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TIGHT-TARDY PROGRESSIVE IDLING-FREE 1-MACHINE PREEMPTIVE
SCHEDULING BY HEURISTIC’S EFFICIENT JOB ORDER INPUT

Background. In setting a problem of minimizing total tardiness by the heuristic based on remaining available and
processing periods, there are two opposite ways to input the data: the job release dates are given in either ascending or
descending order. It was recently ascertained that scheduling a few equal-length jobs is expectedly faster by ascending
order, whereas scheduling 30 to 70 equal-length jobs is 1.5 % to 2.5 % faster by descending order. For the number of
equal-length jobs between roughly 90 and 250, the ascending job order again results in shorter computation times.
Objective. The goal is to ascertain whether the job order input is significant in scheduling by using the heuristic for the
case when the jobs have different lengths. Job order efficiency will be studied on tight-tardy progressive idling-free 1-
machine preemptive scheduling.

Methods. To achieve the said goal, a computational study is carried out with a purpose to estimate the averaged
computation time for both ascending and descending orders of job release dates. Instances of the job scheduling problem
are generated so that schedules which can be obtained trivially, without the heuristic, are excluded.

Results. On average, the descending job order input gives a tiny advantage in computation time. This advantage de-
creases as the number of jobs increases. The decrement resembles a steep exponential decrease. The factual advantage
is so insignificant that even after solving long series of job scheduling problems the saved computational time cannot
be counted in minutes, not speaking about hours as it was for the case of equal-length jobs.

Conclusions. The significance of the job order input is much lower than that for the case of equal-length jobs. Theo-
retically, the heuristic’s efficient job order input does exist but its efficiency can be practically used only by working on
extremely long series of scheduling problems where the number of jobs should not exceed 300.

Keywords: preemptive single machine job scheduling; total tardiness; heuristic; ascending job order; descending job

order; computation time; efficient job order.
Introduction

The exact minimization of total tardiness is
possible just for a few jobs whose processing periods
are not very long [1, 2]. Heuristics are the only
means which capable of scheduling hundreds and
thousands of jobs [3, 4]. Moreover, the entire sche-
dule can be an extremely long sequence of jobs [5],
whereas the heuristics allow online scheduling (once
a job is scheduled at a time moment, it will not be
changed and thus the jobs already scheduled can be
executed straightforwardly without waiting for the
entire schedule). The heuristic based on the remain-
ing available period and remaining processing peri-
od [3] is closely the best one. Article [6] ascertained
that, in scheduling by using the heuristic, the job
order input is significant for the case of tight-tardy
progressive idling-free 1-machine preemptive sched-
uling of equal-length jobs. Scheduling a few jobs is
expectedly faster by ascending order, although there
were many computational artifacts [7]. Article [6]
showed that scheduling 30 to 70 jobs is 1.5% to
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2.5 % faster by descending order. However, sched-
uling up to 90 jobs is expectedly still faster by de-
scending order, although a risk of losing this ad-
vantage exists. For the number of jobs between
roughly 90 and 250, the ascending job order again
results in shorter computation times. Since the point
of about 250 jobs, the advantage trend (of either as-
cending or descending order) appears more stable.
Besides, the average relative difference does not ex-
ceed 1.5 % for 2 to 1000 jobs consisting up to 17 pro-
cessing periods. Article [6] also revealed that, for ob-
taining a statistically reliable computation speed ad-
vantage, it is better to consider no less than 250 jobs.
However, as either the number of jobs or the num-
ber of job parts increases, the computation speed
advantage may become unstable and eventually
vanish. In the same time, in the case of scheduling
at least a few thousand jobs having just a few pro-
cessing periods each, the ascending job order can
save a lot of computational time — after solving
thousands of such cases the saved time may be
counted in hours.
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The case when the jobs have different lengths
(i. e., whose number of processing periods varies) is
an extension (continuation) of the case studied
in [6]. Now, the influence of varying job lengths on
the heuristic’s computational times (for both the as-
cending and descending job order) is to be studied.

Problem statement

The goal is to ascertain whether the job order
input is significant in scheduling by using the heu-
ristic for the case of tight-tardy progressive idling-
free 1-machine preemptive scheduling. The four fol-
lowing tasks will be fulfilled for achieving this goal.
Firstly, the heuristic is shortly stated for the case of
when the jobs have different lengths. Then, sec-
ondly, generation of the job scheduling problem in-
stances is stated for this case. Thirdly, a computa-
tional study is to be carried out for estimating the
relative difference between averaged computation
times for both the ascending and descending job or-
der. Finally, a conclusion is made on whether the
heuristic’s efficient job order input exists.

The heuristic based on remaining available and
processing periods

The problem of total tardiness minimization,
considering job processing periods (job lengths), re-
lease dates and due dates, is intentionally simplified
to that all the parameters are given as natural num-
bers. There are two opposite ways to input the data.
On one hand, the job release dates are given in as-
cending order. For N jobs, N € N\{l}, without

losing generality, the ascending job order input cor-
responds to due dates

d, =r,+H, -1+b, Vn=1L, N (1)

by the respective release date 7, of job n , its length

H, and a random due date shift

b, =y(H,-C) for n=1, N )

with a pseudorandom number £ drawn from the

standard normal distribution (with zero mean and
unit variance), and function (&) returning the in-

teger part of number & (e. g., see [1, 6]). In partic-

ular, the release dates can be given in ascending or-
der as follows:

vn=1,N. 3)

This is the common way of inputting the data into
the algorithm of solving the problem. Strictly speak-
ing, the release dates can be permuted as one likes
or needs to satisfy some external conditions (obvi-
ously, the job processing periods and due dates are
permuted with respect to the release date permuta-
tion). Thus, on the other hand, the job release dates
are given in descending order as

r,=N-n+1 vn=1, N 4)

and the descending job order input corresponds to
due dates

d=r,+H-1+by ., Yn=LN. (5

Due date shifts (2) are generated until
d,21 Vvn=1 N. (6)
If simultaneously

H,<H,, and d, <d,, vYn=1, N-1 (7)

for the ascending job order input with (3) and (1),
then due date shifts (2) are re-generated as well. So,
if one of the inequalities in (7) is violated, then the
due dates are given properly for the ascending job
order input:

d,=n+H,-1+b, vn=1, N. 8)
Symmetrically, if simultaneously

H,>H,, and d,>d,,, Vn=1, N-1 (9)

for the descending job order input with (4) and (5),
then due date shifts (2) are re-generated also. If one
of the inequalities in (9) is violated, then the due
dates are given properly for the descending job order
input:

d,=N-n+H,+by_,., vYn=1,N. (10)

Thus, due dates (8) are not given in non-descending
order if the job lengths have been occasionally gen-
erated in non-descending order. This is done so be-
cause in the case of when all inequalities (7) are
simultaneously true, a schedule ensuring the exactly
minimal total tardiness is found trivially, without re-
sorting to any algorithm or model (see Theorem 1
in [8]). By symmetrical reasoning, due dates (10) are
not given in non-ascending order if the job lengths
have been occasionally generated in non-ascending
order: if all inequalities (9) are simultaneously true,
an optimal schedule is found trivially as well owing
to Theorem 2 in [8].
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The heuristic based on remaining available and
processing periods builds stepwise a schedule

- N
S =[5, ]jxr, where T = ZH,, , as time ¢ progresses.
n=1

Before the start,
g,=H, vn=1,N. (11)
Then, for every set of available jobs
AW ={i e{l, N}:r, <tand ¢; > 0} < {I, N} (12)

the remaining available period is

b =max{0,d;, -t+1} Vie A®) (13)
and a subset
A’ (1) = arg max(max{g;, b (14)

is determined. If | 4" (£) | =1, where
A1) =i} = A() < {1, N},
then

§ =i by ¢ =g. and g. = ¢ -1; (1)
otherwise

A1) =i} c A@) < {1, N} by L>1, (16)
whence

5, =i by qlfl,f’bs) =4 and g = qi(lng) -1. (17)

Assignment (17) executed by condition (16) for sub-
set (14) implies that, in a case when there are two
or more maximal decisive ratios in (14), the earliest
job is preferred to be scheduled [6]. Thus, job n is

completed after moment 6(n; H,) if

gé(n;h) =n th =1, Hn by é(}’l; h,,)e{l,_T}

and 0(n; h,,)<é(n; h,+1) for h,=1 H, -1

in schedule S = [S,];x7 returned by the heuristic. Fi-
nally, amount

N

S(N) => max{0, 0(n; H,)-d,} (18)
n=l1

is an approximately minimal total tardiness that cor-

responds to this schedule.

Generation of the job scheduling problem in-
stances

As the jobs can have different lengths, they
should be randomly generated. Let a method sug-
gested in [9] be used for this:

H,=vy(16v+2) for n=1, N (19)

with a pseudorandom number v drawn from the
standard uniform distribution on the open interval
(0; 1) . So, the job length is randomly generated be-

tween 2 and 17 [6]. When job lengths (19) and due
date shifts (2) are properly generated by some N
for the ascending job order input, i. e. inequality (6)
holds and at least one of the inequalities in (7) is
violated, then an ascending order schedule by job

lengths {H }ff:l, release dates (3), and due dates (8) is

computed by the heuristic with statements (11)—(18).
Alternatively, a descending order schedule by job
lengths

{Hn}y/,\/:] after H}ObS) “H, V) :L_N

and H,=H™  for n=1, N, (20)
release dates (4), and due dates (10) is computed as
well. In fact, job lengths (20), release dates (4), and
due dates (10) for the descending job order input are

obtained by just reversing (i. e., flipping the left and
right) job lengths {H n}N release dates (3), and due

n=1>-
dates (8) for the ascending job order input. How-
ever, the version with generating the ascending job
order input and descending job order input sepa-
rately, independently of each other, is to be studied
also.

At a fixed number of jobs N and for a job
scheduling problem instance tagged by an integer c,
denote the schedule computation times by ascend-
ing order and descending order by t,,.(N,c) and

T pese (N, ¢) in milliseconds (ms), respectively. If the

total number of the instances is C, then the respec-
tive averaged computation times for scheduling N
jobs are

1 C
TAsc(N):EZTAsc(Na c) (21)
c=1
and
1 C
TDesc(N) = EZTDesc(N’ c). (22)
c=1
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In percentage terms, the relative difference between
computation times (21) and (22) is

100 - TASC(N) — TDesc(N) .
TAsc(N)

For a few hundred instances at a fixed number of
jobs, the variance of relative difference (23) is
roughly the same as for one hundred instances. This
is why relative difference (23) will be estimated by
N =2,1000 for C=100 (generating more in-

stances will not make the estimation more effective).

n(N) = (23)

Computational study

Just as in article [6], the computational study is
executed on CPU Intel Core i5-7200U@2.50 GHz
using MATLAB R2018a. First of all, the version
with generating the ascending job order input and
descending job order input separately, indepen-
dently of each other, is studied. Here ascending and
descending job order inputs are generated by (2) and
(19) using two different randomizers. Relative dif-
ference (23) is shown in Fig. 1 for this version whose
average relative difference

1000
A(1000) = ——. 3 n(m) ~ 0.4052 (24)
999 =

indicates a little advantage of the descending job or-
der input.

Nevertheless, it is hard to assess the advantage
with only relative difference (23), even having the
horizontal zero level line put on the plot. This is
why running average relative difference

(V) =

N

z n(m) for N =2,1000 (25)
m=2

should be additionally used for the analysis. Run-
ning average relative difference (25) is shown in
Fig. 2, where average (24) is a partial case (the ulti-
mate single estimation point) of averages (25). Not
paying attention at fluctuations caused by computa-
tional microartifacts, it is well seen that the descend-
ing job order input is really faster than the ascending
job order input, although its advantage decreases as
the number of jobs increases. If up to 200 jobs are
scheduled, the average relative difference is about
2% to 3 %.
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Fig. 1. Relative difference (23) for the version where the ascending job order input and descending job order input are generated
separately (independently of each other) using different randomizers
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The comparison of two different randomizers
for the ascending and descending job order inputs
resulted in Fig. 1 with the relative difference and
Fig. 2 with the running average relative difference is
not purely correct. The matter is the correct com-
parison is to be on the single randomizer for gener-
ating random due date shifts (2) and random job
lengths (19), where job lengths, release dates, and
due dates for the descending job order input are ob-
tained by just reversing those ones for the ascending
job order input. Relative difference (23) for this ver-
sion is shown in Fig. 3. A refined version of the plot
in Fig.3 is presented in Fig.4 using the same
presentation style, by only cutting values of the rel-
ative difference to the range of —5 % to 5 %. Now,
the appearance of the relative difference differs from
that of Fig. 1: it fluctuates less but has more visible
computational artifacts compared to Fig.1. The
drop between approximately 560 and 600 jobs seems
to be a complex computational artifact (something
similar is seen nearby 300 jobs). Nevertheless, it is
clearly seen in both Figs. 3 and 4 that the descending
job order input is faster in scheduling up to 400 jobs.
This does not contradict the running average relative
difference in Fig. 2.

The average relative difference

1 1000
A(1000) = ——- > n(m) ~ 0.4755

999 (26)

m=2

for this version of the (first) mutual randomizer is
slightly greater than that (24) for two different ran-
domizers. Meanwhile, the running average relative
difference for the first mutual randomizer version
appears as a much smother curve resembling more
an exponential decrease (Fig. 5). Fig. 5 proves that
the descending job order input is faster, although its
advantage smoothly decreases down to average rel-
ative difference (26). Unlike the running average
relative difference for the version with different ran-
domizers in Fig. 2, the running average relative dif-
ference for the first mutual randomizer version does
not have computational artifacts. However, one
should remember that the running average relative
difference in Fig. 5 has “eaten” the huge computa-
tional artifacts in Fig. 3.

How badly will Fig. 3 or Fig. 4 change if to run
the last computational experiment once again but
with another randomizer (randomizers differ in just
an initial state for generating pseudorandom num-

I
n(N)

0.75
0.5
0.25

-0.25H

05 | | | | | | | | |

N
| | | | | | | | |

1 50 100 150 200 250 300 350 400 450

500
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Fig. 2. Running average relative difference (25) for the version with different randomizers for the ascending and descending job

order inputs in Fig. 1
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bers)? The answer to this question is particularly jobs (Fig.7) being similar to that in Fig. 4 between
shown in Fig. 6 resembling Fig. 3 in computational approximately 560 and 600 jobs. Unlike Figs. 3 and 4,
artifacts. Another complex computational artifact is showing that the descending job order input is faster
seen as a drop between approximately 390 and 460 in scheduling up to 400 jobs, Figs. 6 and 7 “claim”
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Fig. 3. Relative difference (23) for the version where job lengths, release dates, and due dates for the descending job order
input are obtained by just reversing those ones for the ascending job order input
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Fig. 4. Relative difference (23) in Fig. 3 (the first mutual randomizer) cut to the range of —5% to 5 %
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Fig. 5. Running average relative difference (25) for the first mutual randomizer version (Fig. 3 and Fig. 4 with the cut relative

difference)
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Fig. 6. Relative difference (23) for the second version of the mutual randomizer (job lengths, release dates, and due dates for the
descending job order input are obtained by just reversing those ones for the ascending job order input)
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that the descending job order input is faster in However, the running average relative differ-
scheduling up to 300 jobs, whereas the interval from ence for the second mutual randomizer version
300 to 400 jobs seems to have no preference to either  (Fig. 8) proves that the descending job order input
the ascending or descending job order input. is faster anyway. It is not as smooth as that in Fig. 5,
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Fig. 7. Relative difference (23) in Fig. 6 (the second mutual randomizer) cut to the range of =5 % to 5%
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Fig. 8. Running average relative difference (25) for the second mutual randomizer version (Figs. 6 and 7 with the cut relative
difference)
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and even some computational artifacts are seen till
approxim: d, 500 jobs (remember that the running
average relative difference in Fig. 8§ has “eaten” the
huge computational artifacts in Fig. 6), but it still
resembles more an exponential decrease down to the
average relative difference

1

7(1000) = ——
7(1000) 999

1000
-3 n(m) ~ 0.2154

m=2

(27)

being roughly twice as lesser as average relative dif-
ferences (24) and (26). Here the advantage of the
descending job order input can be thought of as a
lower bound of its estimation.

It is necessary to note that the heuristic is ex-
tremely fast itself. Thus, 1000 jobs whose lengths are
within range of 2 to 17 are scheduled in about
slightly more than 150 ms, whereas 500 such jobs
are scheduled in about as thrice as faster. Scheduling
100 jobs is completed in less than 6 ms. So, the real-
time difference between the computation times by
ascending order and descending order in scheduling
up to 100 jobs consisting of 2 to 17 parts each is
pretty tiny. This difference may become more im-
pressive if job lengths are increased.

Discussion

Another way to see the real-time difference be-
tween the computation times is to work on a long
series of smaller job scheduling problems (which
factually have been studied). However, the factual
speed-up will be far from very significant. Thus,

d
225

working on a series of 50000 problems of scheduling
200 jobs whose lengths are within range of 2 to 17
is executed by the ascending job order input in
650.603 seconds. In its turn, such a series is executed
in 649.609 seconds by the descending job order in-
put (just a 0.153 % advantage), so almost 1 second
is saved (which may be still significant for many
computational systems). A much greater percentage
of the computation speed advantage can be obtained
in scheduling a lesser number of jobs: e. g., working
on a series of 50000 problems of scheduling 10 jobs
whose lengths are within range of 2 to 14 is executed
by the ascending job order input in 15.1 seconds. In
its turn, such a series is executed in 14.861 seconds
by the descending job order input (a 1.5824 % ad-
vantage), but it saves only 0.239 seconds. ©-"rely, not
every instance will be scheduled faster vy the de-
scending job order input. The matter is the job order
is defined, apart from the release dates, by the due
dates. The latter are formed by adding random shifts
(2), so the factual order of the due dates can be es-
timated only by their trend line. If due dates (by the
descending job order input) are badly scattered
around their trend line, the descending job order in-
put will probably have a weak speed-up effect or no
speed-up effect at all. For instance, Fig. 9 shows the
due dates for the mentioned example with 200 jobs,
where the trend is easily seen. Contrary to that, the
due dates for the example with 10 jobs shown in
Fig. 10 are badly scattered, and it is almost impos-
sible to determine to which order of the release dates
they correspond.
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Fig. 9. The due dates corresponding to the release dates in descending order for an example of scheduling 200 jobs whose lengths

are within range of 2 to 17
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Fig. 10. The due dates corresponding to the release dates in de-
scending order for an example of scheduling 10 jobs
whose lengths are within range of 2 to 14

Eventually, the advantage of the descending job
order input, whose lower bound can be roughly es-
timated as that in Fig. 8, should be perceived only
as on average. Therefore, the descending job order
input does not guarantee that a set of jobs will be
scheduled faster, even by the least registered average
relative difference (27). Moreover, unlike the case
with scheduling equal-length jobs, scheduling grea-
ter amounts of jobs (say, a few thousand jobs whose
lengths are within range of 2 to 17) does not lead to
saving considerable computational time.
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B.B. PomaHtok

WINbHE MPOrPECYIOYE 1-MAWWHHE MJNAHYBAHHA 3 MEPEMUKAHHAMUW BE3 MPOCTOK 3A E®EKTMBHOIO
NMOoPAOKY BBOAY 3ABJAHb Y EBPUCTNLI

Mpo6nemaTuka. ¥ noctaHoBUi 3aadi MiHiMi3aLii 3aranbHOro 3ani3HioBaHHSA 3a EBPUCTMKOK HA OCHOBI BUKOPUCTAHHS 3armLLKO-
BOrO HasIBHOTO pecypcy Ta 3anuLKoBoro nepiogy 4o obpobku icHytoTb ABa NPOTUNEXHUX CNOCO6W BBOAY AaHMX: AaTu 3anycky 3aBAaHb
3a4alTbCs B NOPsSAKY 3pocTaHHa abo cnagaHHs. HewoaaBHo 6yno BCTAHOBMEHO, WO NaHyBaHHS OEKiNbKOX PIBHOLIHHMX 3aBAaHb €
OYiKyBaHO LUBMALIMM 32 BUCXiAHOTO NOPSAKY, ToAi ik nnaHyBaHHs Big 30 go 70 piBHOUiHHUX 3aBAaHb Ha 1,5-2,5 % wBuaLwe 3a cnagHoro
nopsaky. [ns KinbKocTi piBHOLHHMX 3aBAaHb Mixk nprubnmaHo 90 i 250 BUCXiAHWI NOpsSAOK 3HOBY NPUBOAMTL 4O CKOPOYEHHS Yacy 0G4UCHEHD.

MeTa gocnigxeHHs. MeTolo € BCTaHOBMEHHS TOr0, 41 NOPSIAOK 3aBAaHb € iICTOTHUM Yy CKNafaHHi po3knagis 3a JONOMOrow eBpUCTUKM
ONs BUNaAKy, Konv 3aBAaHHS € HEPIBHOLHHMMU. EheKTMBHICTL NOpsAKy 3aBAaHb Oyae JocniaxeHa Ha Npuknagi WinbHoro Nnporpecyto-
4oro 1-MalUMHHOrO NnaHyBaHHS 3 NepemMukaHHaMY 6e3 NpocTot.

MeToguka peanisauii. [Ins 4OCArHeHHs 3a3HavyeHoi MeTU NPoBOAUTLCSA OBYMCOBanbHE AOCHIAXEHHS 3 METO OLUiHKM ycepea-
HEHOro Yacy 064YMCIeHHs SK AN BUCXIAHOro NOPSiAKY, TaK i Ans cnagHoro nopsaky AaT 3anycky 3aBAaHb. [puknagu 3agadi nnaHyBaHHs
3aBOaHb reHepyThCs Tak, Lo po3Knaau, siki MoXXHa OTpyMaTy TpuBianbHO, 6€3 eBPUCTMKM, HE PO3rMsSAaTLCS.

Pe3ynbTaTu pocnigkeHHs. Y cepefHbOMYy cnagHui NOPsiAOK 3aBAaHb A€ KPUXITHY nepeBary B 4aci obuncneHnb. Lis nepesara
3MEHLUYETbCA 3i 36iNbLIEHHAM KiNbKOCTi 3aBAaHb. [lekpeMeHT Haragye piskui eKkcrioHeHUianbHuin cnag. ®aktuyHa nepesara HacTinbky
He3HayHa, Lo HaBiTb NIiCNsA PO3B’si3yBaHHs TPUBANUX cepiii 3a4ady NnaHyBaHHsi 3aBAaHb 3a0LLaXXeHWn 0b4YncnoBanbHUA Yac He MOXHa
nepepaxyBaTi B XBUNUHAX, HE KaXXy4u BXe MPO roAuHK, sk Lie 6yro y Bunaaky piBHOUIHHWUX 3aBAaHb.

BucHoBKW. ICTOTHICTb MOpsaKy BBOAY 3aBAaHb € HabaraTo HUXKYOI0, HiXX Y BUNAAKy PiBHOLIHHMX 3aBAaHb. EdekTBHUMIA nopspok
BBOJY 3aBAaHb Yy €BPUCTUL TEOPETUYHO iCHYE, ane Moro eeKTUBHICTb Moxe ByTu NpakTUYHO BUKOpUCTaHa nuile npu poboTi 3 Ha3su-
YariHO JAOBrMMM psifamu 3aad NnaHyBaHHS, Ae KiNbkicTb 3aBAaHb He NoBuHHA nepesuLtysatu 300.

KntouyoBi cnoBa: nnaHyBaHHs 3aBAaHb Ha OAHIN MaLUMHI 3 MEePEMUKaHHAMMU; 3aranbHe 3ani3HIOBaHHS; €BPUCTUKA; BUCXIOHWUI NO-
pPSAOK 3aBAaHb; CNagHUA NopsAoK 3aBAaHb; Yac obuncneHs; edpekTMBHUI NOPSAOK 3aBAaHb.
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MNOTHOE MNPOrPECCUPYIOWEE 1-MAWWHHOE MNAHWPOBAHME C MEPEKMOYEHUAMW BE3 MPOCTOA MPU
3PPEKTUBHOM MNOPAOKE BBEAEHWA 3A0AHUN B 9BPUCTUKE

Mpo6nemaTtuka. B noctaHoBke 3agauv MUHMMM3aLMK O6LLEro 3anasgbiBaHUS No 3BPUCTMKE HA OCHOBE MCMOSb30BaHUSA OCTaTO4-
HOro UMEIOLLErocsi pecypca U ocTaTodHOro nepuoaa k o6paboTke CyLecTBYOT ABa NPOTMBOMONOXHBLIX criocoba BBOAa AaHHbIX: AaThl
3arnycka 3ajaHuii 3a4arTcs B Nopsiike BO3pacTaHus Unu ybbisaHus. HegasHo Bbino yCTaHOBEHO, YTO NITaHUPOBaHWE HECKOSbKUX paB-
HOLIEHHbIX 3aJaHui oxungaemo GbiCTpee Npu BOCXOAsLIEM NOpsiAKe, Toraa kak nnaHvpoBaHue oT 30 o 70 paBHOLEHHbIX 3a4aHui Ha
1,5-2,5 % 6bicTpee npu HUCxoasiLeM nopsiake. [ns konMyecTsa paBHOLEHHbIX 3adaHuii Mmexay npumepHo 90 1 250 BocxoasaLmii nops-
[OK CHOBa NPUBOAMWT K COKpPaLLEHUIO BPEMEHU BbIYUCIIEHNIA.

Llenb uccnepgoBaHus. Llenb cocTonT B yCTaHOBINEHWM TOTO, ABNAETCS NU MOPSIAOK 3a4aHUA 3HAYMMbIM B COCTaBIEHMMN pacnuca-
HWI C NOMOLLbIO 3BPUCTUKMN ANSA cryvas, Koraa 3afaHusi HepaBHoOLEHHbl. OddeKTMBHOCTb nopsiaka 3ajaHuin OyaeT uccrnegoBaHa Ha
npuMepe NOTHOro NPOrpeccHpyoLLEro 1-MallMHHOMO NNaHUPOBaHUS C NepPeKnioYeHnsaMn 6e3 npocTos.

MeToauka peanusaummn. [1ns 4OCTUXKEHUS yKa3aHHOM LIeNn NPOBOAUTCS BbIUMCIMTENBHOE UCCNeA0BaHMeE C LieNblo OLEHKN ycpea-
HEHHOro BpPeMEHW BbIYMCIIEHNS KaK Ans BOCXOASLLEro nopsaka, Tak U ANns HUCXOASLLero nopsiaka Aat 3anycka 3agaHuii. MNpumepsl 3a-
[auv NNaHNpoBaHUs 3ajlaHni rEHEPUPYIOTCS TaK, YTO PacnMCaHusi, KOTOPbIE MOXHO NOMy4YnTb TPMBMANbLHO, 6e3 3BPUCTUKM, HE paccMmar-
pvBatoTCs.

Pe3ynbTathbl uccnefgoBaHus. B cpegHem HUCXOAAWMIA NOPSAOK 3a4aHniA faeT KpoLleyHoe NperMyLLEecTBO BO BPEMEHW BblYMC-
neHun. 3TO NPEenMyLLLEeCTBO YMEHbLUAETCSl C YBENMYEHNEM KONUYecTBa 3adaHuni. [lekpeMeHT HanoMuHaeT pe3kyto SKCMOHEHLManbHyo
ybbinb. PakTU4ecKkoe NPeMMyLLECTBO HAaCTOMNbKO HE3HAYMTENbHO, YTO AaXe MOCMe pelleHns ANUTENbHbIX Cepuii 3agay NnaHMpoBaHUs
3ajaHnin CIKOHOMIMEHHOE BbIYMCIUTENBHOE BPEMS HENb3A NEPEYNCnUTbL B MUHYTax, He roBOps yXe O Yacax, kak 370 Obino B cnyyae
paBHOLIEHHbIX 3a4aHWA.

BbiBogbl. 3Ha4YMMOCTb Nopsigka BBOAA 3afaHWI HAMHOTO HIDKE, YeM B Crlydae paBHOLIEHHbIX 3aAaHui. S EKTUBHBIN NOPSAOK
BBOJA 3afjaHuUii B 3BPUCTUKE TEOPETUYECKMN CYLLECTBYET, HO ero 3EKTUBHOCTb MOXET ObITb MPaKTUYECKN MCNOMb30BaHa TOMNbKO Npu
paboTe ¢ Ype3BblYaiHO ANVHHBIMU psiAamMn 3a4ad NaHMPOBaHWS, FAe KONUMYeCcTBO 3a4aHuin He JoMmkHO npeBbiwaTb 300.

KnioueBble cnoBa: niaHnMpoBaHue 3agaHuii Ha O4HOW MaLUMHE C NepekntoYeHnsamMu; obLuee 3anasabiBaHne; 3BPUCTMKA; BOCXOAS-
LM NOPSIAOK 3aAaHUiA; HUCXOASALUMIA NOPSIAOK 3a4aHuii; BpeMsl BblYUCNEHNA; 3D (EKTUBHbBIN NOPSAOK 3a4aHUNA.
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