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CURVE OF DESCENT OF A MATERIAL POINT IN THE SHORTEST TIME ON
A TRANSCENDENTAL SURFACE IN A UNIFORM VERTICAL GRAVITATIONAL FIELD

Background. The article deals with the original variational problem of the brachystochronous motion of a material point
on a cycloidal surface between two given points in a vertically homogeneous gravitational field. The novelty and rele-
vance of the work is explained by the choice of the transcendental surface, since earlier the motion of a material point
was considered on algebraic surfaces of the second order.

Objective. Find a curve on the transcendental surface, moving from one set point (starting point) to another set point
(finish point) on this surface without friction a material point will make such a transition in a minimum time. The
transcendental surface has a guide curve of the cycloid lying in one of the coordinate planes, and its generatrix are
perpendicular to that plane.

Methods. To achieve this goal, we used the classical methods of variational calculus (Euler—Lagrange equation), as
well as the classical method of integrating ordinary differential equations in a closed form (Bernoulli method).
Results. A time functional was constructed, using which the differential equations of the spatial brachystrochron, which
lies on the transcendental surface, are analytically deduced. After integration in a closed form, algebraic equations of
the spatial brachystrochron in parametric form are obtained. The results of the study are illustrated graphically: the
projections of the trajectory of the brachystrochron on the coordinate planes OXY and OXZ. The slope angles of the
optimal trajectory at the start point are determined. A comparative analysis of the time of action in the process of
motion of a material point along two trajectories is carried out: along the obtained brachystrochron and along the
alternative trajectory.

Conclusions. The proposed approach allows to pre-plot such a logistic route of a material point on a given transcendental
surface between two fixed points, which will provide a minimum travel time between them in a uniform vertical gravity
field. In this case, an extreme trajectory will not necessarily be the shortest line on the surface that connects the two
predetermined points (start and finish).

Keywords: variational problem; brachystochronous motion; transcendental surface; time functional; cycloid; Euler—
Lagrange equation; response time.

Introduction In [4], the results of studying the brachisto-
chrone motion of a material point in a horizontal
vector field of a moving fluid are presented. The
proposed approach makes it possible to lay the op-
timal logistic route, for example, of a motor boat, in
a flat high-speed river flow between the given start
and finish points, which ensures the minimum travel

This work is a continuation of scientific research
[1—4], performed by the authors in the field of calculus
of variations and related to the search for the equations
of brachistochrone in various problem statements.

In articles [1, 2], the classical variational cal-

culus methods were used to obtain the brachisto-
chrone equations for a heavy uniform cylinder that
rolls without sliding along a concave cylindrical re-
cess, and the isochronism of its center of mass os-
cillations is proved.

A time functional was constructed in [3], using
which the differential equation of the spatial bra-
chistochrone, which lies on an inclined plane, is an-
alytically derived. The algebraic equation of the bra-
chistochrone is obtained, the results of the study are
illustrated graphically. A comparative analysis of the
speed for the optimal curve — brachistochrone — and
two alternative ways of moving the material point.

© The Author(s).
The article is distributed under the terms of the license CC BY 4.0.

time between them.

We give a brief description of the results of
work carried out in the framework of the scientific
direction under consideration by other authors.

For the first time the problem of brachisto-
chrone was posed and investigated by I. Bernoulli.
In 1696, he formulated the following “brachisto-
chrone problem”: find the shape of the curve, mov-
ing along which a bead, which is at the initial mo-
ment in a resting position and accelerated by gravity,
moves from one given point to another in the least
amount of time. In this problem, it was assumed
that the material point (bead) moves in a vertical
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plane in a uniform gravitational field without re-
sistance.

I. Newton, V. Leibniz, G.F. Lopital, J. Ber-
noulli, I. Bernoulli showed that the cycloid is the
solution to this problem [5].

Analytical solutions of the aforementioned
“brachistochrone problem” with the classical use of
the calculus of variations are presented in [6], and
with respect to geometric optics, in [7].

Ashby et al. [8], Heijden and Diepstraten [9]
investigated the problems of determining the shape
of a brachistochrone taking into account coulomb
friction forces during the motion of a material point
in a vertical plane in a uniform gravitational field.
In Lipp [10], the classical “brachistochrone prob-
lem” Bernoulli, taking into account dry friction, is
transformed in terms of a control theory problem.
In the new formulation of the brachistochrone prob-
lem, the time derivative of the angle that determines
the direction of motion of the material point is a
control parameter.

A generalization of the problem of searching
for the shape of a brachistochrone that lies on an
algebraic cylindrical surface, taking into account
coulomb friction, was carried out by Covic and
Veskovic [11]. Hayen [12], Vratanar, and Saje [13]
investigated the problems of determining the shape
of a brachistochrone in non-conservative force
fields.

The problem of determining the shape of a
brachistochrone on an algebraic cylindrical surface
in uniform force fields was solved in the study [14],
and on cylinders and spheres in the work of Pal-
mieri [15].

A generalization of the problem of brachychis-
tron to inhomogeneous fields was considered in
articles Aravind [16], Denman [17] and Vene-
zian [18], and in the last work the problem of bra-
chistochrone in linear radial force fields was solved.
Denman [17], Parnovsky [19], Tee [20] established
solutions of the same problem in radial fields with a
force dependence that is inversely proportional to
the square of the distance between the interacting
points.

Further generalizations of the brachisto-
chrone problem for the material point at which
relativistic effects were studied are presented in
the works of Goldstein and Bender [21], Scarpello
and Ritelli [22].

In the article by Gemmer [23], the problem of
brachistochron was studied on algebraic surfaces of
revolution with conservation of energy. For this, we
use both the classical Euler—Lagrange equations and
the method developed to solve a number of

geometric optics problems on the propagation of a
light beam. This article also studied the case of the
motion of a material point with relativistic velocities.

In the article by Mertens and Mingramm [24],
a new generalization of the brachistochrone problem
is given, in which a curve is established that ensures
the movement of a material point in a uniform grav-
itational field in the least amount of time between a
given (starting) point and a given curve or between
two given curves. Friction is not taken into account
in these problems. A generalized problem is solved
using variations with different endpoints (finish
points). These problems belong to the field of vari-
ational problems with free boundary conditions.

The solution of the brachistochrone problem
for a body of finite dimensions, which rolls over it
without slipping, was known by Rodgers [25], how-
ever, in his work there is no rigorous derivation of
the brachistochrone equations for this case.

The dynamic effects that occur when a uniform
vertical disk moves along a horizontal plane without
slipping were studied by Obradovic et al. [26].

In [27], a fluid dynamic version of the classical
“Brachistochrone problem” by Bernoulli was con-
sidered. The problem of brachistochrone is posed,
in which the material point is replaced by a cylinder
filled with a viscous fluid. As part of its solution, a
curve is established that connects two given points
along which the cylinder moves in the shortest time.
It is shown that in the general case the desired curve
deviates from the cycloid. This is due to the fact that
an increase in the rate of change in the kinetic en-
ergy of a cylinder with a liquid is accompanied by
an increase in viscous energy dissipation.

The presented review of previous works pub-
lished in this scientific field shows that the problems
of finding brachistochrone for a material point in
different settings were considered only on algebraic
surfaces.

Problem Statement

In this paper, we consider the new problem of
brachistochrone in the case of the motion of a ma-
terial point on a transcendental surface in a vertical
uniform gravitational gravitation field. The surface
is a cut horizontal cylinder, the guiding curve of
which is a cycloid, and the generators are parallel to
the horizontal axis. Energy dissipation is not taken
into account.

The purpose of the study: to find a curve on a
transcendental surface, moving along which from
one given point (start point) to another given point
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(finish point) of this surface, the material point will
make such a transition in a minimum time.

The construction of the time functional and the
definition of the differential equation of brachist-
ochrone

Let introduce the spatial coordinate system as
shown in Fig. 1. The parametric equations of the
transcendental guide curve (cycloids) are deter-
mined by two coordinates y(0) (ordinate) and z(0)

(applicate) of the material point:

{y(e) = R(6—sin 0),

z2(0) = R(1 + cos0), (D

where 0 - cycloid parameter, 0 €[0,2x].

7 Cycloid

Fig. 1. The transcendental surface on which the brachistochrone
movement of the material point

It is necessary to determine the dependence of
the first coordinate x on the parameter6 so that
the spatial trajectory L(0) = MN of the material point
would provide a minimum of the time functional
when it moves along the transcendental surface from
point M to point N .

Let the points mentioned above have the fol-
lowing coordinates: M (x(0), y(0),z(0)) — start and

N(x(n), y(rn), z(x)) — finish. If we take into account

equations (1) and the boundary conditions for the
abscissa x(0) =0, x(n) = nR , the coordinates of the

start and finish points will be: M(0,0,2R) and
N(nR,nR,0) (see Fig. 1). Let write the energy con-
servation equation for our problem:

2

% +mgz = h. 2)

We define the constant 4 in relation (2) taking
into account the position of the starting point
M(0,0,2R) . In this case, at the starting point M

initial speed is zero v =0, and z =2R. So we have:
h=2mgR.

From relation (2) we obtain the expression for
the velocity v of a point on the surface:

v=§=@~m' 3)

We write the expression for the differential of
the arc ds taking into account the holonomic con-
straint equations (1):

ds = J(dx)? +(dy)* + (dz)?

_ J1 + 4sin? [gj(e;)zdx. 4)

From equation (3), we express differentiation
and write the time functional, which should be min-
imized:

1 [T 1+ 4R sin(0/2)(6))?
L2\ gR sin(0,/2)

T| ax, ()

where L — desired brachistochrone curve; x () —

the abscissa of the material point at the point corre-
sponding to the parameter 6 = 1.

We denote the integrand in functional (5) as
F(x,6(x),6'(x)). So we have:

\/1 + 4R? sin? (gj(e;)z

3

In this case, the classical Euler differential equations
are used to determine the equations of the desired
trajectory [2]:

F(x,0,0") = (6)

cod
Fy ~2(Fj) = 0. %)

Let’s identify corresponding partial derivatives,
which are displayed in (7). Let’s write Fy:

—COS (g]
Fy - ®)

2sin’ (gj \/1 4R sin? (gj(e; %

Now let’s define Fy:
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4R’ sin (gj -0,
F, = )

\/1 1 4R? sin? [gj(e;)z

d
Let’s define —(F,):
i dx(e)

d , .
2L A(F
dx(e)

2R {(9; )? - cos [g} +2sin (gj : G;x}

3/2
(1 +4R? sin? [gj(e;)zj

We substitute expressions (8) and (10) into the
Euler equation (7). As a result of elementary trans-
formations, we obtain a second-order differential
equation with the corresponding boundary condi-

tions:
8R? sin® (gj 0"
2

(10)

XX

+ 8R? sin? ng cos (gj (6% )2 + cos(gj =0, (11)
2 2 2
x(0) =0, x(n) = nR.
Equation (11) describes the dependence of the

abscissa x moving point as a function of parameter
0. Let’s define the dependence x = x(0) taking into

account given boundary conditions. By attaching the
received function x = x(0) to the equations of the

guiding curve (1), we define a parametrized bra-
chistochrone L(0), which as many points K, de-

scribed as:
L(0) = {K(x(0), y(6),2(6))},

where 6 — parameter, 6 € [0,x].

The resulting equation (11) is integrated in
quadratures. Show it.

Dependency definition x = x(0).

Since the variable x in the equation (11) not
explicitly included, then a replacement can be
made: (8’.)> = p(8), then

207,00, = (PO, 0 = 0y =2 (PO (12)

Substitution (12) turns equation (11) into a lin-
ear first-order equation:

4R? sin? (gj -tg (g] (p(8) g

+8R? sin’ (gj  p(0) = 1. (13)

Equation (13) is integrated using Bernoulli per-
mutation:

p(6) = u(6) - v(6).

We rewrite equation (13) taking into account
the Bernoulli substitution:

4R? sin? (%} -tg (%) u'v+u')

+8R? sinz(gj-u-v=—1. (14)

We divide equation (14) into two equations,
each of which can be integrated explicitly:

4R? sin? (gj -tg (9] V'
2 2

+ 8R?sin® (g] v =0;

4R? sin? 9 -tg 9 u'v=-1.
2 2

Equation (15) after integration gives the func-

tion v(0):
-4
v(0) = (sin (%B .

Equation (16), after substituting (17) and inte-
grating, gives the function u(0):

(15)

(16)

a7)

cos0

u® =5+ Cr (18)

Using expressions (17) and (18), we determine
the solution of equation (13):

4
P(0) = u(O)V(0) = (sin @] [‘;"_;f e j

We write the differential equation for 0/ :

)
do . (0 fcose
E = p(e) = (Sln [5]] . W + C] .

Now we can determine the desired dependence
x = x(0) in quadratures:
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o sin’ [;] dt
x(0) = j —= (.
b |cost C
8R
Further, for definiteness and simplification of
further calculations, the characteristic value R of
cycloid we take equal to unity: R=1.
Given the boundary conditions in equa-
tion (11), we define arbitrary constants C; and C,.
It’s obvious that C, =0, and constant C; was de-

termined from the transcendental equation

. sin? (tj dt
J- 2
o [cost

s G

(19)

=T.

=0,3222.
So the expression x(0) becomes final:

using numerical methods we get: C,

sin’ ( ! jdt
. t
x(0) = | 2 ¢ -0,3022. (20)
cost
0 Cl
8

To illustrate, we give graphs of the projections
of the found curve [(0) taking into account equa-

tions (1) and (20) on the planes OXY and OXZ.
Curve projection [(0) onto the plane OYZ coin-

cides with cycloid (1). When plotting, the charac-
teristic of the cycloid R was also chosen equal
to unity.

Fig. 2 shows a graph of the projection of a
curve L(0) onto the plane OXY . The tangent of this

projection curve L(0) relative to the axis OX at the
starting point (i.e., at 6 =0) is:

—2 [ e =13,
6=0 8

Note that this graph is close to a straight line
y = x, but does not match her.

Fig. 3 shows a graph of the projection of the
curve L(0) onto the plane OXZ . The tangent of this

curve projection L(0) relative to the axis OX at the
starting point is:

dy!
dx

dz
dxlyg
In other words, at the starting point, the mo-
tion graph in the plane OXZ of the material point

has a slope equals to —g, so the point begins its

movement strictly vertically down.

0 1 xe) 2 3

Fig. 2. The graph of the projection of a curve L(0) onto the
plane OXY

2

it

\
N

20) 1

0.5
0 0 1 2 3
x(0)
Fig. 3. The graph of the projection of the curve L(0) onto the
plane 0XZ

Determination of response time during brachisto-
chrone movement of a point

Let’s write the expression for the differential
dx:

. 2(ej
Sin 5
dx = — = Q1)

We substitute expression (21) into formula (5)
for the response time 7'. After some transformations

we get:
cos0+8R-C, -G

C = 0,3222, g~9,81 m/c’.

(22)
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By numerical methods we determine the re-
sponse time for R=1:

T|, =1,218 (units of time).

Now for comparison, we calculate the motion
time (response time) of the material point on an al-
ternative curve L, . It lies on the same cycloidal sur-

face and connect the same given starting point M
(parameter 6, = 0) and finishing point N (param-

eter 6, == ). It is formed as follows. Let its projec-
tion onto the plane be a straight line that connects
the projections of the given start M and finish N

finish points on the coordinate plane OXY . In this
case, the coordinates x and y will be related by

the ratio x = y. Ordinate »(0) and applicate z(0)

remain the same as in the optimal case.
As a result, the coordinates of the current point
K, that lies on an alternative curve L;, will have

the following parametric form:
L, = {K(R(8 —sin 0); R(6 —sin 8); R(1 + cos 0))}.

Given the above functional time 7" on curve
L, after some transformations it will look like this:

R% . 0
T|lq = E‘([ }1+sm2(§j-d6.

Let’s calculate the last integral for R =1:

T|l1 ~ 1,220 (units of time).
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B.IM. Nere3a, O.B. AtamaHiok

KPWUBA CMYCKY MATEPIANbHOI TOYKWN 3A HAUMEHLLIMIA YAC MO TPAHCLIEHOEHTHIV MOBEPXHI B OQHOPIAHOMY
BEPTUKAIIbHOMY FPABITALIMHOMY MO/l

Mpo6nemartuka. B cTatTi po3rnsigaetbcsa opuriHanbHa BapiauiiHa 3agada npo 6paxiCTOXPOHHUI pyX MaTepianbHOI TOUKW Ha LuK-
noiganbHi MOBEPXHi M ABOMa 3aJaHUMM TOYKaMy y BEPTUKanbHOMY OAHOPIAHOMY rpasiTauiiHomy noni. HoBusHa i aktyanbHicTb po-
60TN NOSACHIOTHCSH BUOOPOM TpaHCLEHAEHTHOI MOBEPXHi, OCKINbKM paHille pyx MaTepianbHOI TOYKU po3rnsfgaBcs Ha anrebpuyHmx no-
BEPXHSIX OPYroro nopsiaky.

MeTta pocnimkeHHs. 3HaNTn KpUBY Ha TPaAHCLEHAEHTHIN NMOBEPXHI, pyXal4nch Mo SKil Bif OAHIET 3aaaHoi TOYKM (TOYKM CTapTy)
00 iHWOT 3a4aHoi TOYKM (TOYKM oiHily) MO Ui noBepxHi 6e3 TepTa maTepianbHa ToYka 34iMCHUTL TakWii Nepexid 3a MiHiManbHUiA Yac.
TpaHcueHaeHTHa NOBEPXHS MaE 3a HanpsIMHY KPUBY LIMKNOIAY, WO NEXWTb B OAHIN i3 KOOpANHATHUX NIOLWMH, a ii TBiPHI NepneHanKynsapHi
Ui NNOLLMHI.

MeToauka peanisauii. [1na gocarHeHHs 3a3HavyeHoi MeTy B pobGOTi BUKOPUCTOBYBASIUCh KIacuyHi MeToau BapiauinHOro YACNEeHHs
(piBHSIHHS1 Efinepa—TlarpaHxa), a Takox Knacu4HWUiA MeTOA iHTEerpyBaHHS 3BUHaNHMX AndepeHUianbHuX piBHsHb (MeToa BepHynni).

Pe3ynbTatu gocnigxeHHA. NobyaoBaHo (byHKUiOHaN yacy, 3 BUKOPUCTAHHSAM SIKOFO aHamniTUYHO BUBEOEHO AudepeHuianbHi
PIBHSIHHA NPOCTOPOBOI OpPaxiCTOXPOHU, LLO NEXUTb Ha TPaHCLEHOEHTHIN noBepxHi. licnsa iHTerpyBaHHA B 3aMKHeHii (popMi oTprMaHo
anrebpuyHi piBHSIHHA NPOCTOPOBOT GPaxiCTOXPOHU Y NapamMeTpuYHiIi hopMi. PeaynbTati 4oChia)XeHHst NPointocTpoBaHo rpadivyHo: HaBe-
[AeHO MpoeKLii TpaekTopii 6paxiCTOXPOHM Ha koopAMHaTHI NnowmHn OXY i OXZ. BuaHayeHo KyTu Haxuny onTuMarnbHOi TpaexkTopii y Touyui
cTapTy. HaBefeHo nopiBHSANbHWIA aHania vyacy LBMAKOZIT B MPoLeci pyxy MaTepianbHOi TOYKU B3OBX ABOX TPAEKTOPIl: B3AOBX GpaxicTo-
XPOHM Ta B34OBX anbTePHATUBHOI TPaeEKTOPIl.

BucHoBKkW. 3anponoHoBaHWI Migxia Aae 3Mory Hanepea NPoKNacTy Takui MOriCTUYHWUIA MapLUpyT MaTepianbHOi TOYKWU Ha 3afaHin
TPaHCLEHAEHTHIN NoBepxHi MK ABOMa (DIKCOBAHMMM TOYKaMW, SIKUIA 3abe3neynTb MiHIManbHUI Yac NepeMIlLeHHs MK HAMW B Of-
HOpigHOMY BepTUKarnbHOMY Moni TsKiHHSA. B LbOMy pasi ekcTpemMarnbHO TpaekTopieto He 060B’A3k0BO ByAe HalkopoTLLa MiHis, sika ne-
XUTb Ha NOBEPXHi | 3'€AHYE ABi 3aAaHi TOYKM (CTapTy i iHiLy).

KnrouyoBi cnosa: BapiauiiHa 3agaya; 6paxiCTOXPOHHWI pyX; TpaHCLEeHAEHTHa NoBepxHS; OyHKLIOHamN Yacy; UUKIoiaa; piBHSAHHS
Ennepa-INarpanxa; 4yac weuakogii.
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KPUBASI CMYCKA MATEPWAJIbHOW TOYKW 3A HAUMEHBLUEE BPEMS MO TPAHCLIEEHAEHTHOW MOBEPXHOCTU B
OJHOPOOHOM BEPTUKAJIbHOM MTPABUTALIMOHHOM MOJE

Mpo6nemaTtuka. B ctaTbe paccmaTpuBaeTcsi OpUrMHanbHasi BapMaumnoHHas 3agava 0 6paxMcTOXPOHHOM ABUXKEHUN MaTepuanb-
HOW TOYKM Ha LMKNonaanbHON NOBEPXHOCTU MeXAY ABYMS 3aaHHbIMWU TOYKaMy B BEPTUKANIbHOM OJHOPOAHOM rpaBUTaLMOHHOM MOre.
HoBu3Ha u akTyanbHOCTb paboTbl 06bACHATCS BbIGOPOM TPaHCLEHAEHTHON NOBEPXHOCTM, TaK Kak paHee OBWXeHWe MaTepuarnbHOW
TOYKM paccMaTpuBarnoch Ha anrebpanyecknx NOBEPXHOCTAX BTOPOro nopsiaka.

Llenb uccnepoBaHmsA. Ha TpaHCLiEeHOEHTHON NOBEPXHOCTU HAWTU KPUBYIO, ABUrasiChb MO KOTOPOW OT OAHOW 3ajaHHOWN TOUKM (TOYKM
cTapTa) K Apyro 3agaHHoN Touke (To4ke huHMLLIA) Ha 3TOW NOBEPXHOCTU 6e3 TpeHUs MaTepuanbHas ToYKa OCYLLIECTBUT TaKow nepexon
3a MUHUMarnbHoe BpeMmsi. TpaHCcLEeHAEHTHas MOBEPXHOCTb B KAYECTBE HanpaBnsoLLe KPUBON UMEET LMKINouay, KoTopasi NexuT B OAHOM
13 KOOPAMHATHbIX MIIOCKOCTEN, a ee obpasytoLne nepneHanKynsipHbl 3TOW NAOCKOCTY.

MeToauka peanusauumu. [Insa 4OCTMKEHNS yKa3aHHOW Lienu B paboTe MCNonb30Banuch Knaccuyeckne MeToAbl BapuaLMoHHOTo
ucuncneHus (ypaBHeHue Ounepa-flarpaHxa), a Takke KnacCU4Yeckuii MeTof MHTEerpupoBaHusi 0BbIKHOBEHHbIX AnddepeHumanbHbIX
ypaBHeHuin (meToa bepHynnu).

Pe3ynbTatbl nccnegoBaHus. [locTpoeH dyHKUMOHAN BpeMeHM, C UCMOMNb30BaHUEM KOTOPOrO aHanMTU4eckn BoiBedeHbl Andde-
peHumarnbHble ypaBHEHUSI MPOCTPaHCTBEHHOW GPaxMCTOXPOHBI, KOTOPas NEXWUT Ha TpaHCLEeHAEHTHON noBepxHocTu. Mocne uHTerpupo-
BaHUS B 3aMKHYTOM ¢popme norny4yeHbl anrebpanyeckne ypaBHEHUS MPOCTPAHCTBEHHOW BPaxMCTOXPOHbI B NapameTpuyeckon dopme.
PesynbTaTbl ccnegoBaHUsi NPOUNIIOCTPUPOBaHbI rpadnyecku: NpMBeAeHbl NPOEKUMM TPAaEeKTOPUM BpPaxmMCcTOXpOHbl Ha KOOpAWHATHbIE
nnockoctn OXY un OXZ. OnpeneneHbl yribl HakMoHa ONTMMarbHOW TPaekTopun B Todke cTapTa. [puBedeH cpaBHUTENbHbIN aHanus
BpeMeHU ObICTPOOENCTBUSA B MPOLIECCE ABMXEHNS MaTEPUanbHON TOYKU BAONb ABYX TPAEKTOPUIA: BAOMb BpaxMCTOXPOHb! U BAOMb anb-
TepHaTUBHOWN TpaeKkTopuu.

BbiBoabl. MNpeanoxeHHbIi Noaxo No3BonsieT 3apaHee NPOoXUTb TaKoW NOTMCTUYECKMIA MapLUpyT MaTepuarnbHON TOYKK Ha 3a-
[aHHOW TPaHCLEHOEHTHOW NOBEPXHOCTU MeXAY ABYMS (PUKCUPOBAHHBIMU TOYKAMM, KOTOPLIN 06ecneynTt MMHMMarnbsHOe BpeMs nepeme-
LLIeHMs Mexay HAMW B OQHOPOAHOM BEPTMKanbHOM none TAroteHus. B aTom cnyyae akcTpemanbHoN TpaekTopuen He 0b6sa3aTensHo byaeT
KpaTyanLas nuHUs,, KoTopas NeXWT Ha NOBEPXHOCTU 1 COeauHsIeT iBE 3aAaHHbIe TOUKM (CTapTa u uHULLA).

KnioueBble cnoBa: BapvauuoHHas 3agaya; 6paxmMcTOXpoHHOE OBWKEHWE; TpaHCUEHAEHTHasi MOBEPXHOCTb; (PYHKLMOHAnN Bpe-
MeHW; uuKnounaa; ypaBHeHvne Siinepa—JlarpaHxa; BpemMs 6bicTpogencTBus.
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