52 KPI Science News 2020/ 4

DOI: 10.20535/kpisn.2020.4.209129
UDC 519.161+519.687.1+004.023

V.V. Romanuke*
Polish Naval Academy, Gdynia, Poland

*corresponding author: romanukevadimv@gmail.com

TIGHT-TARDY PROGRESSIVE IDLING-FREE 1-MACHINE PREEMPTIVE SCHEDULING
WITH JOB PRIORITY WEIGHTS BY HEURISTIC’S EFFICIENT JOB ORDER INPUT

Background. In setting a problem of minimizing total weighted tardiness by the heuristic based on remaining available
and processing periods, there are two opposite ways to input the data: the job release dates are given in either ascending
or descending order. It was recently ascertained that scheduling a few equal-length jobs is expectedly faster by ascending
order, whereas scheduling 30 to 70 equal-length jobs is 1.5 % to 2.5 % faster by descending order. For the number of
equal-length jobs between roughly 90 and 250, the ascending job order again results in shorter computation times. In
the case when the jobs have different lengths, the significance of the job order input is much lower. On average, the
descending job order input gives a tiny advantage in computation time. This advantage decreases as the number of jobs
increases.

Objective. The goal is to ascertain whether the job order input is significant in scheduling by using the heuristic for the
case when the jobs have different lengths with job priority weights. Job order efficiency will be studied on tight-tardy
progressive idling-free 1-machine preemptive scheduling.

Methods. To achieve the said goal, a computational study is carried out with a purpose to estimate the averaged
computation time for both ascending and descending orders of job release dates. First, the computation time for the
ascending job order input is estimated for a series of job scheduling problems. Then, in each instance of this series, job
lengths, priority weights, release dates, and due dates are reversed making thus the respective instance for the descending
job order input, for which computation time is estimated as well.

Results. The significance of the job order input is much lower than that for the case of jobs without priorities. With
assigning the job priority weights, the job order input becomes further “dithered”, adding randomly scattered priority
weights to randomly scattered job lengths and partially randomized due dates. On average, the descending job order
input is believed to give a tiny advantage in computation time in scheduling up to 100 jobs. However, this advantage,
if any (being tinier than that in the case of random job lengths without priorities), quickly vanishes as the number of
jobs increases.

Conclusions. It is better to compose job scheduling problems which would be closer to the case with equal-length jobs
without priorities, where the saved computational time can be counted in hours. Even if the job lengths and priority
weights are scattered, it is recommended to artificially “flatten” them. When artificial manipulations over job processing
periods and job priority weights are impossible, it is recommended to use the descending job order input in scheduling
up to 100 jobs, and either job order input in scheduling more than 100 jobs, although substantial benefits are not
expected in this case.

Keywords: preemptive single machine job scheduling; total weighted tardiness; heuristic; ascending job order; descend-
ing job order; computation time; efficient job order.

Introduction

Job scheduling is an important combinatorial
problem whose practical impact is pretty intense.
Tardiness is one of the main features in scheduling.
The exact minimization of total weighted tardiness
is possible just for a few jobs whose processing peri-
ods are not very long [1]. Heuristics are the only
means which capable of scheduling hundreds and
thousands of jobs, or more [2, 3]. In some practical
tasks, moreover, the entire schedule can be an ex-
tremely long sequence of jobs [4], whereas the heu-
ristics allow online scheduling (once a job is sched-
uled at a time moment, it will not be changed and
thus the jobs already scheduled can be executed

© The Author(s).
The article is distributed under the terms of the license CC BY 4.0.

straightforwardly without waiting for the entire
schedule) [5].

The heuristic based on the remaining available
period and remaining processing period [6] is closely
the best one. Its efficient job order input (in ascend-
ing or descending order) was studied in articles [7]
and [5]. The efficiency implied faster computations.

Article [7] ascertained that, in scheduling by
using the heuristic, the job order input is significant
for the case of tight-tardy progressive idling-free 1-
machine preemptive scheduling of equal-length
jobs. Scheduling a few jobs is expectedly faster by
ascending order, although there were many compu-
tational artifacts [5]. Article [7] showed that sched-
uling 30 to 70 jobs is 1.5% to 2.5 % faster by de-

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 53

scending order. However, scheduling up to 90 jobs
is expectedly still faster by descending order, alt-
hough a risk of losing this advantage exists. For the
number of jobs between roughly 90 and 250, the as-
cending job order again results in shorter computa-
tion times. Since the point of about 250 jobs, the
advantage trend (of either ascending or descending
order) appears more stable. Besides, the average rel-
ative difference does not exceed 1.5 % for 2 to 1000
jobs consisting up to 17 processing periods. Article [7]
also revealed that, for obtaining a statistically relia-
ble computation speed advantage, it is better to con-
sider no less than 250 jobs. However, as either the
number of jobs or the number of job parts increases,
the computation speed advantage may become un-
stable and eventually vanish. In the same time, in
the case of scheduling at least a few thousand jobs
having just a few processing periods each, the as-
cending job order can save a lot of computational
time — after solving thousands of such cases the
saved time may be counted in hours (see computa-
tional examples in [7]).

In the case when the jobs have different lengths
(i. e., whose number of processing periods varies)
studied in [3], the significance of the job order input
is much lower than that for the case of equal-length
jobs. On average, the descending job order input
gives a tiny advantage in computation time. This ad-
vantage decreases as the number of jobs increases.
The decrement resembles a steep exponential de-
crease. The factual advantage is so insignificant that
even after solving long series of job scheduling prob-
lems the saved computational time cannot be
counted in minutes, not speaking about hours. The-
oretically, the heuristic’s efficient job order input
does exist but its efficiency can be practically used
only by working on extremely long series of sched-
uling problems where the number of jobs should not
exceed 300 [5].

The research is to be finalized with the case
when the jobs have different priority weights. This is
an extension (continuation) of the cases studied in [7]
and [5], where the priorities are not sorted. Now,
the influence of the generalized tight-tardy progres-
sive idling-free 1-machine preemptive scheduling on
the heuristic’s computational times (for both the as-
cending and descending job order) is to be studied.

Problem statement
The goal is to ascertain whether the job order

input is significant in scheduling by using the heu-
ristic for the case of tight-tardy progressive idling-

free 1-machine preemptive scheduling with job pri-
ority weights. The five following tasks will be ful-
filled for achieving this goal. First of all, the princi-
ples of the ascending and descending job order in-
puts are stated, whereupon the heuristic is shortly
stated for the case of when the jobs have different
lengths and different priority weights. Then, gener-
ation of the job scheduling problem instances is
stated for this case, whereupon a computational
study is carried out for estimating the relative differ-
ence between averaged computation times for both
the ascending and descending job order. Finally, a
conclusion is made on whether the efficient job or-
der input exists for minimizing total weighted tardi-
ness by the heuristic (based on remaining available
and processing periods). Besides, the final compari-
son of the respective results for the three classes of
job scheduling problems (total tardiness by equal job
lengths [7], total tardiness by different job lengths [5],
total weighted tardiness) should be made. These re-
sults are to be arranged and the corresponding rec-
ommendations are to be formulated.

Principles of the ascending and descending job
order inputs

In minimizing total weighted tardiness, the in-
itial data are job lengths, job release dates, priority
weights, and due dates [8]. There are two opposite
ways to input the data. On one hand, the job release
dates are given in ascending order. For N jobs,
N e N\ {1}, without losing generality, the ascend-

ing job order input (this is the common way of in-
putting the data) corresponds to due dates

d,=r,+H,-1+b, Vn=1, N (1)

by the respective release date r, of job n, its length
H, and a random due date (1) shift

b,=w(H,-C) for n=1, N ()

with a pseudorandom number { drawn from the

standard normal distribution (with zero mean and
unit variance), and function y(§) returning the in-

teger part of number & (e.g., see [1, 5, 7]). Job n
has priority weight w, (which, like the others, is a

positive integer). In particular, the release dates can
be given in ascending order as follows [35, 7]:

r,=n VYn=1,N. (3)

Strictly speaking, the release dates can be permuted
as one likes or needs to satisfy some external condi-

54 KPI Science News

202074

tions (obviously, the job processing periods, job pri-
ority weights, and due dates are permuted with re-
spect to the release date permutation). Thus, on the
other hand, the job release dates are given in de-
scending order as

r,=N-n+l1 Vn=1, N 4)

and the descending job order input corresponds to
due dates
d,=r,+H-1+by_,,, Vn=1,N. (5)

Due date shifts (2) are generated until

d,>1 Vn=1, N. (6)
If simultaneously
H,<H,, and d, Sa’,,—Jr1 o
and w,2w,,, Vn=1 N -1

for the ascending job order input with (3) and (1),
then due date shifts (2) are re-generated as well. So,
if one of the inequalities in (7) is violated, then the
due dates are given properly for the ascending job
order input:

d,=n+H,-1+b, Vn=1, N. (8)
Symmetrically, if simultaneously
H,>H,,, and d, >d,,,

_ 9
Vn=1 N-1 ©

and w, <w,,

for the descending job order input with (4) and (5),
then due date shifts (2) are re-generated also. If one
of the inequalities in (9) is violated, then the due
dates are given properly for the descending job order
input:

d =N-n+H,+by_,., Yn=1,N. (10)

Thus, due dates (8) are not given in non-descending
order if the job lengths and their priorities have been
occasionally generated in non-descending order and
in non-ascending order, respectively. This is done
so because in the case of when all inequalities (7)
are simultaneously true, a schedule ensuring the ex-
actly minimal total weighted tardiness is found triv-
ially, without resorting to any algorithm or model
(see Theorem 1 in [9] and [10]). By symmetrical
reasoning, due dates (10) are not given in non-as-
cending order if both the job lengths and their pri-
orities have been occasionally generated in non-as-
cending order and in non-descending order, respec-
tively: if all inequalities (9) are simultaneously true,

an optimal schedule is found trivially as well owing
to Theorem 2 in [9] and [10].

The heuristic based on remaining available and
processing periods

The basis of the heuristic operating on remain-
ing available and processing periods was firstly in-
troduced in [6] and then developed for minimization
of total weighted tardiness in [5, 7, 11, 12]. The

heuristic builds stepwise a schedule S =[5,];; as

N
time # progresses up to 7' = ZHn . Before the start,

n=l1
=H, Vn=1,N. (11)
Then, for every set of available jobs
A(t)={ie{l, N}:r,<tand q; >0} c{l, N} (12)

the remaining available period is

b =max{0,d, —t+1} Vie A{t) (13)
and a subset
A (1) = arg Iemf%m (14)
is determined. If | A°(f) | =1, where
A0 ={i"Y < AW < {l, N},
then
§ =i by qlff’bs) =q- and ¢ (Obs) -1;(15)
otherwise
A @) ={ij}fy cAQ) <{l, N} by L>1, (16)
whence
§, =i by qf;f’bs) =g, and g, “’bS) ~1.(17)

Assignment (17) executed by condition (16) for sub-
set (14) implies that, in a case when there are two
or more maximal decisive ratios in (14), the earliest
job is preferred to be scheduled [7]. Thus, job # is

completed after moment é(n; H)) if

—n VYh,=1,H, by &mh,)efl, T}

So(m h,)

and O(m h,) <O(m h,+1) for h,=1, H,—1

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 55

in schedule S = [S;];x7 returned by the heuristic. Fi-
nally, amount

HN) = % w, -max{0, (n; H,)—d,}

n=1

(18)

is an approximately minimal total weighted tardiness
that corresponds to this schedule.

Generation of the job scheduling problem
instances

The jobs having different lengths are randomly
generated by a method suggested in [5, 11]:

H,=vy(16v+2) for n=1, N (19)

with a pseudorandom number v drawn from the
standard uniform distribution on the open interval
(0; 1). So, the job length is randomly generated be-

tween 2 and 17 [5, 7]. The priority weight of job n
is randomly generated in the identical way:

w, =y(100v+1) for n=1, N. (20)

When job lengths (19), priority weights (20), and
due date shifts (2) are properly generated by some
N for the ascending job order input, i. e. inequality
(6) holds and at least one of the inequalities in (7)
is violated, then an ascending order schedule by job

lengths {H, },,N=1 , their priority weights {wn},jlvzl , Te-
lease dates (3), and due dates (8) is computed by the

heuristic with statements (11) — (18). Alternatively,
a descending order schedule by job lengths

{H,}., after H}ObS) - H, V=L N

21
and H, = H® for n=1, N .
n N-n+l1 ’ ’
priority weights
N (obs) _ -
w, b after W™ =w, Vj=1, N 22)

(obs)

and w, =wy",, for n=1, N,

release dates (4), and due dates (10) is computed as
well. In fact, job lengths (21), priority weights (22),
release dates (4), and due dates (10) for the descend-
ing job order input are obtained by just reversing

(i. e., flipping the left and right) job lengths {H, },,Nzl,

priority weights {w,,}nN=1 , release dates (3), and due

dates (8) for the ascending job order input [35].
At a fixed number of jobs N and for a job
scheduling problem instance tagged by an integer c,

denote the schedule computation times by ascend-
ing order and descending order by 7t ,,.(N,c) and

Tpese (¥,) in milliseconds (ms), respectively. If the
total number of the instances is C, then the respec-

tive averaged computation times for scheduling N
jobs are [5]

C
TASC(N):%ZITASC(N9 c) (23)

and
1 C
TDesc(N) = EZTDesc(N> C) . (24)
c=1

In percentage terms, the relative difference between
computation times (23) and (24) is

n(V)=100. 24 =T N) v _ 577000, (25)
T e (V)

Relative difference (25) will be estimated for
C =350 and C =450. Generating more instances
will not make the estimation more effective, alt-
hough even 350 instances at a fixed number of jobs
here is superfluous.

Computational study

Just as in articles [7] and [5], the computa-
tional study is executed on CPU Intel Core i5-
7200U@2.50 GHz using MATLAB R2018a. Rela-
tive difference (25) is shown in Fig. 1 for C =350
whose average relative difference

1 1000
7(1000) = ——- > n(m) = 0.3958

999 (26)

m=2

indicates a tiny advantage of the descending job or-
der input. It is still uncertain whether such a tiny
advantage could be claimed statistically reliable, alt-
hough running average relative difference

N
-y m(m) for N =2,1000 (27)

m=2

AN =~

whose plot is added to the relative difference pol-
yline appears to stand for the descending job order
input (owing to the horizontal zero level line put on
the plot).

Fig. 2 contains the results of the same compu-
tational experiment repeated by another randomizer
[13, 14]. Now, average relative difference

56 KPI Science News

202074

N N A N N A B

i lvnll'l,,, i

w'

|
20 30 40 50

| L | |
60 90 100 110 120 130 140 150

‘\\IJ\\\\ FTT T T T T 1T T

boubhbbbiomnpwbono~wo

| | | [| | | [| |

50 100 150 200 250 300 350 400 450

Fig. 1. Relative difference (25) and running average relative difference (27) for C =350

1000
-3 n(m) = 0.2878

m=2

7(1000) =

999 (25)

is even lesser than average relative difference (26) by
the first version of the computational experiment.
However, running average relative difference (27)
here appears to be a little bit more persuasive argu-
ing in favor of the descending job order input.

The results of the third computational experi-
ment executed for C =450 are shown in Fig. 3.
Here, average relative difference

TTT T T T 11T

_.
w
FT T T T T T

000000000 ——aoaaaaaa NN

550 600 650 700 750 800 850 900 950 1000

— —a); —&— —)

1 1000
7i(1000) = —- 3" n(m) ~ 0.2383

2
999 =, (29)

is slightly lesser than average relative difference (28)
by the second version of the computational experi-
ment. Running average relative difference (27) here
is similar to those in Fig. 1 and Fig. 2 but it still
cannot confirm the statistical reliability of that the
descending job order input is faster.

G O=RNWE DNV NWROONDONSN

110 120 130 140 150 160 170 180 190 200

LbhlbhoapnmweoonoN®

Lo oudounal i | [T

b{/ M /
A
| | | | | |

2 50 100 150 200 250 300 350 400 450

Fig. 2. The second version of relative difference (25) and running average relative difference (27) for C=350:

—&— — V)

500 550 600 650 700 750 800 850 200 950 1000

— —)

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS

57

]

EE VNV VY

|

| Pl A
i 8 o . T | -]

0 I i i — T

100 110 120 130 140 150 160

TTTTT T T T I T T T T T I T T T T T T TTTITT

Ao DSTSISTSTSTIS ST SIS 1S T
ADRHILAO2NWROONBOOSNWEND~BOO N B EAD~DOS

170 180 190 200 210 220 230 240 250 260 270 280 290 300

I It L |

- uww' o vvwww ' u'.w AR LA e L Lk A B

C N

C |
2 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Fig. 3. Relative difference (25) and running average relative difference (27) for C=450: —— — n(N);
—o— — (N)
Another way to process the obtained data is to A, - .
count the sliding average [15, 16] of relative differ- n([2: 100]), ({100 (k — 1) +1: 100 k1) (34)

ence (25):

1 Ny
N Mt ,2 "™ o)
for k=1, K by N, =2 and N,, = 1000,

AN Nyl =

where

N, <Ny, by k=1 K

K 31)
and [JIN; Nl =[Ny, Nyl (

k=1
Sliding average (30) has a sliding window as an in-
terval [N,; Ny,;] which, in general, can be

slightly varied on the way to the right endpoint
Ng.,, . Consider three versions of the sliding win-

dow: with the length of 20 which is
7([2; 20]), n([20-(k-1)+1;20- k])

_ 32
for k=2,50 (32)

(the very first interval length is 19 due to the starting
value is 2), with the length of 50 which is

n([2; 501), A([50-(k -1)+1;50 - k])

_ 33
for k=220 33)

(the very first interval length is 49 by the same rea-
son), and with the length of 100 which is

for k=2, 10

(the very first interval length is 99). Fig. 4 shows
these three versions of the sliding average of the rel-
ative difference in Fig. 1, wherein the wider window
is marked with a thicker line of a lighter color. Gen-
erally speaking, each of sliding averages (32)—(34)
seems resembling the exponentially-like decreasing
relative difference and its running average by (27).
However, the slight advantage (of about 0.5 % to
1.8 %) of the descending job order input quickly
vanishes since 400 jobs. Moreover, the advantage, if
any, is too slim in scheduling between 400 and 1000
jobs. Fig. 5 showing the three versions of the sliding
average of the relative difference in Fig. 2 confirms
these doubts: in scheduling between 200 and 800
jobs, the ascending job order input is faster. Finally,
the three versions of the sliding average of the rela-
tive difference in Fig. 3 shown in Fig. 6 appear dis-
orderly also.

Although it seems that some advantage of the
descending job order input exists in scheduling up
to 100 jobs (owing to Fig. 4—6), its statistical relia-
bility is not high. Again, these figures reveal that the
advantage, if any, is too unstable and unpredictable.
As the sliding window becomes wider, the sliding
averages over the respective intervals appear more
“pressed” to the horizontal zero level line.

58 KPI Science News 2020/ 4

24—
22—

18 = —_
16— _—
1.4 —_

12—

0.8 —_—

06— — —_
0.4+ —_
02—

| 1 | | | | |
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

-0.6

[y

Fig. 4. The three versions of the sliding average of the relative difference in Fig. 1: — — Sliding window 20; —— — Sliding
window 50; — Sliding window 100

36 —
3.4
3.2

2.8
26
24
221

18-
1.6~
141
1.2

0.8
0.6
0.4
0.2

-0.21-
-0.4-
-0.6-
-0.8

| [[[[[[[
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

o=

Fig. 5. The three versions of the sliding average of the relative difference in Fig. 2: — — Sliding window 20; —— — Sliding
window 50; — Sliding window 100

I | I | LT | | I I I |
2 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 €00 950 1000

Fig. 6. The three versions of the sliding average of the relative difference in Fig. 3: — — Sliding window 20; —— — Sliding
window 50; — Sliding window 100

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 59

Discussion

As the heuristic is extremely fast itself (1000
jobs are scheduled within 150 ms to 170 ms on the
computational study’s equipment), the real-time
difference between the computation times by as-
cending order and descending order is too tiny. This
is why the relative difference between the computa-
tion times is so unstable. Another aspect of the heu-
ristic is susceptibility of its algorithm to the proces-
sor on which it is executed (the plots in Fig. 1—6
will likely appear differently when using other oper-
ating system and processor). Eventually, the seem-
ing advantage of the descending job order input in
scheduling up to 100 jobs is about 0.4 % to 1.5 %,
by scheduling 100 jobs within 5.3 ms to 8.6 ms,
which can be converted into a real benefit only if a
long series of such scheduling problems are solved
(on the same equipment). For example, solving a
series of 10000 problems with 100 jobs (where each
problem is solved by about 8 ms) by the descending
job order input relying on its 1.5 % advantage saves
just 1.2 seconds. So, the efficiency of either job or-
der input can be practically treated equal.

Conclusions

By using the heuristic for the case of tight-tardy
progressive idling-free 1-machine preemptive schedu-

References

ling with job priority weights, the significance of the
job order input is much lower than that for the case
of jobs without priorities. With assigning the job pri-
ority weights, the job order input becomes further
“dithered”, adding randomly scattered priority
weights to randomly scattered job lengths and par-
tially randomized due dates. On average, the de-
scending job order input is believed to give a tiny
advantage in computation time in scheduling up to
100 jobs. However, this advantage, if any (being ti-
nier than that in the case of random job lengths
without priorities), quickly vanishes as the number
of jobs increases.

As a final result, it is better to compose job
scheduling problems which would be closer to the
case with equal-length jobs without priorities, where
the saved computational time can be counted in
hours. Even if the job lengths and priority weights
are scattered, it is recommended to artificially
(manually) “flatten” them, if possible, and then se-
lect the corresponding job order input for the heu-
ristic using the description in [7]. When artificial
manipulations over job processing periods and job
priority weights are impossible, it is recommended
to use the descending job order input in scheduling
up to 100 jobs, and either job order input in sched-
uling more than 100 jobs, although substantial ben-
efits are not expected in this case.

[1] V.V. Romanuke, “Efficient exact minimization of total tardiness in tight-tardy progressive single machine scheduling with
idling-free preemptions of equal-length jobs”, KPI Sci. News, no. 1, pp. 27—39, 2020. doi: 10.20535/kpi-sn.2020.1.180877

[2] R. Panneerselvam, “Simple heuristic to minimize total tardiness in a single machine scheduling problem”, Int. J. Adv. Manufact.
Technol., vol. 30, no. 7-8, pp. 722—726, 2006. doi: 10.1007/s00170-005-0102-1

[3] M. Batsyn et al., “Online heuristic for the preemptive single machine scheduling problem of minimizing the total weighted
completion time”, Optimiz. Method. & Software, vol. 29, no. 5, pp. 955-963, 2014.

doi: 10.1080/10556788.2013.854360

[4] D. Rupanetti and H. Salamy, “Task allocation, migration and scheduling for energy-efficient real-time multiprocessor archi-
tectures”, J. Syst. Architec., vol. 98, pp. 17—26, 2019. doi: 10.1016/j.sysarc.2019.06.003

[5] V.V. Romanuke, “Tight-tardy progressive idling-free 1-machine preemptive scheduling by heuristic’s efficient job order input”,
KPI Sci. News, no. 3, pp. 32—42, 2020. doi: 10.20535/kpi-sn.2020.3.199850

[6] F.Jaramillo and M. Erkoc, “Minimizing total weighted tardiness and overtime costs for single machine preemptive scheduling”,
Comp. Industr. Eng., vol. 107, pp. 109—119, 2017. doi: 10.1016/j.cie.2017.03.012

[71 V.V. Romanuke, “Heuristic’s job order efficiency in tight-tardy progressive idling-free 1-machine preemptive scheduling of
equal-length jobs”, KPI Sci. News, no. 2, pp. 64—73, 2020. doi: 10.20535/kpi-sn.2020.2.181869

[8] M.L. Pinedo, Planning and Scheduling in Manufacturing and Services. New York: Springer-Verlag, 2009, 536 p.

doi: 10.1007/978-1-4419-0910-7

(9]

(10]

V.V. Romanuke, “Job order input for efficient exact minimization of total tardiness in tight-tardy progressive single machine
scheduling with idling-free preemptions”, Scientific Papers O.S. Popov Odesa Nat. Academy Telecommun., no. 1, pp. 19-36,
2020. doi: 10.33243/2518-7139-2020-1-1-19-36

V.V. Romanuke, “Total weighted tardiness exact minimization by efficiently inputting jobs to tight-tardy progressive single
machine scheduling with idling-free preemptions”, Digital Technol., no. 27, pp. 41—55, 2020..

60 KPI Science News 2020/ 4

[11] V.V. Romanuke, “Minimal total weighted tardiness in tight-tardy single machine preemptive idling-free scheduling”, Appl.
Comp. Syst., vol. 24, no. 2, pp. 150—160, 2019. doi: 10.2478/acss-2019-0019

[12] M. Tamannaei and M. Rasti-Barzoki, “Mathematical programming and solution approaches for minimizing tardiness and
transportation costs in the supply chain scheduling problem”, Comp. Industr. Eng., vol. 127, pp. 643—656, 2019.
doi: 10.1016/j.cie.2018.11.003

[13] R.T. Kneusel, Random Numbers and Computers. Springer International Publishing, 2018, 260 p. doi: 10.1007/978-3-319-77697-2

[14] S. Vigna, “On the probability of overlap of random subsequences of pseudorandom number generators”, Inform. Process. Lett.,
vol. 158, ID 105939, 2020. doi: 10.1016/j.ipl.2020.105939

[15] M.H. Ardakani et al., “Sliding dynamic data window: Improving properties of the incremental learning methods”, Comput.
Aided Chemical Eng., vol. 40, pp. 1663—1668, 2017. doi: 10.1016/B978-0-444-63965-3.50279-8

[16] N. Gasmi et al., “Chapter 21 - Nonlinear filtering design for discrete-time systems using sliding window of delayed measure-
ments”, in Stability, Control and Applications of Time-delay Systems. Butterworth-Heinemann, 2019, pp. 423—439.

doi: 10.1016/B978-0-12-814928-7.00021-4

B.B. PomaHiok

WINbHE MPOrPECYIOYE 1-MALUMHHE MNAHYBAHHA 3 NMEPEMUKAHHAMW BE3 MNMPOCTOKO 3 BATAMWU TMPIOPUTETY
3ABJJAHb 3A E®EKTMBHOIO NOPAOKY BBOAY 3ABIAHb Y EBPUCTWLII

Mpo6nemaTuka. Y noctaHoBLi 3agadyi MiHimi3aLii 3ararbHOro 3Ba)XeHOro 3anisHBaHHS 3a €BPUCTMKOK Ha OCHOBI BUKOPUCTaHHS
3anULLKOBOro HasiBHOrO pecypcy Ta 3anuLKOBOro nepiogy A0 06pobku icHy0Tb ABa NPOTUNEXHMX Cnocobu BBOAY AaHWX: AaTu 3amnycKy
3aBOaHb 3a4alTbCs MOPSAKOM 3pOCTaHHSA Yu cnadaHHsA. HewopgaBHo Gyno BCTaHOBMEHO, WO NaHyBaHHS AeKiNbKOX PiBHOLHHMX 3a-
BAaHb € OYiKyBaHO LUBMALINM 3@ BUCXIQHOrO NopsiAKy i BogHovac nnaHyBaHHs Big 30 oo 70 piBHOUIHHKX 3aBAaHb Ha 1,5-2,5 % wBeualwe
3a cnagHoro nopsaaky. Ans KinbKocTi piBHOUIHHUX 3aBAaHb Mix npnbnmaHo 90 i 250 BUCXigHUIA NOPSIAOK 3HOBY NMPU3BOAUTL 40 CKOPOYEHHS
Yacy obuucneHb. Y BUnagKy, Konv 3aBgaHHs MatoTb Pi3Hi 06’eMu, iICTOTHICTb NOPSAAKY 3aBAaHb € 3HAa4YHO HUXKYOH. Y cepeHbOMY cnafgHui
nopsiAoK BBOAY 3aBAaHb Aa€ KpUXiTHY nepesary B Yaci obuncneHb. Lis nepeBara cnagae 3i 3pocTaHHsAM KinbKoCTi 3aBAaHb.

MeTa gocnigxeHHs. BctaHOBWTK, YM NOPAAOK 3aBAAHb € iICTOTHUM Y CKIaAaHHi po3knaziB 3a J0NOMOro eBpUCTUKM A8 BUNAAKY,
KONW 3aBAaHHsi MatoTb pi3Hi 06’emn 3 Baramm ix npioputeTiB. EbekTMBHICTE NopsiaKy 3aBAaHb Gyae AocnigXeHo Ha npuknagi WinbHoro
Nporpecy4oro 1-mMallMHHOro NiaHyBaHHs 3 NepeMuKkaHHsIMKU 6e3 NpoCcToto.

MeToguka peanisadii. [poBoanTbCcst obuncnioBanbHe AOCHIAXEHHS 3 METOK OLHKM yCepeLHEHOro Yacy OBYMCeHHs SK Anst Bu-
cxigHoro nopsiaKy, Tak i Ans cnagHoro Nopsiaky AaT 3anycky 3aedaHb. CnodvaTky ouiHIETbCS Yac obuncneHb Ans nocnigoBHOCTI 3aaad
CKMnagaHHs po3KnafiB 3a BUCXiAHOro Nopsiaky BBoAy 3aBAaHb. [lani B KOXHOMY ek3eMnnspi Uiei nocnigoBHOCTi 06’eMu 3aBAaHb, Baru
npiopuTeTiB, AaTK 3anycky Ta AaTu NPUMOMY BUKOHaHHsi 06epTaloTbCsl, YTBOPIOYM Bi4NOBIAHUA €K3eMNAsip AN CNagHoro nopsiaky
BBOAY 3aBAaHb, AN SAKOro TaKoX OLIHIETLCS Yac 0BYMCNEHHS.

Pe3ynbTatn gocnigkxeHHA. 3HaunMicTb NOPSAKY BBOAY 3aBAaHb € 3HAYHO HUKYOHD, HiX Y BUNadKy 3aBdaHb 6e3 npioputeTie. 3a
NpUNUCyBaHHS 3aBAAHHAM Bar NpiopuTeTiB NOPSAOK BBOAY 3aBAaHb CTae Hagani 6inbL “po3amMnTUM” i3 JoAABaHHAM BMNaAKOBO Po3kmaa-
HWX Bar NpiopuTeTiB 40 BUNaAKOBO PO3knaaHnx 06’eMiB 3aBAaHb i YaCTKOBO paHAOMI30BaHMX AaT NPUIOMY BUKOHaHHS. MepenbavaeTbes,
Lo B cepeaHbOMY CNafHWI NopsifoK BBOAY 3aBAaHb Aae KPUXITHY nepeBary B Yaci o64mcneHb npuy cknagaHHi posknagis o 100 3aBaaHb.
OpHak us nepesara (KoTpa € e GinbLu KPpUXITHOO, HiXX y BUNaAKy 3 paH4oMi3oBaHUMM 06’emamu 3aBAaHb 6e3 NpiopuTeTiB), AKLLO BCE X
iCHy€E, LWBUAKO 3HUKAE 3i 36iNbLUEHHAM KinbKOCTi 3aBAaHb.

BucHoBku. [loBeaeHo, Lo Kpalym BapiaHTOM € CKnafaHHs Takux 3agad NnaHyBaHHs 3aBAaHb, siki 6ynm 6 6nvxymmm oo Bunagky
3 piBHOLHHUMM 3aBAaHHSAMM 6e3 npiopuTeTiB, Ae 30epexeHuii 064ncroBanbHUIA Yac MOXe HapaxoByBaTV roanHu. HagiTb AKLLO 06'emun
3aBAaHb i Baru npiopuTeTiB MaloTb PO3KWUA, PEKOMEHA0BAHO LWITYYHO “po3rnamkysaTti” ix. Konum x WwWTyyHi maHinynsuii 3 nepiogamu obpo-
6kM 3aBAaHb | Baramu NpiopuTeTIB 3aBAaHb HEMOXIIMBI, PEKOMEHA0BaHO BMKOPWUCTOBYBATMW CNagHUI NOpsAoK BBOAY 3aBAaHb y nnaHy-
BaHHi 0o 100 3aBAaHb, a TakoXx Oyab-AK1iA NOPSAOK BBOAY 3aBAaHb Y NnaHyBaHHi noHaa 100 3aBoaHb, xo4a iCTOTHI KOPUCHOCTI Y LibOMY
BMNaAKy He OYiKylTbCS.

Kniouosi cnoBa: nnaHyBaHHS 3aBfaHb Ha OAHIN MalUMHi 3 NepeMUKaHHAMU; 3aranbHe 3BaXKeHe 3arisHIOBaHHS, eBPUCTMKA; BU-
CXiHW NOPAAOK 3aBAaHb; CnagHWA NOPAAoK 3aBAaHb; Yac ob4nCeHb; eheKTMBHUI NOPSAOK 3aBaaHb.

B.B. PomaHiok

MIOTHOE NPOrPECCUPYIOWEE 1-MALWWMHHOE MNAHNPOBAHUE C MNEPEKMIOYEHNAMKM BE3 NMPOCTOA C BECAMU
MPUOPUTETA 3ALAHW NPU 3OSEKTVUBHOM NOPAAKE BBEAEHWNSA 3ANAHNA B 3BPUCTUKE

Mpo6nemaTuka. B noctaHoBke 3agaum MUHUMU3ALUMM OBLLErO B3BELLEHHOIO 3ana3abliBaHns Mo 3BPUCTMKE HA OCHOBE MCMOSb30-
BaHWsI OCTaTOYHOIrO UMEKLLErOCsi pecypca M OCTaToYHOro nepuoga k obpaboTke CyLLecTBYOT ABa NPOTUBOMOMOXHbLIX cnocoba BBoga
OaHHbIX: AaTbl 3anycka 3ajaHuii 3ajaloTcs B Nopsake Bo3pacTaHust unu yoeiBaHus. HegaBHo Bbino yctaHOBREHO, YTO MriaHMpoBaHue
HECKONbKNX paBHOLIEHHbIX 3adaHuUin oXXngaemo GbicTpee Npu BoCcxoaswem nopsake, Toraa kak nnaHuposaHue ot 30 4o 70 paBHOLEHHbIX
3agaHun Ha 1,5-2,5 % BbicTpee npu HUcxoasLwem nopsgke. [ns konuyecTsa paBHOLEHHbIX 3adaHni mexay npumepHo 90 n 250 Bocxo-
OSLLMIA NOPSAOK CHOBa NPMBOAMT K COKpaLLEHWNI0 BpEMEHM BblunCNeHWn. B criyyae, korga 3agaHvs UMeT pasnuyHble 06bEMbI, 3HaUuW-
MOCTb NopsiAKka 3a4aHnii 3HauYMTerbHO NOHMXKaeTcs. B cpeaHeM HUCXoasALWMiA NopsiAoK BBeAEHMS 3adaHnii 4AET KpoLLEeYHbI nepeBec BO
BpEMEHM BblUMCIIEHMI. DTOT nepeBec ybbiBaeT C pOCTOM Yncna 3adaHuni.

Llenb uccnepoBaHus. YCTaHOBUTDL, SIBMSIETCA W NOPSAOK 3a4aHUI 3HAYMMbIM B COCTaBIIEHUWN PacrMCaHuiA C NMOMOLLbIO 3BpU-
CTUKV ONs cnyyasi, korga 3afjaHusi UMeloT pasnuyHble 06bEMBI C BECaMU UX NpuopuTeToB. DPEKTUBHOCTL Nopsidka 3agaHuii byaet
MCCNeoBaHO Ha NPUMEPE MNIOTHOMO NPOrPeccUpyoLLEro 1-MallMHHOMO NaHUPOBAHUS C NEPEKMIYEHNAMI Ge3 NPoCcTos.

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 61

MeToauka peanusauuu. [TpoBoAMTCA BbIYMCNIUTENBHOE UCCNEOOBaHNE C LeNbio OLEHKN YCPEAHEHHOTO BPEMEHU BbIYUCIEHUSI
KaK Ansi BOCXOASILLEro nopsaka, Tak v Ans HUCXOAALLEero nopsiaka aaT 3anycka 3agaHuii. CHavana oueHnBaeTcs BpeMsi BbIUMCIIEHWI Anst
nocnegoBaTenbHOCTU 3a4ay COCTaBfIEHUsI paciucaHuin NpU BOCXOAsILLEM Mopsidke BBEAEHMS 3adaHuin. 3aTeM B KaXXOoM 3K3eMnnsipe
3TOW NocrnefoBaTenbHOCTUM 06bEMbI 3a4aHuiA, Beca NPMOpUTETOB, AaThl 3anycka 1 AaTtbl Npuéma BbiNonHeHus obopaymsatoTcs, 06pasysi
TakvM 06pa3oM COOTBETCTBYHOLLMIA IK3EMNNAP ANst HAICXOOSALEro nopsiaka BBEASHMSA 3a4aHuii, AN KOTOPOro Takke OLeHMBaeTCs Bpemsl
BbIYMCNEHNS.

Pe3ynbTathbl MccnegoBaHus. 3Ha4YMMOCTb NOPsiika BBEAEHUS 3aaHNI 3HAUMTENBHO HIKE, YEM B Criyvae 3agaHuii 6e3 npropu-
TeToB. C Npun1cbiBaHWEM 3aiaHNsiM BECOB NPMOPUTETOB NOPSAOK BBEAEHMS 3a4aHWIn CTAHOBUTLCSA eLé bonee “pa3mbiTbiM” ¢ Npubas-
neHveM crnyyanHo pa3bpocaHHbIX BECOB NMPUOPUTETOB K CriydaiHo pa3bpocaHHbIM 06bEMaM 3aAaHnin U YaCTUYHO PaHAOMU3NPOBaHHBIM
naTtam npuéma BbinonHeHus. MNpegnonaraeTcs, YTo B CPEAHEM HUCXOOSLUMIA NOPSAOK BBEAESHUS 3a4aHNIn AaéT KpOLLeYHoe npenmyLue-
CTBO BO BPEMEHM BbIMUCINEHUI Npu cocTaBneHun pacnucanunii o 100 3agaHun. OgHako 3TO NPEUMYLLECTBO (KOTOPOE SABNSETCH eLllé
Honee KpoLLeYHbIM, YeM B Criy4ae C paHAOMU3MPOBaHHLIMM 06 bEMaMK 3apaHuii 6e3 NpMopuTETOB), CNY Aaxe U CyLlecTByeT, BbICTpo
ncyesaeT C yBENUYEHUEM KONUYECTBa 3afaHuii.

BbiBoAbl. [lJoka3aHo, YTO MyyllUMM BapuaHTOM SIBMISIETCA COCTaBIEHME TakMX 3agay NiaHMpoBaHUS 3a4aHui, KoTopble Obinu Obl
6nvxe K cnyyaro ¢ paBHOLEHHbIMW 3agaHusiMu 6e3 NpuopuTeToB, rae CIKOHOMIIEHHOE BblYMCIMTENbHOE BPEMS MOXET HacuuTbiBaTb
yacbl. [laxe ecnu 06bEMbI 3ajaHNI 1 Beca NPUOPUTETOB MMEIDT pas3bpoc, pekoMeHOyeTCs UCKYCCTBEHHO “pasrnaxusath” ux. Korga xe
VNCKYCCTBEHHbIE MaHWNynsUMK ¢ nepuogamu o6paboTkM 3ajaHuii 1 Becamn NpUopuUTETOB 3afaHniA HEBO3MOXHbI, pEKOMeHAyeTcs uc-
Nnosib30BaTb HUCXOASALLMIA NOPSAOK BBEAEHUS 3adaHuii B nnaHvpoBaHumn o 100 3agaHui, a Takke nobo nopsaok BBeAeHW 3a4aHui B
nnaHvpoBaHuu 6onee yem 100 3agaHKi, XOTS CyLLECTBEHHBIE NONE3HOCTU B 3TOM Cly4Yae He OXMAAKTCS.

KniouyeBble crnoBa: nnaHvpoBaHve 3agaHuii Ha O4HOW MaluMHe C NepeknoYeHnsiMu; obluee B3BeLLIEHHOe 3anasablBaHue; 3Bpu-
CTMKa; BOCXOASLNIA NOPAAOK 3a4aHNA; HUCXOASLNIA NOPSAAOK 3agaHuiA; BpeMS BblHMUCIEHUI; 3¢h(DEKTUBHBIN NOPSIAOK 3a4aHUN.

PexomennoBaHa Panoro Hapiiiina no penaxuii
¢akynpTeTy NPUKIagHOI MAaTEeMAaTUKI 31 mumasg 2020 poky
KIII im. Iropsi CikopchKoro
IIpuitasita 1o myGaikarii
10 rpynnst 2020poky

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

