IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 35

DOI: 10.20535/kpi-sn.2020.2.205115
UDC 004.231.2(045)

ILA. Dychka*, D.A. Vinnyk, Yu.V. Bukhtiyarov, V.Ya. Yurchyshyn

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
corresponding author: dychka@pzks.fpm.kpi.ua

METHOD OF FAST MATRIX MULTIPLICATION UNDER
ARM ARCHITECTURE USING SIMD INSTRUCTIONS

Background. Matrix multiplication is a rather complicated algorithm with a large number of operations. An additional
problem is the nonlinear memory traversal of matrices. Matrix multiplication is widely used in various fields, such as
neural networks, solutions of linear equation systems, matrix transformations, and so on. Therefore, it is important to
develop a method of matrix multiplication, which will take into account the problems of the location of the matrices
in memory, and will effectively manage the data when reused.

Objective. The purpose of the paper is to develop a method of fast matrix multiplication of two matrices, as well as
multiplying the matrix by the transposed matrix and by a list of vectors (including special case for only one vector), as
well as to implement it as a function with optimization for ARM architecture processors. The function must be able to
handle different types of data and submatrices. The integer result can be scaled.

Methods. The main ideas of the developed method are simultaneous work with several rows/columns of input matrices
and their splitting into blocks, which will allow the algorithm to run on the same memory for a while. The C program-
ming language was chosen for implementation. SIMD instructions were used to increase productivity. We also need to
properly organize the memory preloading for effective implementation under the ARM architecture.

Results. A function that performs matrix multiplication by the developed method with the necessary parameters was
implemented as a result of the study. Tests on various sizes and types have shown that the implemented function is
faster than analogues from the OpenCV2 and Eigen 3 libraries. Testing was done using the vipmed utility for running
and measuring features developed for enterprise use at VIT.

Conclusions. The proposed matrix multiplication method gives the expected acceleration of matrix multiplication op-
erations, has passed evaluation test for use and meets the target requirements. For further work, it is necessary to study

in more detail the influence of the cache at different levels and compare with other existing libraries.
Keywords: matrix multiplication; ARM architecture; vector operations; matrix transposition.

Introduction

In the everyday life, the matrices are used
much wider than people are apt to think. In fact, we
face them every day.

Graphics software, such as Adobe Photoshop,
uses image matrices for image processing. A square
matrix can represent a linear transformation of a ge-
ometric object. Matrices and inverse matrices are
used in programming to encode and encrypt mes-
sages. The message is generated as a sequence of
numbers in binary format for communication, and
the code theory should be used to solve it.

Many IT companies also use matrices as data
structures to track user information, perform search
queries, and manage databases. In terms of infor-
mation security, many systems have been designed
to manage matrices. Matrix multiplication is widely
used when working with neural networks. Neurons
values matrices are multiplied at transition between
the network layers [1].

Matrices are broadly used in physics, electro-
dynamics, electronics, radio engineering. Even a

© The Author(s).
The article is distributed under the terms of the license CC BY 4.0.

cursory survey of the bibliography on this subject
reveals its huge volume. The theory of matrix meth-
ods is sufficiently developed, but the practical im-
plementation of these methods has not exhausted its
potential.

The aim of this research is to explain what fac-
tors affect matrix multiplication and how to use
them for improving performance. At first, we de-
scribe main problems of effective matrix multiplica-
tion implementation. Then we show some of the ex-
isting solutions and describe own one. Finally, we
compare our implementation with the existing de-
scribed above.

Leaving aside the application of the method
described below in solving practical problems for the
future, we will now turn to a detailed description of
the method itself.

Problem statement

The aim of our research is to implement effec-
tive matrix multiplication method.

36 KPI Science News

2020/2

Overview of the existing solutions

The problem of using matrix multiplication is
that it has the burden of performing a great deal of
operations. In example, we define two matrices 4
and B:

all e alm bll te blp
A= i | B=| i
ay Aym bml bmp

Therefore, matrix multiplication formula is:

m
Cj = ailblj toeet aimbmj = zk:I aikbkj!

fori=1,..,nandj=1, ..., p.

The complexity of this elementary algorithm is
O(nmp) or O(n’) if matrices are square(n = m = p)
[2]. It is not necessary to go into the details that the
cubic complexity is a bad property.

The existing solutions having open source code
are not effective enough (this will be proven in the
results).

There are many algorithms for rapid matrix
multiplication that reduce the complexity of the
operation. The best-known and used in practice is
the Strassen algorithm, which reduces the complex-
ity to O(n*?), which is approximately equal to
O(n*%") [3]. All the other algorithms are only theo-
retical and approximate, so they are practically not
used [4].

These algorithms are purely mathematical and
do not take into account such an important point as
placement the matrices in memory. They only
reduce the number of multiplications, so in practical
programming this is not enough.

Considering the chosen processor architecture,
memory management is very important. To speed
up this work, we use memory preload in cache. The
auto-preloader of X86 processors, unlike ARM,
works quite well, so it makes little sense to do this
job manually. In ARM architecture, the well-timed
use of the memory preloader can result in speeding
up operation many-fold. However, if one makes a
mistake, there is a significant drop in performance.

Therefore, we propose a new method of the
matrix multiplication considering above informa-
tion.

There are many libraries, including open
source code, that implement matrix multiplication.
In the specification of basic linear algebra subrou-
tines (BLAS), this operation has a more enhanced
interface and is called gemm. There are many
implementations of this specification and most of
them implement matrix multiplication using SIMD
technology [5].

OpenCV is a library of software functions pri-
marily focused on real-time computer vision algo-
rithms. This library is a very powerful tool: it has
many useful features, is cross-platform and imple-
mented in several programming languages. It is dis-
tributed as BSD-licensed open source code software.
OpenCV is not BLAS compatible, but implements a
similar gemm function [6].

Eigen is a template library, it provides a simple
and very common C++ 98 template interface for
matrix/vector operations and related algorithms.
This library, like OpenCV, contains implementa-
tions that leverage vector operations for optimiza-
tion. Important thing is that there are some (more
optimal) implementations for some fixed sizes. The
main feature of this library is that it is fully imple-
mented in the headers, so one only needs to down-
load these files to be used [7].

These libraries stated that they have optimized
algorithms for matrix operations, so we choose them
for comparing with ours.

It is pointless to describe in detail how the ma-
trix multiplication algorithm is implemented in the
above libraries. The result of their work and com-
parison with the proposed method will be shown be-
low. Their main disadvantage is the lack of perfor-
mance, so the purpose of this article is to develop a
faster method of implementing matrix multiplica-
tion.

Description of the proposed method

The matrix multiplication of the MxK matrix 4
and KxN matrix B results in the creation of MxN
matrix C. Each element in matrix C can be consid-
ered as a scalar product of the corresponding row of
matrix 4 and column of matrix B.

It is possible to implement all matrix multipli-
cations by using a primitive scalar product, but such
implementation would be far from effective. In a
scalar product, we load two elements for each
multiplication-add operation, and on modern pro-
cessors, this implementation will be limited by
memory or cache bandwidth instead of the compu-
ting power of multiplication-add units. Neverthe-

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 37

less, a minor modification — calculating point prod-
ucts from several rows in 4 and several columns in
B at a time — improves performance significantly.

The modified primitive takes MR elements of
elements in 4 and NR of B elements and performs
multiplication operations with MRxNR accumula-
tion. The number of registers and other details of
the processor architecture limit maximum MR and
NR values. But in most modern systems, they are
large enough to make the operation limited, and all
high-performance implementations of matrix-ma-
trix multiplication are built on this primitive mi-
crokernel commonly called PDOT (panel dot prod-
uct). The M = N = 4 workaround was selected in
the method stated below. Such a small number
causes the limitations of the chosen architecture.

This paper considers the matrix multiplication
method for the ARM v7 architecture. It is 32-bit
and has some limitations on the number of registers.
With the exception of Armv6-M, Armv7-M,
Armv8-M.baseline and Armv8-M.mainline based
processors, there are 33 32-bit general-purpose reg-
isters, including redundant SP and LR registers. Fif-
teen general-purpose registers are visible at any
time, depending on the current processor mode.
These are R0O-R12, SP and LR. PC (R15) is not
considered a general-purpose registry [8].

SP (or R13) is a stack pointer. C and C++
compilers always use SP as a stack pointer. Arm de-
values most SP applications as a general-purpose
registry. In T32 state, SP is strictly defined as a stack
pointer. ARM official documentation describes
when SP and PC can be used.

In a user mode, LR (or R14) is used as a reg-
ister of links to store a return address when a sub-
routine is called. It can also be used as a general-
purpose register, if the return address is stored in the
stack.

In exception handling modes, the LR stores the
return address for the exception or the return ad-
dress of the subroutine, if subroutine calls are made
within the exception. The LR can be used as a gen-
eral-purpose register if the return address is stored
in the stack.

From the above it is clear that only 13 regular
registers are available for general use without any
restrictions.

The algorithm requires much more regular reg-
isters to move with the four rows of the first to the
second matrix, as noted above. Matrix row pointers
(4 first + 4 second) also need pointers to the result-
ing matrix rows, registers to store sizes and iterators
for each of them. Since matrices can actually only

be parts of larger matrices, the notion of a step be-
tween rows is introduced. This step is defined in
bytes and is equal to the actual width of the entire
image, multiplied by the size of one element. The
user with an understanding of the storage area in
which one operates should transmit this data. These
steps, for each of the three matrices, accordingly,
require registers. So, even not taking into account
the extra registers that may be needed to calculate,
the required number equals already to twenty.
Therefore, to save all the necessary values, one
needs to allocate additional temporary memory. To
use this data, they should be loaded in free registers
and stored back in time, in case of necessity, the
register should be freed up (saving constant values,
such as matrix sizes and line spacing, each time is
not required).

The main practical problem in calculating the
product of matrices is the inefficient bypass of the
second matrix, because the result of a particular el-
ement of the result matrix is the product of the row
of the first matrix and the second matrix column.
Column matrix bypass is quite inefficient in Row-
Major mode (when a row in memory is in se-
quence). To solve this problem, the accumulation of
results in a temporary buffer was chosen, while mov-
ing linearly on the second matrix. With this ap-
proach, the number of bypasses of the second matrix
increases. In fact, with each row of the first matrix,
the second one is completely read-out. However,
gradual read-out of the data slows down the program
operation to such an extent, that multiple linear
reading of the matrix still faster than just one incon-
sistent read. Considering that the bypass will be per-
formed at once by four rows of the first matrix, the
number of bypasses of the second one is reduced by
four times (it is fully read-out once per every four
rows of the first matrix).

Of course, the disadvantage of this approach is
the considerable amount of additional dedicated
memory (4* the width of the second matrix). Thus,
the resulting calculation is divided into two parts:
first, there is an accumulation in the temporary
buffer, and then, only at the last iteration, the entry
in the resulting matrix. The last iteration is the cal-
culation on the last rows of the second matrix. The
magnitude of the so-called matrix tail will be equal
to the remainder of the division of the second matrix
height (or the width of the first, since they are equal)
by the number of rows that are bypassed within one
iteration (in this case by four). If there is no remain-
der, then one iteration less is performed in the total
cycle and when processing the last four rows, the
result is immediately written to the resulting matrix.

38 KPI Science News

2020/2

As a result, we have the following general al-
gorithm for matrices A(MxK) and B(KxN) multi-
plied into the matrix C(MxN) by the blocks mxR
and Rxn with the tail having ¢ value:

1. Allocation of necessary additional memory
(for variables and accumulation), initial data ini-
tialization (including memory reset into which the
result will be accumulated) and their storage.

2. Reading-out R elements from m rows of the
first matrix.

3. Reading-out n elements from the R rows of
the second matrix.

4. Read n elements from m lines of temporary
buffer with intermediate results.

5. Scalar multiplication of blocks mxR and Rxn
and their accumulation to data read-out from a tem-
porary buffer.

6. Record of intermediate results back to the
temporary buffer.

7. Implementation of items 3—6 N/n times.

8. Upon bypass of the entire width of the sec-
ond matrix, the transition to next R rows of that
matrix and the R elements of the first one is per-
formed. Temporary buffer pointers are moved to the
beginning and accumulation will further occur in it.

9. Implementation of items 2—8 (K/R-f) times.

10. At the tail iteration, we read-out the last 7
elements from the m rows of the first matrix.

11. We read n elements from the last 7 rows of
the second matrix.

12. Same as item 4.

13. Scalar multiplication of blocks m x ¢ and ¢
x n and their accumulation to read-out data from
the temporary buffer.

14. Resetting the temporary buffer.

15. Writing m rows of #n elements in the result-
ing matrix.

16. Implementation of items 11—15 N/n times.

17. Transition to the next m rows of the first
and the resulting matrices.

18. Implementation of items 2—17 M/m times.

Implementation using SIMD instructions

In practical application, this algorithm is good
enough. It is worth to note that aliquant values are
not taken into account here, that is, it is necessary
to additionally process the remainders, but it is de-
cided to describe the algorithm without such, quite
clear, details.

Of course, fast calculation requires more than
just an efficient algorithm. One has to additionally
look for optimization methods (both algorithmic

and architecture related). Using algorithmic optimi-
zation, one can specify items related to tail pro-
cessing. In a simple algorithm, individual points are
not dedicated to this: first, the result is completely
obtained in the temporary buffer (i.e., points 2—8
are performed K/R times), then the result is rewrit-
ten into matrix C and the last step is the resetting of
the temporary buffer. In this algorithm, all these op-
erations occur in one pass.

As to lower-level optimization, one should start
with the vector instructions. Such operations allow
executing operation with several values written in
vector registers.

SIMD is a class of parallel programming,
which is based on such operations. Most modern
processors are designed to support SIMD instruc-
tions to enhance performance. This class is particu-
larly popular in signal processing, where, as a rule,
a large number of identical data is processed with
similar operations. SIMD also allows processing
several similar data types with the same instruction
(as indicated in the name — Single instruction, mul-
tiple data; which is rendered as: one instruction for
lots of data).

In ARM architecture processors, SIMD is
represented as NEON (Advanced SIMD) extension.
The Registry Bank of this extension is a collection
of registers that can be accessed both as 64-bit and
128-bit vector registers. Advanced SIMD and VFP
(floating-point values operations) use the same
registers and differ from the main ARM register
bank.

128-bit registers are called Q-registers, and
64-bit — D-registers. Each Q-register corresponds
to 2 D-registers, they are overlapping. The mapping
between the registers is as follows:

D (2n) maps the least significant half of Q (n);

D (2n + 1) maps the most significant half of
Q (n).

For example, one can access the least signifi-
cant half of the vector elements in Q6 by referring
to D12 and the most significant half of the elements —
by referring to D13.

Therefore, in general, the registry bank can be
represented by:

— Sixteen 128-bit registers Q0-Q15;

— Thirty-two 64-bit registers D0-D31;

— A combination of D and Q registers.

The SIMD extension treats each register as
containing 1, 2, 4, 8, or 16 elements of the same
size and type (the number depends on the register
size and the element, respectively). Individual ele-
ments can also be accessed as scalars.

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 39

Let us consider using this technique in the pro-
posed algorithm.

We omit the moments with reading and writ-
ing, we assume that the matrix elements have al-
ready been read into the vector registers and will be
written from them.

Let us have a more detailed look at item 5. We
will consider the example of a 32-bit float type. In
the developed method, for m = 4 and n = 4, R is
also assumed as four, due to the limitation of the
registers number. Thus, 4x4 elements of the first
matrix have been read in item 2. This corresponds
to 64 bytes, so four Q registers are required. In items
3 and 4 the same number of Q registers of the
second matrix and time buffer was read out, respec-
tively.

According to the matrix multiplication algo-
rithm, it is necessary to multiply the first row of the
second matrix by the first element of each row of
the first one, the second row — by every second el-
ement, and so on. Moreover, the products obtained
from the i-th row of the first matrix and the j-th
column of the second matrix correspond to the ele-
ment (i,j) of the temporary buffer.

Given the specifics of the actions described, a
vector-to-vector operation is not appropriate, and as
stated above, NEON allows getting access to an
individual element. Therefore, some instructions al-
low performing vector-scalar operations. VMLA is
one such instruction [9].

VMLA (Vector Multiple and Accumulate) —
multiplies the corresponding elements of two vectors
and adds the product to the corresponding elements
of the result register. In the scalar-vector case, each
element of the vector is multiplied by a scalar. The
general syntax of the instruction is as follows:

VMLA {cond} .datatype {Qd}, Qn, Qm.
And the vector scalar option looks like:
VMLA {cond} .datatype {Qd}, Qn, Dm [x].

Let us consider each element of the structure:

— {cond} — an optional parameter, NEON al-
lows conditional execution of instructions, cond box
is clicked for the condition under which the instruc-
tion will be executed;

— datatype — a vector register element type, in
our case F32, denoting a 32-bit floating point num-
ber;

- Qd, Qn, Qm — input registers for the oper-
ation, the following operation is conditionally per-
formed: Qd + = Qn * Qm;

— Dm [x] — a scalar, for the vector-scalar op-
eration it is important that the Q-registers are used
as vectors, but the scalar gets from the D-register; x —
the index of the desired element from the vector
Dm.

Therefore, we assume that vectors Q4—Q7 were
read from the first matrix, from the second matrix —
Q8—Q11 vectors, and from the temporary buffer —
Q0—Q3. Then the set of commands required to get
the result will look as follows:

Multiplying the Ist row of the second matrix
by the first element of each row of the first matrix
with accumulation in the temporary buffer.

VMLA.F32 Q0, Q8, D8[0]
VMLA.F32 Q1, Q8, D10[0]
VMLA.F32 Q2, Q8, D12[0]
VMLA.F32 Q3, Q8, D14[0]

Multiplication of the 1st row of the second ma-
trix by the first element of each row of the first ma-
trix with accumulation in the temporary buffer, etc.

VMLA.F32 Q0, Q9, D8[1]

VMLA.F32 Q1, Q9, D10[1]
VMLA.F32 Q2, Q9, D12[1]
VMLA.F32 Q3, Q9, D14[1]
VMLA.F32 Q0, Q10, D9[0]
VMLA.F32 Q1, Q10, D11[0]
VMLA.F32 Q2, Q10, D13[0]
VMLA.F32 Q3, Q10, D15[0]
VMLA.F32 Q0, Q11, D9[1]
VMLA.F32 Q1, Q11, D11[1]
VMLA.F32 Q2, Q11, D13[1]
VMLA.F32 Q3, Q11, D15[1]

So, we obtained 16 vector VMLA operations.
A similar solution by the conventional method
would produce 64 multiplication and the same num-
ber of addition operations.

Another way to optimize is linearly reading and
writing to the temporary buffer. In a simple way, for
convenience, the temporary buffer corresponds to
the four rows of the resulting matrix. Given that this
buffer is only a temporary one, it is possible to read
and write it linearly. At first glance, it is just an el-
ementary change, when it comes to vector registers
and if we consider the further processing of remain-
ders, but, in fact, it leads to serious confusion. These

40 KPI Science News

2020/2

details will not be described in this publication. The
main thing is to correctly understand at what point
the corresponding elements for accumulation are lo-
cated and what registers are to be written in sums
and where. It should be noted here that NEON al-
lows to effectively read/write vector registers with
one instruction. However, there are two limitations:
one instruction can write at most two Q-registers at
a time; the registers should be serial. That is, read-
ing/writing of Q1, Q3 registers with one instruction
is impossible. These limitations are one of the rea-
sons for the problems with the transition from read-
ing the temporary buffer by 4 lines to serial.

Given that the bypass of the second matrix is
performed a large number of times, the overall exe-
cution time is greatly affected by the padding size.
This is a value equal to the width of the matrix sub-
tracted from the step between the rows. Briefly, this
is the size of the region of the entire matrix that does
not take part in the multiplication (if the multipli-
cation is performed on the part of the larger matrix).
By reducing the ratio between the width at which
the multiplication is performed and the width at
which it is not performed, the rate of execution de-
creases. Sometimes the deterioration is such that it
is quicker to make a copy of the sub-matrix into a
new memory where paddings will be removed and
to perform the operation without them. It is due to
these reasons that one more optimization occurred:
from the above data, as well as the height of the first
matrix (the number of the second matrix full read-
outs depends on this), the conversion factor is cal-
culated, which makes it advantageous to first make
a copy to the extra memory and only then to mul-
tiply the matrices on that memory.

For the ARM architecture the proper place-
ment of the memory reboot is very important. As
practice shows, x86 architecture types have a good
auto-preloader, unlike ARM. In this processor fam-
ily, correct and timely memory rebooting can result
in a huge acceleration. On the contrary, if program-
mer makes a mistake, the performance can drop sig-
nificantly. The official documentation does not give
any flexible advice. It only recommends preloading
with 128-byte indentation unit.

The PLD instruction performs a 64-byte pre-
load of the transmitted pointer memory with some
preset indentation unit. As mentioned above, the of-
ficial documentation recommends that 128 bytes in-
dentation should be made in advance. However,
practical use shows that this is only a minimum of
the real capabilities of this instruction. In different
situations accelerations produce single preloads be-
fore the start of the general cycle, or in the cycle

itself (not always with 128 byte indentation unit, and
sometimes their number can be more than one). The
PLD instruction preloads 64 bytes at once. The
above design only makes 16-bytes pass, so this op-
eration is redundant at every iteration. The simplest
solution to this problem is to spin a 64-byte cycle.
In fact, one such iteration will simply contain 4
blocks of operations of 16 bytes each, but this ap-
proach makes it possible to perform preloading
much more efficiently.

Finally, it can be noted that due to the different
behavior when bypassing the matrices (first, second
and temporary), the schemes of their preload also
differ.

Similarly, not only matrix multiplication on floa-
ting-point numbers is implemented, but integer 8-bit
scaling as well. The option of the matrix multiplica-
tion by the transposed one and the list of vectors is
also implemented (the actual implementation is
one, the transposed goes to the vectors list). This
option allows to read both matrices sequentially
without additional memory buffer and to use a vec-
tor-vector type VMLA instruction.

The results of the comparison of the proposed
method with others

The OpenCV and Eigen libraries described above
were selected for the purpose of comparison. Matrix
multiplication functions in all libraries (including
the developed one) return the same result, so we
assume that it is accurate. The data was verified by
a vipmed application designed specifically to test
and verify image and matrix management functions.
This software allows running various mathematical
functions of different libraries with the transfer of
the necessary parameters, compare their results, and
measure the execution time within the accuracy of
a microsecond using C library function “clock”.

All measurements were made on a NVIDIA
Tegra K1 chip with ARM Cortex-Al5 processors
that support ARMv7 and NEON.

Testing was performed on square matrices with
dimensions 10x10, 100x100, 200x200, 500x500,
1,000x1,000, 2,000x2,000 and 4,000x4,000 elements
with padding of 0 and 4,000 bytes on 8-bit unsigned
integers (u8) and 32-bit floating point numbers
(f32). Variants of ordinary matrix multiplication and
matrix multiplication by the transposed one were
tested.

For illustration purposes, the tables show the
percentage of run time of existing OpenCV and
Eigen methods from the one developed for Vipm
library.

IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 4

Table 1 represents multiplying the Nx/N matrix
by the NxN matrix using 8-bit unsigned integers
without a padding.

Table 1. Matrix multiplication on type u8 with 0 byte

Table 4 represents multiplying the Nx/N matrix
by the NxN matrix using 32-bit floating-point num-
bers with 4,000 bytes padding.

Table 4. Matrix multiplication on type f32 with 4000 bytes

padding padding

N Vipm | OpenCV | Eigen cv ei N Vipm | OpenCV | Eigen cv ei
(ms) (ms) (ms) | (%) | (%) (ms) (ms) (ms) | (%) | (%)

10 0.001 0.005 0.002 500 200 10 0.002 0.003 0.002 150 100
100 0.203 1.799 1.167 886 575 100 0.231 1.933 0.327 837 142
200 1.658 16.574 8.733 1000 | 527 200 1.746 15.725 2.361 901 135
500 26.487 281.808 134.164 | 1064 | 507 500 26.728 265.320 39.345 993 147
1000 216 2326 1064 1078 | 493 1000 250 2303 319 920 127
2000 2259 18706 8457 828 374 2000 2210 18576 2477 840 112
4000 20956 151309 67598 722 323 4000 18630 150349 19140 807 103

Table 2 represents multiplying the Nx/N matrix
by the NxN matrix using 8-bit unsigned integers
with 4,000 bytes padding.

Table 2. Matrix multiplication on type u8 with 4000 bytes

Table 5 represents multiplication of the NxN
matrix by the transposed Nx N matrix using 8-bit un-
signed integers without padding.

Table 5. Matrix multiplication (transposed multiplicand)

padding on type u8 with 0 byte padding

N Vipm | OpenCV | Eigen cv ei N Vipm | OpenCV | Eigen cv ei
(ms) (ms) (ms) (%) | (%) (ms) (ms) (ms) (%) | (%)
10 0.002 0.005 0.003 250 150 10 0.001 0.007 0.002 700 200
100 0.208 1.799 1.175 865 565 100 0.264 2.243 1.171 850 444
200 1.672 16.721 8.748 1000 | 523 200 2.184 16.969 8.745 777 400
500 28.331 281.932 134.221 995 474 500 33.740 272.955 135.278 809 401
1000 216 2341 1067 1085 | 494 1000 246 2154 1069 877 435
2000 2336 18709 8470 801 363 2000 2035 17105 8473 841 416
4000 20957 151314 67651 722 323 4000 16002 136829 67651 855 423

Table 3 represents multiplying the Nx/N matrix
by the NxN matrix using 32-bit floating-point num-

bers without padding.

Table 3. Matrix multiplication on type f32 with 0 byte

Table 6 represents multiplying the NxN matrix
by the transposed NxN matrix using 8-bit unsigned
integers with 4,000 bytes padding.

Table 6. Matrix multiplication (transposed multiplicand)

padding on type u8 with 4000 bytes padding

N Vipm OpenCV Eigen cv ei N Vipm OpenCV Eigen cv ei
(ms) (ms) (ms) (%) | (%) (ms) (ms) (ms) (%) | (%)
10 0.001 0.003 0.002 300 | 200 10 0.002 0.007 0.003 350 150
100 0.223 1.727 0.309 774 139 100 0.265 2.246 1.172 848 | 442
200 1.708 15.725 2.301 921 135 200 2.187 17.007 8.746 778 | 400
500 26.170 | 264.676 39.118 | 1011 | 149 500 33.815 272.958 135.370 | 807 | 400
1000 248 2302 318 926 128 1000 247 2181 1069 885 | 434
2000 2160 18563 2475 860 115 2000 2044 17106 8475 837 | 415
4000 17938 150348 19131 838 107 4000 16405 136841 67651 834 | 412

42 KPI Science News

2020/2

Table 7 represents multiplying the Nx/N matrix
by the transposed Nx/N matrix using 32-bit floating-
point numbers without padding.

Table 7. Matrix multiplication (transposed multiplicand)
on type f32 with 0 byte padding

N Vipm OpenCV | Eigen cv ei
(ms) | (ms) (ms) (%) | (%)
10 0.001 0.004 0.002 400 | 200
100 0.245 2.141 0.313 874 | 128
200 1.786 17.022 2.298 953 | 129
500 26.884 | 269.551 38.846 | 1003 | 144
1000 275 2166 317 789 | 115
2000 2425 17275 2466 712 | 102
4000 18909 138233 19104 731 | 101

Table 8 represents multiplying the Nx/N matrix
by the transposed Nx/N matrix using 32-bit floating-

point numbers with 4,000 bytes padding.

Table 8. Matrix multiplication (transposed multiplicand)

on type f32 with 4000 bytes padding

N Vipm OpenCV Eigen cv ei
(ms) (ms) (ms) (%) | (%)
10 0.002 0.004 0.002 200 | 100
100 0.245 2.142 0.315 874 | 129
200 1.789 17.042 2.301 953 | 129
500 27.042 | 269.964 38.867 998 | 144
1000 290 2167 317 749 | 110
2000 2426 17277 2466 712 | 102
4000 18996 138337 19114 728 | 101

The results show that in all cases OpenCV
works about in the same way (time only increases
with image size, which is quite logical), and options
of the floating point are much more efficiently im-
plemented in Eigen. The algorithm developed is also

References

[1] Application of Matrices in Real-Life [Online].

executed at about the same rate in all conditions,
but generally, runs much faster than OpenCV —
sometimes ten-fold. Eigen is also much more effi-
cient than OpenCV, but the 8-bit unsigned numbers
are still significantly inferior to the developed algo-
rithm. It can be assumed that this library does not
have a direct implementation for this type of values,
so it is executed by additional conversions to floating
point numbers, which causes a delay. When using
floating-point numbers, the algorithm for the given
values is still faster. For higher values, the efficiency
of the Figen library approaches the developed algo-
rithm.

Testing was performed on various sizes and
types using vipmed software (designed for in-house
use by VIT).

Conclusions

The proposed matrix multiplication method
gives the expected speed of matrix multiplication
operations (not slower than existing analogues) and
has passed evaluation test for use.

The efficiency of the method is tested by prac-
tical application.

The method is used in the corporate library of
one of the leading companies in Ukraine.

The article can help to understand how pre-
loaders and caches are work and how to use them
in operations such as matrix multiplication.

This algorithm do not consider that block sizes
are depend on cache size. Therefore, speed on ma-
chines with a different cache size can be unexpected.

For future work, we need to explore more ex-
isted libraries with matrix multiplication. It will help
understand in what way we can move next.

Available: https://www.ukessays.com/essays/mathematics/application-of-matrices-in-real-life-problems.php

[2] Le Gall, Frangois, “Powers of tensors and fast matrix multiplication”, in Proc. 39%h Int. Symp. Symbolic and
Algebraic Computation, Kobe, Japan, 2014, pp. 157—164.

[3] V. Strassen, “Gaussian elimination is not optimal”, Numer. Math., vol. 13, no. 4, pp. 354—356, 1969.

[4] S. Robinson, “Toward an optimal algorithm for matrix multiplication”, SIAM News, vol. 38, no. 9, 2005.

[5] C.L. Lawson et al., “Basic linear algebra subprograms for FORTRAN usage”, in ACM Trans. Math. Software,

1979, pp. 308—323.

[6] OpenCV official site [Online]. Available: https://opencv.org/

[71 Eigen Official Site [Online]. Available: http://eigen.tuxfamily.org/

[81 ARM Official Site [Online]. Available: https://developer.arm.com/

[91 ARM Information Center [Online]. Available: https://infocenter.arm.com/

IHOOPMALLINHI TEXHONOTT, CUCTEMHUIA AHAJI3 TA KEPYBAHHS 43

I.A. Ounuka, O.A. BiHHuk, FO.B. ByxTispos, B.A. KOpunwuH

METOL PEANI3AUIT WBUOKOrO MATPUYHOIO MHOXEHHS NI APXITEKTYPY ARM I3 BUKOPUCTAHHAM SIMD-
IHCTPYKLIT

Mpo6nemaTuka. MaTpnyHe MHOXEHHS € AOCUTb CKITaZHUM anropuTMOM i3 BENMKOHO KiNbKiCTIO onepadii. [logaTtkoBoto npobnemoro
TaKoX € HeniHiHuiA 0bxig MaTpuub No nam’sTi. Onepadisi MaTpUYHOTO MHOXEHHS! LUMPOKO BUKOPUCTOBYETBLCS B Pi3HMX cdhepax, Takux siK
HEVpPOHHI Mepexi, PO3B’A3KM CUCTEM MiHIMHNX PiBHSIHb, MATPUYHI NEPeTBOPEHHS ToLWo. TOX BaXNMBO pPO3pPOOMTN METOoL MaTPUYHOro
MHOXEHHS, L0 BpaxoByBaTUMe nNpobnemu 3 po3rallyBaHHAM MaTpULb y NaM’siTi, @ TaKoX ePeKTUBHO PO3nopsagKaTuMeTbCcs AaHUMU Npuy
X MOBTOPHOMY BMKOPUCTaHHI.

MeTa gocnigxkeHHsA. Po3pobutn metoq LWBMAKOrO MaTpUYHOro MHOXEHHS ABOX MaTpuLib, MHOXEHHS MaTpuLi Ha TPaHCNOHOBaHY
Ta Ha CMMCOK BEKTOPIB (y T.4. OKPeMUii BUNaAoK AN OAHOro BEKTOpa); peanidyBaTtu Moro y BUrnsai dyHKUii 3 onTumisauieto Ans npote-
copiB apxiTektypu ARM. ®yHkUis Mae BMiTU NpauoBaTti 3 PisHUMM TUNamMu gaHux Ta 3 nigMmatpuusamu. Llinouyncnosuin pesynbtat Moxe
OyTn macwtaboBaHui.

MeToauka peanisauii. FonoBHUMYK inesMn po3pobreHoro MeToay € OfHOYacHUX Npoxia AeKinbkoMa psakaMu/CToBNYMKaMu BXia-
HUX MaTpuLpb Ta iX po3BUTTS Ha 6okKu, WO AacTb anropuTMy 3MOry AEsKUIA Yac npauoBaTi Ha OgHIN i Ti camin nam’'sTi. Ansa peanisauii
6yno BubpaHo moBy nporpamyBaHHs C. [Ans 36inbLieHHst npogyKTMBHOCTI BUkopuctaHo SIMD-iHCTpykuii. [1na edekTnBHOI peanisadii nig
apxitektypy ARM Takox HeobxifgHO NpaBuUmbHO opraHisyBaTu poboTy 3 MonepeaHiM 3aBaHTaXKEHHAM nam'siTi.

Pe3ynbTaTtn gocnigxeHHs. PeanizoBaHo (yHKLiIO, LLIO BUKOHYE MaTpUYHE MHOXEHHS 32 po3pobreHuM MeTodoM i3 HeobxiaHUMm
napameTtpamu. [epeBipkn Ha pi3HMX po3mipax i Tunax nokasanu, LWo peanidoBaHa yHKLis € LWBMALWO 3a aHanoru 3 6ibniotek OpenCV2
Ta Eigen 3. TectyBaHHs BigGyBanocs 3a 4ONOMOrow yTunitv vipmed Anis 3anyckiB i 3amipiB XxapakTepucTHK, po3pobrieHoi ans kopnopa-
TMBHOTO KOPUCTYBaHHS y komnaHii VIT.

BucHoBKK. 3anponoHoBaHMi METO4 MHOXEHHS MaTpuvub Aa€ O4vikyBaHe MPUCKOPEHHS onepauii MHOXEHHS MaTpulb, NPOMLLOB
OLLIHOYHWIA TECT Ha BMKOPUCTAHHSA Ta BiANOBiAae 3agaHuMM y MeTi BuMoram. [ns noganblioi poboTn HeobXxiaHO AeTanbHile focnignuTu
BMNMB KeLla pi3HOro piBHS Ta NOPIBHATM 3 iHLLMMM iCHYO4MMUK GibnioTekamu.

KnrovoBi cnoBa: maTpuyHe MHOXeHHS; apxiTektypa ARM; BeKTOpHi onepaLlii; TpaHCMOHYBaHHA MaTpuLi.

W.A. Opiuka, O.A. BunHuk , HO.B. ByxTtuspos, B.A. KOpunwmH

METO[PEANTN3ALNN BbICTPOIrO MATPUYHOIO YMHOXEHWA NOO APXUTEKTYPY ARM C MCMOJIbSOBAHVEM
SIMD-MHCTPYKUMN

Mpo6GnemaTtuka. MaTpnyHoe yMHOXEHWE ABNAETCA 4OCTATOYHO CIIOXHBIM anroputMoM ¢ 6oMbLUMM KONMYeCTBOM onepaumii. [lo-
NOMHUTENbHON NPObNemMon Takke SABNSETCA HeMnvHerHbI 0b6xoa MaTpuy no namaTv. Onepaums MaTpUYHOrO YMHOXEHUS! LUMPOKO UC-
nomnb3yeTcs B pasnunyHbIX cdepax, Takux Kak HeMpPOHHbIE CETW, PELLEHNs CUCTEM NIMHENHBIX YPaBHEHU, MaTpuyHble Npeobpa3oBaHus
1 1.n. MNoatomy BaxHO paspaboTaTb MeTO4 MaTPUYHOIO YMHOXEHWS, KOTOPbIA ByAeT yunTbiBaTh NPOGIeMbl PacronoXeHns MaTpul, B
namsTu, a Takke apdekTMBHO ByaeT pacnopsxaTbCs AaHHbIMW NPU UX NOBTOPHOM UCMOSb30BAHWUU.

Llenb nccneposanus. Paspabotatb MeTof GbICTPOro MaTpuyHOro YMHOXEHUS ABYX MAaTpuL, YMHOXEHUS MaTpuLbl Ha TPaHCMo-
HWPOBAHHYIO 1 Ha CMMCOK BEKTOPOB (B T.4. YAaCTHbIN CyYaii ANs O4HOrO BeKTopa); peanusoBaTtb €ro B Buae YHKLMK C onTuMu3aunen
ans npoueccopoB apxutekTypbl ARM. ®yHKUMSA A0mKHA yMeTb paboTaTh C pasnuyHbiMU TUNaMuU AaHHbIX U ¢ nogMmaTtpuuamsl. Lienoumc-
NEeHHbIN pesynbTaTt MoXeT bbITb oTMaclTabnpoBaH.

MeToauka peanusauuu. [MasHbIMM naesaMn paspaboTaHHOro MeToAa SBMAETCA OAHOBPEMEHHbIN MPOXOA HECKONbKUMU CTPO-
Kamu/cTonbuamu BXogHbIX MaTpul, 1 ux pasbreHne Ha 6r1okKn, YTO NO3BOMUT anropuTMy HEKOTOpoe BpeMsi paboTaTb Ha OQHOM U TOW xe
namatu. [ns peanusaummn 6bin BbiGpaH A3bik nporpammupoBanvsa C. [Ina yBenuyeHns npousBOAUTENBHOCTM Mcnonb3oBaHbl SIMD-
MHCTpYKUMK. [insa adpcpekTnBHOM peanusaumm nod apxutektypy ARM Takke HeobxoaMmo npaBunbHO opraHnsoBaTb paboTy ¢ npeasapu-
TenbHOW 3arpy3kon namsTu.

PesynbTathl nccnegoBaHus. Peann3oBaHa yHKUMSA, KOTOPas BbIMOSIHAET MaTpPUYHOE YMHOXEHNEe Mo paspaboTaHHOMY MeToAy
C HeobxoanMbIMK NapameTpamu. MNpoBepkn Ha pasHbix pa3Mepax 1 TUnax Nokasanu, YTo peanusoBaHHas MYHKUMA BbICTpee aHanoros
13 6ubnmotek OpenCV2 un Eigen 3. TectupoBaHue Npoxoanno ¢ MOMOLLbIO YTURMThI vipmed Ans 3anyckoB U 3aMepoB XapaKTEPUCTUK,
pa3paboTaHHOW Ans KOPNOopaTUBHOIO MONb30BaHus B komnanum VIT.

BbiBoabl. [TpeanoxeHHbI MeTOA YMHOXEHWNSA MaTpuL, 4aeT OXugaemoe YCKOpeHne onepaLuum YMHOXEHUS MaTpuLl, npoLuen oLe-
HOYHBIN TECT Ha UCMONb30BaHWEe N COOTBETCTBYET 3afaHHbIM B Lenu TpeboBaHuam. [ns ganeHenwen paboTtsl Heobxoaumo nogpobHee
nccnefoBath BIUSHME K3LLa Pa3HOro YPOBHS M CPaBHWUTB C APYIIMU CyLLECTBYOLWNMM Bubnmotekamu.

KnioueBble cnoBa: maTpuyHoe YMHOXeHUe; apXuTektypa ARM; BekTOpHbIE onepauun; TpPaHCNOHUPOBaHNE MaTpuLbl.

PexomennoBaHa Panoro Hagpiiinia go penaxiiii
(hakynbTeTy NMPUKIATHOT MAaTEMATUKU 03 motoro 2020 poky
KIII im. Iropst Cikopcbkoro
IIpuitasaTa 1o my6mikaiii
05 yepBHs 2020 poky

