
 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ 35

© The Author(s).
The article is distributed under the terms of the license CC BY 4.0.

DOI: 10.20535/kpi-sn.2020.2.205115

UDC 004.231.2(045)

I.A. Dychka, D.A. Vinnyk, Yu.V. Bukhtiyarov, V.Ya. Yurchyshyn

Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

corresponding author: dychka@pzks.fpm.kpi.ua

METHOD OF FAST MATRIX MULTIPLICATION UNDER
ARM ARCHITECTURE USING SIMD INSTRUCTIONS

Background. Matrix multiplication is a rather complicated algorithm with a large number of operations. An additional
problem is the nonlinear memory traversal of matrices. Matrix multiplication is widely used in various fields, such as
neural networks, solutions of linear equation systems, matrix transformations, and so on. Therefore, it is important to
develop a method of matrix multiplication, which will take into account the problems of the location of the matrices
in memory, and will effectively manage the data when reused.
Objective. The purpose of the paper is to develop a method of fast matrix multiplication of two matrices, as well as
multiplying the matrix by the transposed matrix and by a list of vectors (including special case for only one vector), as
well as to implement it as a function with optimization for ARM architecture processors. The function must be able to
handle different types of data and submatrices. The integer result can be scaled.
Methods. The main ideas of the developed method are simultaneous work with several rows/columns of input matrices
and their splitting into blocks, which will allow the algorithm to run on the same memory for a while. The C program-
ming language was chosen for implementation. SIMD instructions were used to increase productivity. We also need to
properly organize the memory preloading for effective implementation under the ARM architecture.
Results. A function that performs matrix multiplication by the developed method with the necessary parameters was
implemented as a result of the study. Tests on various sizes and types have shown that the implemented function is
faster than analogues from the OpenCV2 and Eigen 3 libraries. Testing was done using the vipmed utility for running
and measuring features developed for enterprise use at VIT.
Conclusions. The proposed matrix multiplication method gives the expected acceleration of matrix multiplication op-
erations, has passed evaluation test for use and meets the target requirements. For further work, it is necessary to study
in more detail the influence of the cache at different levels and compare with other existing libraries.

Keywords: matrix multiplication; ARM architecture; vector operations; matrix transposition.

Introduction

In the everyday life, the matrices are used

much wider than people are apt to think. In fact, we

face them every day.

Graphics software, such as Adobe Photoshop,

uses image matrices for image processing. A square

matrix can represent a linear transformation of a ge-

ometric object. Matrices and inverse matrices are

used in programming to encode and encrypt mes-

sages. The message is generated as a sequence of

numbers in binary format for communication, and

the code theory should be used to solve it.

Many IT companies also use matrices as data

structures to track user information, perform search

queries, and manage databases. In terms of infor-

mation security, many systems have been designed

to manage matrices. Matrix multiplication is widely

used when working with neural networks. Neurons

values matrices are multiplied at transition between

the network layers [1].

Matrices are broadly used in physics, electro-

dynamics, electronics, radio engineering. Even a

cursory survey of the bibliography on this subject

reveals its huge volume. The theory of matrix meth-

ods is sufficiently developed, but the practical im-

plementation of these methods has not exhausted its

potential.

The aim of this research is to explain what fac-

tors affect matrix multiplication and how to use

them for improving performance. At first, we de-

scribe main problems of effective matrix multiplica-

tion implementation. Then we show some of the ex-

isting solutions and describe own one. Finally, we

compare our implementation with the existing de-

scribed above.

Leaving aside the application of the method

described below in solving practical problems for the

future, we will now turn to a detailed description of

the method itself.

Problem statement

The aim of our research is to implement effec-
tive matrix multiplication method.

36 KPI Science News 2020 / 2

Overview of the existing solutions

The problem of using matrix multiplication is

that it has the burden of performing a great deal of

operations. In example, we define two matrices A

and B:

11 111 1

1 1

,

pm

n nm m mp

b ba a

A B

a a b b

  
      

   
   


     

 
.

Assume that the result is C:

11 1

1

p

n np

c c

C

c c

 
 

  
 
 



  


.

Therefore, matrix multiplication formula is:

 1 1 1
,

m

ij i j im mj ik kjk
c a b a b a b


    

for i = 1, …, n and j = 1, …, p.
The complexity of this elementary algorithm is

O(nmp) or O(n3) if matrices are square(n = m = p)
[2]. It is not necessary to go into the details that the

cubic complexity is a bad property.

The existing solutions having open source code

are not effective enough (this will be proven in the

results).

There are many algorithms for rapid matrix

multiplication that reduce the complexity of the

operation. The best-known and used in practice is

the Strassen algorithm, which reduces the complex-

ity to O(nlog27), which is approximately equal to

O(n2.81) [3]. All the other algorithms are only theo-

retical and approximate, so they are practically not

used [4].

These algorithms are purely mathematical and

do not take into account such an important point as

placement the matrices in memory. They only

reduce the number of multiplications, so in practical

programming this is not enough.
Considering the chosen processor architecture,

memory management is very important. To speed
up this work, we use memory preload in cache. The
auto-preloader of X86 processors, unlike ARM,
works quite well, so it makes little sense to do this
job manually. In ARM architecture, the well-timed
use of the memory preloader can result in speeding
up operation many-fold. However, if one makes a
mistake, there is a significant drop in performance.

Therefore, we propose a new method of the
matrix multiplication considering above informa-
tion.

There are many libraries, including open

source code, that implement matrix multiplication.

In the specification of basic linear algebra subrou-

tines (BLAS), this operation has a more enhanced

interface and is called gemm. There are many

implementations of this specification and most of

them implement matrix multiplication using SIMD

technology [5].

OpenCV is a library of software functions pri-

marily focused on real-time computer vision algo-

rithms. This library is a very powerful tool: it has

many useful features, is cross-platform and imple-

mented in several programming languages. It is dis-

tributed as BSD-licensed open source code software.

OpenCV is not BLAS compatible, but implements a

similar gemm function [6].

Eigen is a template library, it provides a simple

and very common C++ 98 template interface for

matrix/vector operations and related algorithms.

This library, like OpenCV, contains implementa-

tions that leverage vector operations for optimiza-

tion. Important thing is that there are some (more

optimal) implementations for some fixed sizes. The

main feature of this library is that it is fully imple-

mented in the headers, so one only needs to down-

load these files to be used [7].

These libraries stated that they have optimized

algorithms for matrix operations, so we choose them

for comparing with ours.

It is pointless to describe in detail how the ma-

trix multiplication algorithm is implemented in the

above libraries. The result of their work and com-

parison with the proposed method will be shown be-

low. Their main disadvantage is the lack of perfor-

mance, so the purpose of this article is to develop a

faster method of implementing matrix multiplica-

tion.

Description of the proposed method

The matrix multiplication of the MK matrix A

and KN matrix B results in the creation of MN

matrix C. Each element in matrix C can be consid-

ered as a scalar product of the corresponding row of

matrix A and column of matrix B.

It is possible to implement all matrix multipli-

cations by using a primitive scalar product, but such

implementation would be far from effective. In a

scalar product, we load two elements for each

multiplication-add operation, and on modern pro-

cessors, this implementation will be limited by

memory or cache bandwidth instead of the compu-

ting power of multiplication-add units. Neverthe-

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ 37

less, a minor modification — calculating point prod-

ucts from several rows in A and several columns in
B at a time — improves performance significantly.

The modified primitive takes MR elements of

elements in A and NR of B elements and performs

multiplication operations with MRxNR accumula-

tion. The number of registers and other details of

the processor architecture limit maximum MR and

NR values. But in most modern systems, they are

large enough to make the operation limited, and all

high-performance implementations of matrix-ma-

trix multiplication are built on this primitive mi-

crokernel commonly called PDOT (panel dot prod-

uct). The M = N = 4 workaround was selected in

the method stated below. Such a small number

causes the limitations of the chosen architecture.

This paper considers the matrix multiplication

method for the ARM v7 architecture. It is 32-bit

and has some limitations on the number of registers.

With the exception of Armv6-M, Armv7-M,

Armv8-M.baseline and Armv8-M.mainline based

processors, there are 33 32-bit general-purpose reg-

isters, including redundant SP and LR registers. Fif-

teen general-purpose registers are visible at any

time, depending on the current processor mode.

These are R0-R12, SP and LR. PC (R15) is not

considered a general-purpose registry [8].

SP (or R13) is a stack pointer. C and C++

compilers always use SP as a stack pointer. Arm de-

values most SP applications as a general-purpose

registry. In T32 state, SP is strictly defined as a stack

pointer. ARM official documentation describes

when SP and PC can be used.

In a user mode, LR (or R14) is used as a reg-

ister of links to store a return address when a sub-

routine is called. It can also be used as a general-

purpose register, if the return address is stored in the

stack.

In exception handling modes, the LR stores the

return address for the exception or the return ad-

dress of the subroutine, if subroutine calls are made

within the exception. The LR can be used as a gen-

eral-purpose register if the return address is stored

in the stack.

From the above it is clear that only 13 regular

registers are available for general use without any

restrictions.

The algorithm requires much more regular reg-

isters to move with the four rows of the first to the

second matrix, as noted above. Matrix row pointers

(4 first + 4 second) also need pointers to the result-

ing matrix rows, registers to store sizes and iterators

for each of them. Since matrices can actually only

be parts of larger matrices, the notion of a step be-

tween rows is introduced. This step is defined in

bytes and is equal to the actual width of the entire

image, multiplied by the size of one element. The

user with an understanding of the storage area in

which one operates should transmit this data. These

steps, for each of the three matrices, accordingly,

require registers. So, even not taking into account

the extra registers that may be needed to calculate,

the required number equals already to twenty.

Therefore, to save all the necessary values, one

needs to allocate additional temporary memory. To

use this data, they should be loaded in free registers

and stored back in time, in case of necessity, the

register should be freed up (saving constant values,

such as matrix sizes and line spacing, each time is

not required).

The main practical problem in calculating the

product of matrices is the inefficient bypass of the

second matrix, because the result of a particular el-

ement of the result matrix is the product of the row

of the first matrix and the second matrix column.

Column matrix bypass is quite inefficient in Row-

Major mode (when a row in memory is in se-

quence). To solve this problem, the accumulation of

results in a temporary buffer was chosen, while mov-

ing linearly on the second matrix. With this ap-

proach, the number of bypasses of the second matrix

increases. In fact, with each row of the first matrix,

the second one is completely read-out. However,

gradual read-out of the data slows down the program

operation to such an extent, that multiple linear

reading of the matrix still faster than just one incon-

sistent read. Considering that the bypass will be per-

formed at once by four rows of the first matrix, the

number of bypasses of the second one is reduced by

four times (it is fully read-out once per every four

rows of the first matrix).

Of course, the disadvantage of this approach is

the considerable amount of additional dedicated

memory (4* the width of the second matrix). Thus,

the resulting calculation is divided into two parts:

first, there is an accumulation in the temporary

buffer, and then, only at the last iteration, the entry

in the resulting matrix. The last iteration is the cal-

culation on the last rows of the second matrix. The

magnitude of the so-called matrix tail will be equal

to the remainder of the division of the second matrix

height (or the width of the first, since they are equal)

by the number of rows that are bypassed within one

iteration (in this case by four). If there is no remain-

der, then one iteration less is performed in the total

cycle and when processing the last four rows, the

result is immediately written to the resulting matrix.

38 KPI Science News 2020 / 2

As a result, we have the following general al-

gorithm for matrices A(MK) and B(KN) multi-

plied into the matrix C(MN) by the blocks mR

and Rn with the tail having t value:

1. Allocation of necessary additional memory

(for variables and accumulation), initial data ini-

tialization (including memory reset into which the

result will be accumulated) and their storage.

2. Reading-out R elements from m rows of the

first matrix.

3. Reading-out n elements from the R rows of

the second matrix.

4. Read n elements from m lines of temporary

buffer with intermediate results.

5. Scalar multiplication of blocks mR and Rn

and their accumulation to data read-out from a tem-

porary buffer.

6. Record of intermediate results back to the

temporary buffer.
7. Implementation of items 3—6 N/n times.

8. Upon bypass of the entire width of the sec-

ond matrix, the transition to next R rows of that

matrix and the R elements of the first one is per-

formed. Temporary buffer pointers are moved to the

beginning and accumulation will further occur in it.
9. Implementation of items 2—8 (K/R-t) times.

10. At the tail iteration, we read-out the last t
elements from the m rows of the first matrix.

11. We read n elements from the last t rows of

the second matrix.

12. Same as item 4.

13. Scalar multiplication of blocks m x t and t
x n and their accumulation to read-out data from

the temporary buffer.

14. Resetting the temporary buffer.

15. Writing m rows of n elements in the result-

ing matrix.
16. Implementation of items 11—15 N/n times.

17. Transition to the next m rows of the first

and the resulting matrices.
18. Implementation of items 2—17 M/m times.

Implementation using SIMD instructions

In practical application, this algorithm is good

enough. It is worth to note that aliquant values are

not taken into account here, that is, it is necessary

to additionally process the remainders, but it is de-

cided to describe the algorithm without such, quite

clear, details.

Of course, fast calculation requires more than

just an efficient algorithm. One has to additionally

look for optimization methods (both algorithmic

and architecture related). Using algorithmic optimi-

zation, one can specify items related to tail pro-

cessing. In a simple algorithm, individual points are

not dedicated to this: first, the result is completely
obtained in the temporary buffer (i.e., points 2—8

are performed K/R times), then the result is rewrit-

ten into matrix C and the last step is the resetting of

the temporary buffer. In this algorithm, all these op-

erations occur in one pass.

As to lower-level optimization, one should start

with the vector instructions. Such operations allow

executing operation with several values written in

vector registers.

SIMD is a class of parallel programming,

which is based on such operations. Most modern

processors are designed to support SIMD instruc-

tions to enhance performance. This class is particu-

larly popular in signal processing, where, as a rule,

a large number of identical data is processed with

similar operations. SIMD also allows processing

several similar data types with the same instruction
(as indicated in the name — Single instruction, mul-

tiple data; which is rendered as: one instruction for

lots of data).

In ARM architecture processors, SIMD is

represented as NEON (Advanced SIMD) extension.

The Registry Bank of this extension is a collection

of registers that can be accessed both as 64-bit and

128-bit vector registers. Advanced SIMD and VFP

(floating-point values operations) use the same

registers and differ from the main ARM register

bank.

128-bit registers are called Q-registers, and
64-bit — D-registers. Each Q-register corresponds

to 2 D-registers, they are overlapping. The mapping

between the registers is as follows:

D 2n maps the least significant half of Q n;
D 2n + 1 maps the most significant half of

Q n.
For example, one can access the least signifi-

cant half of the vector elements in Q6 by referring
to D12 and the most significant half of the elements —

by referring to D13.
Therefore, in general, the registry bank can be

represented by:

 Sixteen 128-bit registers Q0-Q15;

 Thirty-two 64-bit registers D0-D31;

 A combination of D and Q registers.

The SIMD extension treats each register as

containing 1, 2, 4, 8, or 16 elements of the same

size and type (the number depends on the register

size and the element, respectively). Individual ele-

ments can also be accessed as scalars.

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ 39

Let us consider using this technique in the pro-

posed algorithm.

We omit the moments with reading and writ-

ing, we assume that the matrix elements have al-

ready been read into the vector registers and will be

written from them.

Let us have a more detailed look at item 5. We

will consider the example of a 32-bit float type. In

the developed method, for m = 4 and n = 4, R is

also assumed as four, due to the limitation of the

registers number. Thus, 44 elements of the first

matrix have been read in item 2. This corresponds

to 64 bytes, so four Q registers are required. In items

3 and 4 the same number of Q registers of the

second matrix and time buffer was read out, respec-

tively.

According to the matrix multiplication algo-

rithm, it is necessary to multiply the first row of the

second matrix by the first element of each row of
the first one, the second row — by every second el-

ement, and so on. Moreover, the products obtained

from the i-th row of the first matrix and the j-th

column of the second matrix correspond to the ele-

ment (i,j) of the temporary buffer.

Given the specifics of the actions described, a

vector-to-vector operation is not appropriate, and as

stated above, NEON allows getting access to an

individual element. Therefore, some instructions al-

low performing vector-scalar operations. VMLA is

one such instruction [9].
VMLA (Vector Multiple and Accumulate) —

multiplies the corresponding elements of two vectors

and adds the product to the corresponding elements

of the result register. In the scalar-vector case, each

element of the vector is multiplied by a scalar. The

general syntax of the instruction is as follows:

 VMLA {cond} .datatype {Qd}, Qn, Qm.

And the vector scalar option looks like:

 VMLA {cond} .datatype {Qd}, Qn, Dm [x].

Let us consider each element of the structure:

 {cond} — an optional parameter, NEON al-

lows conditional execution of instructions, cond box

is clicked for the condition under which the instruc-

tion will be executed;

 datatype — a vector register element type, in

our case F32, denoting a 32-bit floating point num-

ber;

 Qd, Qn, Qm — input registers for the oper-

ation, the following operation is conditionally per-

formed: Qd + = Qn * Qm;

 Dm [x] — a scalar, for the vector-scalar op-

eration it is important that the Q-registers are used
as vectors, but the scalar gets from the D-register; x —

the index of the desired element from the vector

Dm.
Therefore, we assume that vectors Q4—Q7 were

read from the first matrix, from the second matrix —

Q8—Q11 vectors, and from the temporary buffer —

Q0—Q3. Then the set of commands required to get

the result will look as follows:

Multiplying the 1st row of the second matrix

by the first element of each row of the first matrix

with accumulation in the temporary buffer.

 VMLA.F32 Q0, Q8, D8[0]

 VMLA.F32 Q1, Q8, D10[0]

 VMLA.F32 Q2, Q8, D12[0]

 VMLA.F32 Q3, Q8, D14[0]

Multiplication of the 1st row of the second ma-

trix by the first element of each row of the first ma-

trix with accumulation in the temporary buffer, etc.

 VMLA.F32 Q0, Q9, D8[1]

 VMLA.F32 Q1, Q9, D10[1]

 VMLA.F32 Q2, Q9, D12[1]

 VMLA.F32 Q3, Q9, D14[1]

 VMLA.F32 Q0, Q10, D9[0]

 VMLA.F32 Q1, Q10, D11[0]

 VMLA.F32 Q2, Q10, D13[0]

 VMLA.F32 Q3, Q10, D15[0]

 VMLA.F32 Q0, Q11, D9[1]

 VMLA.F32 Q1, Q11, D11[1]

 VMLA.F32 Q2, Q11, D13[1]

 VMLA.F32 Q3, Q11, D15[1]

So, we obtained 16 vector VMLA operations.

A similar solution by the conventional method

would produce 64 multiplication and the same num-

ber of addition operations.

Another way to optimize is linearly reading and

writing to the temporary buffer. In a simple way, for

convenience, the temporary buffer corresponds to

the four rows of the resulting matrix. Given that this

buffer is only a temporary one, it is possible to read

and write it linearly. At first glance, it is just an el-

ementary change, when it comes to vector registers

and if we consider the further processing of remain-

ders, but, in fact, it leads to serious confusion. These

40 KPI Science News 2020 / 2

details will not be described in this publication. The

main thing is to correctly understand at what point

the corresponding elements for accumulation are lo-

cated and what registers are to be written in sums

and where. It should be noted here that NEON al-

lows to effectively read/write vector registers with

one instruction. However, there are two limitations:

one instruction can write at most two Q-registers at

a time; the registers should be serial. That is, read-

ing/writing of Q1, Q3 registers with one instruction

is impossible. These limitations are one of the rea-

sons for the problems with the transition from read-

ing the temporary buffer by 4 lines to serial.

Given that the bypass of the second matrix is

performed a large number of times, the overall exe-

cution time is greatly affected by the padding size.

This is a value equal to the width of the matrix sub-

tracted from the step between the rows. Briefly, this

is the size of the region of the entire matrix that does

not take part in the multiplication (if the multipli-

cation is performed on the part of the larger matrix).

By reducing the ratio between the width at which

the multiplication is performed and the width at

which it is not performed, the rate of execution de-

creases. Sometimes the deterioration is such that it

is quicker to make a copy of the sub-matrix into a

new memory where paddings will be removed and

to perform the operation without them. It is due to

these reasons that one more optimization occurred:

from the above data, as well as the height of the first

matrix (the number of the second matrix full read-

outs depends on this), the conversion factor is cal-

culated, which makes it advantageous to first make

a copy to the extra memory and only then to mul-

tiply the matrices on that memory.

For the ARM architecture the proper place-

ment of the memory reboot is very important. As

practice shows, 86 architecture types have a good

auto-preloader, unlike ARM. In this processor fam-

ily, correct and timely memory rebooting can result

in a huge acceleration. On the contrary, if program-

mer makes a mistake, the performance can drop sig-

nificantly. The official documentation does not give

any flexible advice. It only recommends preloading

with 128-byte indentation unit.

The PLD instruction performs a 64-byte pre-

load of the transmitted pointer memory with some

preset indentation unit. As mentioned above, the of-

ficial documentation recommends that 128 bytes in-

dentation should be made in advance. However,

practical use shows that this is only a minimum of

the real capabilities of this instruction. In different

situations accelerations produce single preloads be-

fore the start of the general cycle, or in the cycle

itself (not always with 128 byte indentation unit, and

sometimes their number can be more than one). The

PLD instruction preloads 64 bytes at once. The

above design only makes 16-bytes pass, so this op-

eration is redundant at every iteration. The simplest

solution to this problem is to spin a 64-byte cycle.

In fact, one such iteration will simply contain 4

blocks of operations of 16 bytes each, but this ap-

proach makes it possible to perform preloading

much more efficiently.

Finally, it can be noted that due to the different

behavior when bypassing the matrices (first, second

and temporary), the schemes of their preload also

differ.

Similarly, not only matrix multiplication on floa-

ting-point numbers is implemented, but integer 8-bit

scaling as well. The option of the matrix multiplica-

tion by the transposed one and the list of vectors is

also implemented (the actual implementation is

one, the transposed goes to the vectors list). This

option allows to read both matrices sequentially

without additional memory buffer and to use a vec-

tor-vector type VMLA instruction.

The results of the comparison of the proposed
method with others

The OpenCV and Eigen libraries described above

were selected for the purpose of comparison. Matrix

multiplication functions in all libraries (including

the developed one) return the same result, so we

assume that it is accurate. The data was verified by

a vipmed application designed specifically to test

and verify image and matrix management functions.

This software allows running various mathematical

functions of different libraries with the transfer of

the necessary parameters, compare their results, and

measure the execution time within the accuracy of

a microsecond using C library function “clock”.

All measurements were made on a NVIDIA

Tegra K1 chip with ARM Cortex-A15 processors

that support ARMv7 and NEON.

Testing was performed on square matrices with

dimensions 1010, 100100, 200200, 500500,

1,0001,000, 2,0002,000 and 4,0004,000 elements

with padding of 0 and 4,000 bytes on 8-bit unsigned

integers (u8) and 32-bit floating point numbers

(f32). Variants of ordinary matrix multiplication and

matrix multiplication by the transposed one were

tested.

For illustration purposes, the tables show the

percentage of run time of existing OpenCV and

Eigen methods from the one developed for Vipm

library.

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ 41

Table 1 represents multiplying the NN matrix

by the NN matrix using 8-bit unsigned integers

without a padding.

Table 1. Matrix multiplication on type u8 with 0 byte

padding

N
Vipm

(ms)

OpenCV

(ms)

Eigen

(ms)

cv

(%)

ei

(%)

10 0.001 0.005 0.002 500 200

100 0.203 1.799 1.167 886 575

200 1.658 16.574 8.733 1000 527

500 26.487 281.808 134.164 1064 507

1000 216 2326 1064 1078 493

2000 2259 18706 8457 828 374

4000 20956 151309 67598 722 323

Table 2 represents multiplying the NN matrix

by the NN matrix using 8-bit unsigned integers

with 4,000 bytes padding.

Table 2. Matrix multiplication on type u8 with 4000 bytes

padding

N
Vipm

(ms)

OpenCV

(ms)

Eigen

(ms)

cv

(%)

ei

(%)

10 0.002 0.005 0.003 250 150

100 0.208 1.799 1.175 865 565

200 1.672 16.721 8.748 1000 523

500 28.331 281.932 134.221 995 474

1000 216 2341 1067 1085 494

2000 2336 18709 8470 801 363

4000 20957 151314 67651 722 323

Table 3 represents multiplying the NN matrix

by the NN matrix using 32-bit floating-point num-

bers without padding.

Table 3. Matrix multiplication on type f32 with 0 byte

padding

N
Vipm
(ms)

OpenCV
(ms)

Eigen
(ms)

cv
(%)

ei
(%)

10 0.001 0.003 0.002 300 200

100 0.223 1.727 0.309 774 139

200 1.708 15.725 2.301 921 135

500 26.170 264.676 39.118 1011 149

1000 248 2302 318 926 128

2000 2160 18563 2475 860 115

4000 17938 150348 19131 838 107

Table 4 represents multiplying the NN matrix

by the NN matrix using 32-bit floating-point num-

bers with 4,000 bytes padding.

Table 4. Matrix multiplication on type f32 with 4000 bytes

padding

N
Vipm
(ms)

OpenCV
(ms)

Eigen
(ms)

cv
(%)

ei
(%)

10 0.002 0.003 0.002 150 100

100 0.231 1.933 0.327 837 142

200 1.746 15.725 2.361 901 135

500 26.728 265.320 39.345 993 147

1000 250 2303 319 920 127

2000 2210 18576 2477 840 112

4000 18630 150349 19140 807 103

Table 5 represents multiplication of the NN

matrix by the transposed NN matrix using 8-bit un-

signed integers without padding.

Table 5. Matrix multiplication (transposed multiplicand)

on type u8 with 0 byte padding

N
Vipm

(ms)

OpenCV

(ms)

Eigen

(ms)

cv

(%)

ei

(%)

10 0.001 0.007 0.002 700 200

100 0.264 2.243 1.171 850 444

200 2.184 16.969 8.745 777 400

500 33.740 272.955 135.278 809 401

1000 246 2154 1069 877 435

2000 2035 17105 8473 841 416

4000 16002 136829 67651 855 423

Table 6 represents multiplying the NN matrix

by the transposed NN matrix using 8-bit unsigned

integers with 4,000 bytes padding.

Table 6. Matrix multiplication (transposed multiplicand)

on type u8 with 4000 bytes padding

N
Vipm

(ms)

OpenCV

(ms)

Eigen

(ms)

cv

(%)

ei

(%)

10 0.002 0.007 0.003 350 150

100 0.265 2.246 1.172 848 442

200 2.187 17.007 8.746 778 400

500 33.815 272.958 135.370 807 400

1000 247 2181 1069 885 434

2000 2044 17106 8475 837 415

4000 16405 136841 67651 834 412

42 KPI Science News 2020 / 2

Table 7 represents multiplying the NN matrix

by the transposed NN matrix using 32-bit floating-

point numbers without padding.

Table 7. Matrix multiplication (transposed multiplicand)

on type f32 with 0 byte padding

N
Vipm

(ms)

OpenCV

(ms)

Eigen

(ms)

cv

(%)

ei

(%)

10 0.001 0.004 0.002 400 200

100 0.245 2.141 0.313 874 128

200 1.786 17.022 2.298 953 129

500 26.884 269.551 38.846 1003 144

1000 275 2166 317 789 115

2000 2425 17275 2466 712 102

4000 18909 138233 19104 731 101

Table 8 represents multiplying the NN matrix

by the transposed NN matrix using 32-bit floating-

point numbers with 4,000 bytes padding.

Table 8. Matrix multiplication (transposed multiplicand)

on type f32 with 4000 bytes padding

N
Vipm
(ms)

OpenCV
(ms)

Eigen
(ms)

cv
(%)

ei
(%)

10 0.002 0.004 0.002 200 100

100 0.245 2.142 0.315 874 129

200 1.789 17.042 2.301 953 129

500 27.042 269.964 38.867 998 144

1000 290 2167 317 749 110

2000 2426 17277 2466 712 102

4000 18996 138337 19114 728 101

The results show that in all cases OpenCV

works about in the same way (time only increases

with image size, which is quite logical), and options

of the floating point are much more efficiently im-

plemented in Eigen. The algorithm developed is also

executed at about the same rate in all conditions,
but generally, runs much faster than OpenCV —

sometimes ten-fold. Eigen is also much more effi-

cient than OpenCV, but the 8-bit unsigned numbers

are still significantly inferior to the developed algo-

rithm. It can be assumed that this library does not

have a direct implementation for this type of values,

so it is executed by additional conversions to floating

point numbers, which causes a delay. When using

floating-point numbers, the algorithm for the given

values is still faster. For higher values, the efficiency

of the Eigen library approaches the developed algo-

rithm.

Testing was performed on various sizes and

types using vipmed software (designed for in-house

use by VIT).

Conclusions

The proposed matrix multiplication method

gives the expected speed of matrix multiplication

operations (not slower than existing analogues) and

has passed evaluation test for use.

The efficiency of the method is tested by prac-

tical application.

The method is used in the corporate library of

one of the leading companies in Ukraine.

The article can help to understand how pre-

loaders and caches are work and how to use them

in operations such as matrix multiplication.

This algorithm do not consider that block sizes

are depend on cache size. Therefore, speed on ma-

chines with a different cache size can be unexpected.

For future work, we need to explore more ex-

isted libraries with matrix multiplication. It will help

understand in what way we can move next.

References

[1] Application of Matrices in Real-Life [Online].

Available: https://www.ukessays.com/essays/mathematics/application-of-matrices-in-real-life-problems.php

[2] Le Gall, François, “Powers of tensors and fast matrix multiplication”, in Proc. 39th Int. Symp. Symbolic and

Algebraic Computation, Kobe, Japan, 2014, pp. 157—164.

[3] V. Strassen, “Gaussian elimination is not optimal”, Numer. Math., vol. 13, no. 4, pp. 354—356, 1969.

[4] S. Robinson, “Toward an optimal algorithm for matrix multiplication”, SIAM News, vol. 38, no. 9, 2005.

[5] C.L. Lawson et al., “Basic linear algebra subprograms for FORTRAN usage”, in ACM Trans. Math. Software,

1979, pp. 308—323.

[6] OpenCV official site [Online]. Available: https://opencv.org/

[7] Eigen Official Site [Online]. Available: http://eigen.tuxfamily.org/

[8] ARM Official Site [Online]. Available: https://developer.arm.com/

[9] ARM Information Center [Online]. Available: https://infocenter.arm.com/

 ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ, СИСТЕМНИЙ АНАЛІЗ ТА КЕРУВАННЯ 43

І.А. Дичка, Д.А. Вінник, Ю.В. Бухтіяров, В.Я. Юрчишин

МЕТОД РЕАЛІЗАЦІЇ ШВИДКОГО МАТРИЧНОГО МНОЖЕННЯ ПІД АРХІТЕКТУРУ ARM ІЗ ВИКОРИСТАННЯМ SIMD-

ІНСТРУКЦІЇ

Проблематика. Матричне множення є досить складним алгоритмом із великою кількістю операцій. Додатковою проблемою
також є нелінійний обхід матриць по пам’яті. Операція матричного множення широко використовується в різних сферах, таких як
нейронні мережі, розв’язки систем лінійних рівнянь, матричні перетворення тощо. Тож важливо розробити метод матричного
множення, що враховуватиме проблеми з розташуванням матриць у пам’яті, а також ефективно розпоряджатиметься даними при
їх повторному використанні.

Мета дослідження. Розробити метод швидкого матричного множення двох матриць, множення матриці на транспоновану
та на список векторів (у т.ч. окремий випадок для одного вектора); реалізувати його у вигляді функції з оптимізацією для проце-
сорів архітектури ARM. Функція має вміти працювати з різними типами даних та з підматрицями. Цілочисловий результат може
бути масштабований.

Методика реалізації. Головними ідеями розробленого методу є одночасних прохід декількома рядками/стовпчиками вхід-
них матриць та їх розбиття на блоки, що дасть алгоритму змогу деякий час працювати на одній і тій самій пам’яті. Для реалізації
було вибрано мову програмування С. Для збільшення продуктивності використано SIMD-інструкції. Для ефективної реалізації під
архітектуру ARM також необхідно правильно організувати роботу з попереднім завантаженням пам’яті.

Результати дослідження. Реалізовано функцію, що виконує матричне множення за розробленим методом із необхідними
параметрами. Перевірки на різних розмірах і типах показали, що реалізована функція є швидшою за аналоги з бібліотек OpenCV2
та Eigen 3. Тестування відбувалося за допомогою утиліти vipmed для запусків і замірів характеристик, розробленої для корпора-
тивного користування у компанії VIT.

Висновки. Запропонований метод множення матриць дає очікуване прискорення операції множення матриць, пройшов
оціночний тест на використання та відповідає заданим у меті вимогам. Для подальшої роботи необхідно детальніше дослідити
вплив кеша різного рівня та порівняти з іншими існуючими бібліотеками.

Ключові слова: матричне множення; архітектура ARM; векторні операції; транспонування матриці.

И.А. Дычка, Д.А. Винник , Ю.В. Бухтияров, В.Я. Юрчишин

МЕТОД РЕАЛИЗАЦИИ БЫСТРОГО МАТРИЧНОГО УМНОЖЕНИЯ ПОД АРХИТЕКТУРУ ARM С ИСПОЛЬЗОВАНИЕМ

SIMD-ИНСТРУКЦИИ

Проблематика. Матричное умножение является достаточно сложным алгоритмом с большим количеством операций. До-
полнительной проблемой также является нелинейный обход матриц по памяти. Операция матричного умножения широко ис-
пользуется в различных сферах, таких как нейронные сети, решения систем линейных уравнений, матричные преобразования
и т.п. Поэтому важно разработать метод матричного умножения, который будет учитывать проблемы расположения матриц в
памяти, а также эффективно будет распоряжаться данными при их повторном использовании.

Цель исследования. Разработать метод быстрого матричного умножения двух матриц, умножения матрицы на транспо-
нированную и на список векторов (в т.ч. частный случай для одного вектора); реализовать его в виде функции с оптимизацией
для процессоров архитектуры ARM. Функция должна уметь работать с различными типами данных и с подматрицамы. Целочис-
ленный результат может быть отмасштабирован.

Методика реализации. Главными идеями разработанного метода является одновременный проход несколькими стро-
ками/столбцами входных матриц и их разбиение на блоки, что позволит алгоритму некоторое время работать на одной и той же
памяти. Для реализации был выбран язык программирования С. Для увеличения производительности использованы SIMD-
инструкции. Для эффективной реализации под архитектуру ARM также необходимо правильно организовать работу с предвари-
тельной загрузкой памяти.

Результаты исследования. Реализована функция, которая выполняет матричное умножение по разработанному методу
с необходимыми параметрами. Проверки на разных размерах и типах показали, что реализованная функция быстрее аналогов
из библиотек OpenCV2 и Eigen 3. Тестирование проходило с помощью утилиты vipmed для запусков и замеров характеристик,
разработанной для корпоративного пользования в компании VIT.

Выводы. Предложенный метод умножения матриц дает ожидаемое ускорение операции умножения матриц, прошел оце-
ночный тест на использование и соответствует заданным в цели требованиям. Для дальнейшей работы необходимо подробнее
исследовать влияние кэша разного уровня и сравнить с другими существующими библиотеками.

Ключевые слова: матричное умножение; архитектура ARM; векторные операции; транспонирование матрицы.

Рекомендована Радою
факультету прикладної математики
КПІ ім. Ігоря Сікорського

Надійшла до редакції
03 лютого 2020 року

Прийнята до публікації
05 червня 2020 року

