groups (Table 5). Once again, the
highest and dominating percentage (96.2197 %) of
group “wins” has been revealed to be for the group
consisting of all four sorting approaches. As for the
first and second series of non-constant job length
scheduling problems, every “winning” group in the
series of constant job length scheduling problems
contains the min-RPP sorting. This additionally
confirms the min-RPP sorting is very efficient.

Earliest-job _ _ Earliest-job | Earliest-job _ Earliest-job
sorting sorting sorting sorting
Group of sorting RPP-or- RPP-or- RPP-or- RPP-or-
approaches which - due-date - due-date — due-date due-date
produce the same sorting sorting sorting sorting
minimal total Min-RPP | Min-RPP | Min-RPP | Min-RPP | Min-RPP | Min-RPP | Min-RPP
tardiness sorting sorting sorting sorting sorting sorting sorting
_ _ Random _ Random Random Random
sorting sorting sorting sorting
Group “wins” 20839 2474 18742 2619 19587 2395 971913
Percentage 2.0065 0.2382 1.8046 0.2522 1.8860 0.2306 93.5819
of “wins
Relative difference
from the first 0.2851 5.0457 3.1567 1.1576 1.3626 8.2794 0.1051
series, %
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Table 5. The number of group “wins” in the series of constant job length scheduling problems

Earliest-job Earliest-job Earliest-job Earliest-job
sorting sorting sorting sorting
Group of sorting _ RPP-or-due-date _ RPP-or-due-date
approaches which produce sorting sorting
the same minimal Min-RPP Min-RPP Min-RPP Min-RPP
total tardiness sorting sorting sorting sorting
_ _ Random Random
sorting sorting
Group “wins” 1997 216 2210 112577
Percentage of “wins” 1.7068 0.1846 1.8889 96.2197

Discussion

One of the “weak” places in the RPP-RAP
heuristic by (4) — (12) is the earliest-job sorting.
Despite it ensures a heuristically minimal total tar-
diness value in more than 97.6 % of TPIFIMP
scheduling problems (which is derived from the
respective group “wins” in Tables 2 and 4), the
earliest-job sorting still fails to minimize total tar-
diness in no less than 2.2 % of the cases (this is
a lower bound of such an estimate). On the other
hand, the min-RPP sorting produces a heuris-
tically minimal total tardiness for almost any
TPIFIMP scheduling problem, where exceptions
like (45) — (54) are quite rare (technically, this
has been just 4 occurrences out of 31914 cases
followed by sole “wins”, i.e. the exception is only
0.0125 % probable). All the more that the min-RPP
sorting “loses” to the other sorting approaches very
little — it has not been revealed a difference greater
than 0.75 %, although there have been registered
only 5 such occurrences including the case with
job lengths (34) and dues dates (35). Moreover, if
to consider non-random sorting approaches, it has
been registered just a one TPIFIMP scheduling
problem whose minimal total tardiness is achieved
by the earliest-job sorting.

Apart from the min-RPP sorting, the other
“weak” places in the RPP-RAP heuristic are tied to
the RPP-or-due-date sorting and the random sort-
ing. The RPP-or-due-date sorting cannot “win”
solely, and “wins” of the random sorting are very
rare and unreliable. Consequently, these sorting
approaches cannot be used in minimizing total tar-
diness of TPIFIMP scheduling problems. On the
contrary, the min-RPP sorting successfully corrects
almost any fails of the RPP-RAP heuristic. There-

fore, the CU-RPP-RAP heuristic can be defined
as the RPP-RAP heuristic by (4) — (10) using the
min-RPP sorting approach as (25) with (17) by
(18).

Despite the CU-RPP-RAP heuristic is not
perfect against the RPP-RAP heuristic (using the
earliest-job sorting), it is impossible to figure out
which processing periods (1) and due dates (3)
should be to have the least total tardiness value pro-
duced solely by the earliest-job sorting approach.
The task of searching for such a pattern was sim-
plified with setting release dates (2) as (40), but the
pattern is not clear. This pattern does possibly exist
but it is too tricky if even the simplification has not
given a primitive sketch of it. Nevertheless, this
does not really matter owing to the highly efficient
min-RPP sorting.

Conclusions

To minimize total tardiness in TPIFIMP
scheduling by the heuristic based on RAPsand RPPs,
it is the best to use the min-RPP sorting instead
of the earliest-job sorting to schedule jobs when
two or more maximal decisive ratios become equal.
It is plausible that the respective CU-RPP-RAP
heuristic is not the best itself, but it generally out-
performs or equal to the heuristic if the earliest-job
sorting, the RPP-or-due-date sorting, and the ran-
dom sorting are used. Therefore, the CU-RPP-RAP
heuristic using the min-RPP sorting is the best
considering the RPP-RAP heuristic with the other
three sorting approaches in TPIFIMP scheduling.
However, the research on the RPP-RAP heuristic
should be furthered for the case when jobs have
their priority weights, where the sorting improve-
ment is to be yet analyzed.
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B.B. PomaHtok

YOOCKOHANEHHA COPTYBAHb B EBPUCTWLI HA OCHOBI 3AJIMWKOBUX HAABHWMX PECYPCIB | MEPIOAIB
[0 OBPOBKW AN MIHIMI3ALIT 3ATANIBHOMO 3AMNI3HIOBAHHS Y NMOCTYMNANBHOMY OAHOMALLMHHOMY MNAHYBAHHI
3 NMEPEMNKAHHAMM BE3 MNMPOCTOHO

Mpo6nemaTuka. Y nnaHyBaHHi 3aBAaHb i3 NepeMUKaHHSAMU, SIKE € YaCTUHOIO 3aa4 YNOPSAKOBYBaHHS Ha BUPOOHULTBI, OOHiE0
3 KIMHOYOBYX LiNern € 0TpUMaHHs po3knagy, 3aranbHe 3anisHioBaHHs sikoro 6yno 6 miHimanbHUM. MiHimi3auis 3aranbHoro 3anisHioBaH-
HS1 3a3BUYail 3BOAUTLCS [0 PO3B’si3aHHsi KOMGIHATOPHOT 3afavi, Lo CTae NpakTUYHO HEPO3B’A3HOI0, LLIOMHO KiNbKiCTb 3aBAaHb i Kifb-
KOCTi ix nepioais 4o 06pobku 3pocTatoTb. LLLo6 ynopatucs 3 Uieto npobnemoto, BUKOPUCTOBYHOTb EBPUCTUKW. Brinsbkoto Ao Havikpalloi
€ eBpUCTUKA, Y 5K BUPILLANbHUM CriBBIAHOLEHHSAM € 06epHeHe 3Ha4YeHHS MakCMMyMy mapuv 3anuLiKoBOro nepiogy Ao obpobku
Ta 3anULLKOBOro HasiBHOro pecypcy. OgHak L eBpUCTMKa MOXeE CKragaTtu po3knaan AeKinbKox pooiT, 3aranbHe 3ani3HIoBaHHS SIKUX €
Ha 25 % 6inbwmm 3a MiHiMyM, abo 1 ripwie. Tomy us eBpucTUKa NoTpebye KopekTyBanbHOI Tifku, ska 6 Hagani Hamaranacs MiHimisy-
BaTuW 3aranbHe 3ani3HioBaHHS 3a NEBHUX YMOB.

Meta gocnigxeHHs. BctaHOBUTY, IO came Mae ByTu CKOPUroBaHO B EBPUCTULL TaK, LLOG 3HAYEHHSI 3araribHOro 3ani3HioBaHHS
3mMeHLwwunock. EBpuctuka 6yae 3actocoBaHa A0 LWiNbHOMO NOCTYNanbHOrO OAHOMALUMHHOIO MilaHyBaHHS 3 NepeMuKaHHsIMK 6e3 npo-
CTOH0, Y IKOMY MOMEHTM 3anycKy 3aBAaHb MOAAOTLCS Y MOPSIAKY 3pOCTaHHSA Big 1 4O KiNbKOCTi 3aBAaHb, @ MOMEHTU NPUAHATTS BUKO-
HaHHSA 3aBOaHb BCTAHOBMIOOTHCS LLiMbHO 32 MOMEHTaMM 3anycky. HEeTOYHICTb 3HaXOMKEHHST MiHIMAnbHOrO 3ararnibHOro 3ani3HBaHHS
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y Uil 3aga4i nnaHyBaHHS Mae HanbinbLL HEraTUBHUIA BNMB, TOMY BOHA € MaiiXe HawripLumnM BUNaakoM, sIKUiA BU3Ha4Yae Mexy TOYHOCTI
E€BPUCTUKMN Ta 6e3nocepeHbO Cryrye NPUHUMIOM MiHIMaKCy, rapaHTyouM 3MEHLLEHHS BTPAT 3@ HaWripLUMX YMOB.

MeTtoauka peanisadii. EBprcTvKa copTye MakcMmarbHi BUpiLLanbHi CNiBBIGHOLLEHHS 3a MOMEHTaMM 3anycKy 3aBfaHb, Bifaaloum
nepesary HanbinbLl paHHiM 3aBaaHHAM. [ns JOCArHEHHS 3a3Ha4YeHoi METV NPEACTaBNATLCA TPU iHLWI NigXoamn 4O COPTYBaHHSA Ta nNpo-
BOOMTLCS 0BYMCnoBanbHe AOCNISKEHHS i3 32aCTOCYBaHHSIM KOXXHOTO 3 YOTMPLOX EBPUCTUYHKX NiAXOA4IB AN MiHiMi3auii 3aranbHoro 3a-
nigHIoBaHHS. [Insa Lboro reHepyoTbes ABi nocnigosHocTi 3 266000 i 1064000 3agay nnaHyBaHHS.

Pesynbraty gocnipkeHHs. Migxig i3 copTyBaHHAM HanbinbLl paHHiX 3aBaaHb 3abesnevye eBpUCTUYHO MiHIManbHe 3HayveH-
HS 3aranbHOro 3ani3HiBaHHA y noHad 97,6 % 3agadv nnaHyBaHHS, ane uen nigxig He Moxe MiHiMidyBaTu 3aranbHe 3ani3HBaHHS
Yy HE MeHLU Hix 2,2 % BunagkiB. A BTiM, Niaxig i3 COPTyBaHHSAM 3a MiHiMi3aLielo 3anuwKoBmx nepioais 4o 06pobkm Bupobnse eepuc-
TUYHO MiHIManbHe 3aranbHe 3ani3HiBaHHA Mavxe Ans Oyab-sikoi 3agadi nnaHyBaHHs. [onpy MOXNUBI BUHATKM, Liel nigxia i3 cop-
TyBaHHAM “nporpae” iHWmnxX nigxoaam gyxe mano. Kpim Toro Taki BUHATKM € Haf3BUYaNHO PiAKiCHUMM, OCKinbku Byno 3adikcoBaHo
nuLe ofHy 3apady nnaHyeaHHs (3 31914 Bunagkis, BiA3HavyeHUX ogHoocoboBMMYK “nepemMoramu’ eBpUCTYK), MiHiManbHe 3aranbHe
3ani3HBaHHS SKOi JOCAraeTbCst 3a MiAXOAOM i3 COPTYBaHHSIM HaWbinbLL paHHiX 3aBaaHb.

BucHoBkK. Haikpalloro Bepcieto eBpUCTUKM € BUKOPUCTaHHSA NigXOAY i3 COPTYBaHHAM 3a MiHiMi3aUieto 3anvLwKoBMX nepioais
[0 06pobkn. OfHak Hapasi Lie NigTBepaXyeTbCA ANA BUNAAKy, B AKOMY 3aBAaHHS He MatoTb XOAHMX npiopuTeTiB. Bunagok, 3a skoro
3aBAaHHsA MaloTb Baru CBOiX NPIOPUTETIB, Le NOTPIGHO NpoaHanisysaTu.

KnrouoBi cnoBa: ogHOMalUMHHE MMaHyBaHHA 3aBAaHb i3 NMepeMUKaHHsIMW; 3aranbHe 3ani3HBaHHS; eBpUCTMKa; Miaxig
[0 COPTyBaHHS; 3anvLLKOBI Nepioan Ao 06pobKuM; 3anuLLKOBI HasiBHI pecypcy.

B.B. PomaHtok

YCOBEPLUEHCTBOBAHME COPTMPOBOK B OBPUCTMKE HA OCHOBE OCTATOYHbIX MMEKLWMNXCA PECYPCOB
M TMEPMOOOB OO OBPABOTKM ONA MUHUMUBALMW  OBLLUEMO 3AMA30bIBAHNA B TMPOrPECCUPYHOLLEM
OOHOMALLUMHHOM MNAHNPOBAHWW C NEPEKITIOYEHNAMK BE3 NMPOCTOA

Mpo6nematuka. B nnaHnpoBaHUW 3afaHuii ¢ NEepeKIioYeHsIMU, KOTOPOe SBMSIETCA YacTbio 3a4ay yrnopsiAoveHnst Ha npo-
V3BO/CTBE, OAHOW 13 KMHOYEBLIX Lienel SBNsieTca nonyvyeHne pacnucaHus, obliee sanasabiBaHne KOToporo 6bino 6bl MUHUMAanbHbIM.
OB6bI4HO MUHMMU3ALMA 06LLero 3anasfbiBaHUS CBOAMTCS K PELUEHUIO KOMOWHATOPHOW 3aaaun, KoTtopasi CTaHOBUTCS MPaKTUYECKM
HepaspeLLMMON, Kak TONbKO KONMYeCTBO 3aiaHnii 1 KONMYECTBa X NepnuogoB Ao 06paboTku Bo3pacTatoT. YTobbl pelumnTb 3Ty npobne-
MY, UCTIONb3YOT 3BPUCTUKM. Bnnskor k HamnyyLle ABnseTcs aBpUCTHKa, B KOTOPOW 3a peLuatollee cooTHoLleHne GepyT obpaTHyto
BEMUYMHY MakcMMymMa napbl OCTaTouHOro nepuoaa Ao 06paboTky 1 ocTaTouHOro UMetoLLerocst pecypca. OfHako aTa 3BpUCTUKA MO-
XKET co3fjaBaTb pacnucaHns HECKOMNbKMX 3aAaHunin, Yb€ obLee 3anasgbiBaHue Ha 25 % Gonblue MUHUMYMa, unu aaxe xyxe. [Noatomy
3Ta aBpuUcTHKa TpebyeT KOPPEKTUPOBOYHON BETBW, KOTOpasi Obl B AarnbHENLWeM MbiTanacb MUHUMW3NMPOBaTL 0bLLee 3anasfbiBaHue
B ONpefenéHHbIX YCNOoBUSIX.

Llenb uccneaoBaHus. YCTaHOBUTb, YTO UMEHHO JOIMKHO ObITb CKOPPEKTUPOBAHO B 3BPUCTUKE Tak, YTOObI 3HaYeHve obLiero
3anasabiBaHNs cTano MeHblUMM. IBpUCTMKa ByAeT NpUMEHEHa K NNOTHOMY MPOrpeccupytolleMy ogHOMALUMHHOMY NaHUPOBaHUIO
C nepeksoyeHsMn 6e3 NpocTosi, B KOTOPOM MOMEHTbI 3anycka 3afaHuii NogaTca B Nopsiake Bo3pactaHus oT 1 Jo konuyecTsa
3afjaHuNi, @ MOMEHTbI MpMéMa BbINOMHEHNSA 3afjaHU YCTaHaBNMBAOTCS MAOTHO MO MOMEHTaM 3anycka. HeToYHOCTb HaxoxaeHust
MWHVMManbHOro o6LLEro 3ana3abiBaHNA B 3TON 3ajaye NnaHMpoBaHWs UMeeT Hanbornee HeraTUBHOE BNMsIHUE, NO3TOMY OHa SIBMNSIETCA
NpaKTUYECKN HaUXYALLIMM Cryvaem, onpeaensioLum rpaHnLy TOYHHOCTU 9BPUCTUKU, U HEMOCPEACTBEHHO BLICTYMAET B KAYECTBE NPUH-
uMna MMHUMaKca, rapaHTMpyst YyMeHbLLIEHNE NOTepb B HAUXYALLIUX YCIIOBUSIX.

MeToauka peanusauumu. 3BpUCTVKA COPTUPYET MaKCMMasibHble pellatoLme COOTHOLLEHUSI MO MOMEHTaM 3arycka 3aaHuii,
oTAaBas npegnodTeHve Havbornee paHHUM 3afaHuaM. [ns AOCTWKEHWS YKa3aHHOW Lenu npeacTaBnsioTcs TpU Apyrux noaxona
K COPTUPOBKE W NMPOBOAMUTCS BbIMUCNUTENBHOE UCCNeaoBaHue C NPUMEHEHNEM KaXA0ro M3 YEeTbIPEX IBPUCTUYECKUX NOAXOLO0B Af1A
MUHMMUK3aLMK 06LLero 3anasgbiBaHust. [Ins aToro reHepupyroTes ABe nocriegoBaTtensHocTy n3 266000 1 1064000 3agay nnaHmpo-
BaHUs.

PesynkraTthl uccnegoBaHus. [oaxon ¢ copTypoBkol Hambonee paHHUX 3adaHuin obecneyvBaeT 3BPUCTUHECKN MUHUMANbHOE
3HaveHune obLuero 3anasgbiBaHus B 6onee vyem 97,6 % 3agay nnaHMpPOBaHWS, HO ATOT MOAXOA HE MOXET MUHMMU3MPOBaTh obLlee
3anasgbiBaHne B He MeHee YeM 2,2 % cnyyaeB. TeM He MeHee, MOAXOA C COPTMPOBKOW MO MUHMMMU3ALMM OCTATOYHbLIX NEPUOLOB
K 06paboTke NPOM3BOAMT IBPUCTUHECKM MUHMManbHOE obLlee 3anasablBaHve NoyTU Ansa niobon 3aaauun nnaHuposaHus. Bonpeku
BO3MOXHbIM UCKITOYEHUSIM, 3TOT MOAXOL C COPTUPOBKON “NpourpbiBaeT” ApyruMm noaxoaam odeHb Marno. bonee Toro, Takve ucknwo-
YeHUsi Ype3BblYaNHO PEAKM, MOCKOIbKY ObINo 3apUKCHPOBaHO NULLL OAHY 3aaadvy nnaHupoBaHust (M3 31914 criyyaeB, OTMEYEHHbIX
eaVHONMUYHbIMK “nobegamun” 3BPUCTHK), MUHMManbHOE obLLee 3ana3fbiBaHne KOTOpPOo AOCTUraeTcs No NOAXOAY C COPTUPOBKON Hau-
bonee paHHUX 3adaHUiA.

BbiBoAbl. Havnyulleln Bepcuein aBpucTvkn SIBRSIETCA MCMONb30oBaHWe Noaxona ¢ COPTUPOBKOW MO MUHUMMU3ALIMM OCTaTOYHbIX
nepuopos k o6paboTke. OaHako noka aTo NOATBEPXKAAETCS ANA Cryyasi, B KOTOPOM 3aAaHusi He obnajatoT Kakumu-nnbo npuopute-
Tamu. Crnyyai, B KOTOPOM 3afaHns HaferneHbl BecCamy CBOUX NMPUOPUTETOB, eLLé NpeacToUT NpoaHanuanpoBarth.

KntoueBble crioBa: 04HOMALUMHHOE MNaHMpPOBaHWe 3aaHuii ¢ NepekstyeHnsMI; obLuee 3anasablBaHue; 9BPUCTUKA; MOAXOS,
K COPTMPOBKE; OCTaTOYHblE Nepuoabl kK 06paboTke; OCTaTOUHbIE UMEILLMECS PECYPCHI.
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