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HEURISTIC’S JOB ORDER EFFICIENCY IN TIGHT-TARDY PROGRESSIVE
IDLING-FREE 1-MACHINE PREEMPTIVE SCHEDULING OF EQUAL-LENGTH JOBS

Background. In setting a problem of minimizing total tardiness by the heuristic based on remaining available and
processing periods, there are two opposite ways to input the data: the job release dates are given in either ascending or
descending order. It was recently proved that an efficient job order can save significant computation time by using the
Boolean linear programming model provided for finding schedules with the exactly minimal total tardiness.

Objective. The goal is to ascertain whether the job order input is significant in scheduling by using the heuristic. Job
order efficiency will be studied on tight-tardy progressive idling-free 1-machine preemptive scheduling of equal-length
jobs.

Methods. To achieve the said goal, a computational study is carried out with a purpose to estimate the averaged
computation time for both ascending and descending orders of job release dates. Instances of the job scheduling problem
are generated so that schedules which can be obtained trivially, without the heuristic, are excluded.

Results. Scheduling a few jobs is expectedly faster by ascending order, but this part is full of computational artifacts.
Scheduling 30 to 70 jobs is 1.5 % to 2.5 % faster by descending order. However, scheduling up to 90 jobs is expectedly
still faster by descending order, although a risk of losing this advantage exists. For the number of jobs between roughly
90 and 250, the ascending job order again results in shorter computation times. Since the point of about 250 jobs, the
advantage trend (of either ascending or descending order) appears more stable.

Conclusions. In scheduling by using the heuristic, the job order input is indeed significant. The average relative differ-
ence does not exceed 1.5 % for 2 to 1000 jobs consisting up to 17 processing periods. For obtaining a statistically
reliable computation speed advantage, it is better to consider no less than 250 jobs. As either the number of jobs or the
number of job parts increases, the computation speed advantage may become unstable and eventually vanish. Never-
theless, the ascending job order can save a lot of computational time in the case of scheduling at least a few thousand
jobs having just a few processing periods each. After solving thousands of such cases the saved time may be counted in
hours.

Keywords: preemptive single machine job scheduling; equal-length jobs; total tardiness; heuristic; ascending job order;
descending job order; computation time; efficient job order.

Introduction is the only means to deal with total tardiness mini-

mization when the number of jobs and the numbers

In scheduling, total tardiness is a measure of
delays in executing certain operations. The problem
of total tardiness minimization refers to attempts of
optimizing time resources and minimizing costs,
where jobs have no priorities. This problem has a
great impact on dispatching processes like those at
airports, water ports, railway stations, etc. [1, 2].
Besides, in computing, it is connected with optimiz-
ing parallelization of tasksets on multiprocessor sys-
tems [3, 4].

The exact minimization of total tardiness is
possible just for a few jobs whose processing periods
are not very long. The Boolean linear programming
model and its variations are used for that [5, 6].
Nevertheless, the tasksets considered on multipro-
cessor systems may consist of a few hundreds or
thousands of jobs. In this case, total tardiness is min-
imized by heuristics [7, 8]. The heuristic approach
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of their processing periods increase.

The heuristic based on the remaining available
period and remaining processing period [8] is closely
the best as of February 2020. It is an online sched-
uling algorithm which builds a sequence of jobs suc-
cessively, without re-arranging them. Once a job is
scheduled at a time moment, it will not be changed.
So, the jobs already scheduled can be executed
straightforwardly without waiting for the entire
schedule. All the more so because the entire sched-
ule can be an extremely long sequence of jobs [2, 4,
8, 9].

The accuracy of the heuristic is not ever perfect
but, as the size of the job scheduling problem grows,
the difference between the heuristic’s total tardiness
and the real minimum of total tardiness gradually
vanishes [8]. A remarkable property of the heuristic
is that it schedules just 2 jobs always at the 100 %
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accuracy, not depending on in how many parts the
job is divided (the “2/any” exception). Moreover,
the heuristic is sufficiently accurate if no less than 7
jobs divided into no less than five parts each are
scheduled (the “7/5” pattern). In general, as the job
scheduling problem size grows, the inaccuracy of the
heuristic drops [8].

Problem statement

The problem of total tardiness minimization
considers job processing periods, release dates and
due dates. All they are given as natural numbers. A
partial case is when every job has the same length,
i. e. the processing periods of all the jobs are equal.
In setting a problem of minimizing total tardiness by
the heuristic, there are two opposite ways to input
the data. On one hand, the job release dates are
given in ascending order. This is the common way
of inputting the data into the algorithm. Strictly
speaking, the release dates can be permuted as one
likes or needs to satisfy some external conditions.
Thus, on the other hand, the job release dates are
given in descending order. Article [5] proves that
scheduling a fewer jobs divided into a fewer job
parts, using the Boolean linear programming model
provided for finding schedules with the exactly min-
imal total tardiness, is executed on average faster by
the descending job order. As the number of jobs in-
creases along with increasing the number of their
processing periods, the ascending job order becomes
more efficient, although the computation time effi-
ciency by both job orders is not so regular. Hence,
the goal is to ascertain whether the job order input
is significant in scheduling by using the heuristic.
Job order efficiency will be studied on tight-tardy
progressive idling-free single machine (1-machine)
preemptive scheduling of equal-length jobs [5].

The heuristic based on remaining available and
processing periods

Given N jobs, N e N\({l}, having H pro-
cessing periods each, their release dates

r,=n Vn=1 N (1)

or

r,=N-n+1 vn=1L, N 2)
and due dates

d =r,+H-1+b, Vn=1, N 3)

for release dates (1) or
dn:rn+H—l+bN7n+l Vnzl,N (4)
for release dates (2) by a random due date shift b,,

sum

N
> max{0, 6(n; H)-d,} (5)
n=1

is to be minimized, where

o(n; H)ye{l, N-H}

is a moment of completing job n. Random due date
shifts are taken from vector [5]

B =[b,],.y =w(H -E(, N)) (6)
so that
d,>1 vn=1, N (7)
and at least one of inequalities

bn -1< bn+1

Yn=1, N1 (8)

is violated, where operator Z(1, N) returns a pseu-

dorandom 1x N vector whose entries are drawn
from the standard normal distribution (with zero
mean and unit variance), and function (&) returns

the integer part of number & (e.g., see [, 9]). So,

for a properly given due date shift vector (6), where
condition (7) is true and condition (8) is false, due
dates (3) set in the order corresponding to ascending
order of the release dates (1) are

d,=H+n-1+b, vn=1, N )

and due dates (4) set in the order corresponding to
descending order of the release dates (2) are

dn:N+H—n+bN_n+l VIZ:l,N. (10)

Thus, components of due dates vector (3) are not
given in non-descending order. This is done so be-
cause in the case of when

d <d,, VYn=1, N_1 (11)

is true, a schedule ensuring the exactly minimal total
tardiness is found trivially, without resorting to any
algorithm or model (see Theorem 1 in [5]). Com-
ponents of due dates vector (4) are not given in non-
ascending order by symmetrical reasoning.

The heuristic based on remaining available and
processing periods minimizes sum (5) by building
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stepwise a schedule S =[S hn.gy as time ¢ pro-
gresses. Before the start,
g,=H vn=1, N. (12)
Then, for every set of available jobs
A(ty={i e{l, N}:r, <tand g; > 0}  {I, N} (13)

the remaining available period is

b =max{0,d; —t+1} Vie A() (14)
and a subset
A'(1) = arg max(max{g;, &))" (15)

is determined. If |A"(r)| =1, where
A0 ={i"y = A0) = {I, N},

then

5, =i" by qf?bs) =q, and ¢, = qj,?b” —1;(16)
otherwise

A0 =i}y c AN < {, N} by L>1, (17)

whence

5, =i by qflf’bs) =4, and g = q;]f’bs) —-1.(18)

Assignment (18) executed by condition (17) for sub-
set (15) implies that, in a case when there are two
or more maximal decisive ratios in (15), the earliest
job is preferred to be scheduled [8]. Thus, job # is

completed after moment 0(n; H) if
§é(n;h) =n Vh=1, H
by
6(n; h) e {1, N - H}
and
0(n; by < O(m; h+1) for h=1, H-1.

Finally, using formula (5), amount

(N, H) = %max{o, 0(n; H)—d,}

n=1

(19)

is an approximately minimal total tardiness that cor-
responds to schedule S = [S/)ix(v.z) returned by the

heuristic.

Generation of the job scheduling problem in-
stances

When due date shift vector (6) is properly gen-
erated by the definite numbers of jobs N and of job
parts H , due dates (9) corresponding to ascending
order and due dates (10) corresponding to descend-
ing order are calculated. Then an ascending order
schedule by release dates (1) and due dates (9) is
computed by the heuristic (12)—(19). Alternatively,
a descending order schedule by release dates (2) and
due dates (10) is computed as well.

At fixed numbers of jobs N and of job parts
H, for a job scheduling problem instance tagged by
an integer ¢, denote the schedule computation
times by ascending order and descending order by
T4e(N, H,c) and 1p,.(N, H,c) in milliseconds
(ms), respectively. If the total number of the in-
stances is C, then the averaged computation times
are

1 C
TASC(N,H)=EZ‘EASC(N,H, c) (20)

c=1

and

1 C
TDesc(N9H):EZTDesc(Na H: C)- (21)

c=1

In percentage terms, the relative difference between
computation times (20) and (21) is

TASC(N’ H)_TDesc(Nﬂ H)

n(N, H) =100
T (N, H)

. (22)

Relative difference (22) will be estimated over
a natural rectangular lattice, which is formed by

N =2,1000 and H =2,17. (23)
Itis assumed that the rectangular lattice formed by
(23) is sufficient to obtain reliable statistics for un-
biased estimation of relative difference (22) by set-
ting number C at no less than 100. So, let C =100
for scheduling more than 400 jobs. For scheduling
between 251 and 400 jobs, the most appropriate
number is C = 200. Further, let C = 500 for sched-
uling between 101 and 250 jobs. Finally, let
C =1000 for scheduling no more than 100 jobs. For
quick reference, these numbers of the instances are
visualized in Fig. 1.
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Fig. 1. The total numbers of the instances on the rectangular
lattice formed by (23), where a greater number of in-
stances is marked with a bigger circle of a lighter color

Computational study

The computational study is executed on CPU
Intel Core i5-7200U@2.50 GHz using MATLAB
R2018a. Fig. 2 shows all the 16 polylines (20) on
the same plot versus the number of jobs to be sched-
uled. For every next H the plot of its polyline is
higher. The computational artifacts (unexpected and
non-predictable bad range fluctuations) are clearly
seen. As the number of job processing periods in-
creases, the averaged computation time by ascend-
ing order resembles more an exponential growth.
The averaged computation time by descending order
appears similarly (Fig. 3), although its computa-
tional artifacts are less striking.
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Fig. 2. The averaged computation time (ms) by ascending order
for each H =2, 17

Relative difference (22) between computation

times (20) and (21) for each H =2, 17 is presented
in a fused plot in Fig. 4, where the number of pro-
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Fig. 3. The averaged computation time (ms) by descending order
for each H =2,17

cessing periods increases from the left to the right
downwards. The plot is an entire view of the 16
relative differences, in which all the fluctuations are
preserved. There are 11 subplots which are clearly
seen to be displaced downwards, i. e. their maximal
positive fluctuations are greater than the respective
maximal negative fluctuations. However, this does
not mean that computing by descending order is
faster on average here. Those three subplots clearly
seen to be displaced upwards do not imply also an
advantage of computing by ascending order. The two
subplots in the second row, which seem to have no
displacement, cannot be used for implications as well.
A refined version of the fused plot in Fig. 4 is
presented in Fig. 5 using the same presentation style,
by only cutting values of every polyline to the range
of =5 % to 5 %. The horizontal zero level line is put
on every subplot: if, within some interval of N , the
range fluctuations are below the zero level, then it
means that the ascending job order is faster over this
interval; otherwise, if they are above the zero level,
computing by descending order is faster. Visually,
only polylines on the first row (i.e., for H =2 and
H =3) are seen to be certainly lower (except for a
few places which could be considered as microarti-
facts) than the zero level for N > 100 . As the num-
ber of job processing periods increases, it is hard to
ascertain the computation speed advantage. Never-
theless, it is well seen in every subplot in Fig. 5 that
scheduling up to 90 jobs (except for scheduling a few
jobs) is faster by descending order. Then, up to ap-
proximately 250 jobs, the ascending job order results
in shorter computation times. Since the point of
about 250 jobs, the advantage trend (of either as-
cending or descending order) appears more stable.
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Fig. 4. A fused plot of relative difference (22) between computation times (20) and (21) for each H =2, 17 (which increases from
the left to the right downwards) versus N =2, 1000
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Fig. 5. Relative difference (22) for each H =2, 17 (which increases from the left to the right downwards) versus N = 2, 1000,

where every polyline is cut to the range of —5 % to 5 %
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To see clearer what advantage or disadvantage
there is (with respect to the zero level line), consider
relative differences (22), averaged over the number
of jobs. This is a set of 16 values

1000
RH) =S (N, H) for H =217 (24)
999 &

shown in the barred plot in Fig. 6. Now, it is cer-
tainly seen that scheduling jobs consisting of two to
four parts is on average faster by ascending order.
Scheduling jobs consisting of more than seven parts
is on average faster by descending order. The range
of jobs consisting of five to seven parts is an interval
of uncertainty, where the advantage of the ascending
job order is not so reliable. Nevertheless, this is a
place wherein the advantage of the ascending job
order vanishes and the advantage of the descending
job order appears, being weaker though.
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Fig. 6. The average of every polyline of relative difference (22)
for each H =2, 17

With the heuristic, neither the advantage of the
ascending job order, nor that of the descending job
order is significantly strong. For example, schedul-
ing 1000 jobs divided into 17 processing periods
each (Fig. 7 shows the due dates for this example)
by ascending order takes 327.7 ms, whereas the same
task is computed by descending order in 312.2 ms.
In fact, the difference is not very great (just 15.5 ms)
but if the similar task is computed for, say, 10000
times, then the descending job order allows saving
up to 155 seconds. Another example, with 1000 jobs
divided into 50 processing periods each (Fig. 8
shows the due dates for this example), is not so
promising: the ascending and descending job orders
take about 931.8 ms and 929.3 ms, respectively. So,
here the difference is just about 2.5 ms and thus the

descending job order allows saving slightly more
than 25 seconds after 10000 rounds of such a task.
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Fig. 7. The due dates corresponding to the release dates in as-
cending order for an example of scheduling 1000 jobs di-
vided into 17 processing periods each; despite the due
dates are not given in non-descending order, they roughly
are linearly-increasing on average
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Fig. 8. The due dates corresponding to the release dates in as-
cending order for an example of scheduling 1000 jobs di-
vided into 50 processing periods each; the due dates
roughly are linearly-increasing on average but they appear
more scattered (compared to those in Fig. 7)

Other scheduling examples similar to the men-
tioned do not necessarily lead to that the descending
job order allows saving some time, whichever it is.
As the number of job processing periods increases,
there is no certain proof that the average of relative
difference (22) shown in Fig. 6 will be still positive.
As the number of jobs increases (with the same great
number of job processing periods), the descending
job order is likely to lose its advantage.
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Discussion

Unfortunately, Fig. 6 does not show an entire
and reliable panorama of which job order has a
computation speed advantage. Moreover, these bars
are just a result which should be treated as “on av-
erage” only. Thus, scheduling jobs having the mini-
mal number of processing periods is averagely al-
most 1.5% faster by ascending order, whereas
scheduling 30 to 70 jobs is 1.5 % to 2.5 % faster by
descending order (see this in the subplotted pol-
ylines of Fig. 5). Therefore, the bars in Fig. 6 will
really work for multiple solvings (at least, a few tens
of the heuristic’s applications are required to estab-
lish a stable statistical ratio).

Another nuance is that the computation speed
advantage seems to vanish as either the number of
jobs or the number of job processing periods in-
creases. Thus, scheduling 1000 jobs divided into 30
processing periods each (the due dates for this ex-
ample in Fig. 9 appear less scattered than those in
Fig. 8, and more scattered than those in Fig. 7) by
the ascending and descending job orders takes about
557.5 ms and 557.1 ms, respectively. Such a tiny dif-
ference can be really counted as a statistically neg-
ligible. After increasing the number of processing
periods to 100 each (the due dates for this example
in Fig. 10 appear already badly scattered), the job
order advantage changes: the ascending and de-
scending job orders take about 1846.8 ms and
1864.1 ms, respectively; so now the ascending job
order saves almost 173 seconds after 10000 rounds
of such a task.
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Fig. 9. The on-average-linearly-increasing due dates correspond-
ing to the release dates in ascending order for an example
of scheduling 1000 jobs divided into 30 processing periods
each
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Fig. 10. The on-average-linearly-increasing due dates corre-
sponding to the release dates in ascending order for an
example of scheduling 1000 jobs divided into 100 pro-
cessing periods each; in this example, unlike the examples
with 17, 50, 30 processing periods, the ascending job or-
der saves almost 173 seconds after 10000 rounds of such
a task)

Nevertheless, the advantage in computing
schedules of huger amounts of jobs having a few
processing periods each can be pretty impressive.
Thus, a task of scheduling 1000 jobs with two pro-
cessing periods is solved by the ascending and
descending job orders taken about 31.7 ms and
32.4 ms, respectively (the relative difference is
2.32 %, which does not much contradict the longest
bar in Fig. 6). For 10000 jobs, these computation
times become about 1934.1 ms and 2325.9 ms, re-
spectively, and here the relative difference is a way
huger: it is 20.26 %, so, after 10000 rounds of such
a task, the ascending job order saves more than an
hour (!). Furthermore, for 10000 jobs with three pro-
cessing periods (it is better to pass to seconds now),
these computation times become about 3.57931 sec-
onds and 4.0849 seconds, respectively, and the as-
cending job order saves more than 1.4044 hours (!).

Conclusions

By using the heuristic based on remaining
available and processing periods, the job order input
is indeed significant in tight-tardy progressive idling-
free 1-machine preemptive scheduling of equal-
length jobs. The relative difference between compu-
tation times by the job release dates given in ascend-
ing order and given in descending order can achieve
up to 5% and even more, although then it is con-
sidered as a computational artifact whose probability
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is small. The average relative difference does not ex-
ceed 1.5 % for 2 to 1000 jobs consisting up to 17 pro-
cessing periods.

Regardless of how many processing periods the
job has, scheduling a few jobs is expectedly faster by
ascending order, but this part is full of computa-
tional artifacts. Then, scheduling up to 90 jobs is
expectedly faster by descending order. For the num-
ber of jobs between roughly 90 and 250, the ascend-
ing job order again results in shorter computation
times.

On average, where it is better to consider no
less than 250 jobs, the computation speed advantage
of the ascending job order gradually disappears as

the number of job processing periods increases and
then the descending job order becomes faster. The
break is at about five to seven parts of the job. How-
ever, as either the number of jobs or the number of
job parts increases, the computation speed ad-
vantage may become unstable and eventually vanish.
Nevertheless, the ascending job order can save a lot
of computational time in the case of scheduling at
least a few thousand jobs having just a few processing
periods each. After solving thousands of such cases
the saved time may be counted in hours. Whether
the obtained properties keep in the similar manner
for the case of jobs having different number of pro-
cessing periods is a matter of a further research.
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B.B. PomaHiok

EPEKTVBHICTb NMOPAOKY 3ABOAHb Y EBPUCTWLI WINIbHOIO NMPOIMPECYIOYOrro 1-MAWMHHOTO MNAHYBAHHA
PIBHOLIHHNX 3ABJAHb I3 MEPEMWUKAHHAMW BE3 NMPOCTOIO

Mpo6nemaTuka. ¥ noctaHoBUji 3agadvi MiHiMi3aUii 3ararnbHOro 3anisHioBaHHS 3a €BPUCTMKOK Ha OCHOBI BUKOPUCTAHHS 3amMLLKO-
BOr0 HasiBHOrO pecypcy Ta 3anuLLKOBOro nepiogy A0 06pobkuM iCHYIOTb ABa NPOTUNEXHUX CNOCOOM BBEAEHHSI AaHNX: AaTu 3anycKy 3aB-
OaHb 3afalTbCs B NOPSIAKY 3pocTaHHs abo cnagaHHs. HewopasHo 6yno AoBeaeHo, Lo edheKTUBHUIA MOPSA0K 3aBAaHb MOXe 3aollaanT
3Ha4yHUI Yac obuYncneHb Npy BUKOPUCTaHHI Mogeni ByrneBoro niHiNHOro NporpamMyBaHHs Ans NOLWYKy po3KnagiB 3i CTPOro MiHiManbHUM
3aranbHUM 3ani3HIOBaHHSIM.

MeTa gocnigxeHHs. MeToto € BCTaHOBINEHHS TOrO, 41 NOPSIAOK 3aBAaHb € CYTTEBUM Y CKNaAaHHi po3knagis 3a JONOMOrol eBPUCTUKN.
EdekTmBHiCTb Nnopsigky 3aBaaHb Oyae gocnigkeHa Ha npvknagi WinbHOro nporpecyyoro 1-mMallnHHOro nnaHyBaHHS PiBHOLIHHKX 3a-
BAaHb i3 NnepeMmnkaHHMK 6e3 NpoCToto.

MeToauka peanisauii. [Ins 4OCSrHEHHS 3a3Ha4YeHOi METU NPOBOAMTLCHA 0BG4YMcoBanbHe AOCHIOXEHHS 3 METOK OLiHKM ycepef-
HEHOro Yacy 0B4YMCIEHHS AK ATst BUCXIOHOrO NOPsSAKY, Tak i Ans cnagHoro nopsaky AaT 3anycky 3aBfaHb. [Mpuknaau 3agadi nnaHyBaHHS
3aBAaHb reHepyTbCs Tak, Lo PO3Kaaun, siki MOXXHa OTpMMaTh TpuBianbHO, 6€3 eBPUCTUKN, HE PO3rNAaaloThCS.

Pe3ynbTaTtn pocnipkeHHA. Y BUNaAKy KiNbKoX 3aBAaHb iX NNaHyBaHHS BUKOHYETHCS OYiKyBaHO LUBMALLE 3@ BUCXIQHOrO NOpsiaKy,
ane y uii yacTvHu 3abaraTto obuucnioBanbHUx aptedakTi. MnaHysaHHs Big 30 go 70 3aBgaHb Ha 1,5-2,5 % wBualwe 3a cnagHoro
nopsaky. OpHak nnaHyBaHHsA 0o 90 3aBAaHb, sIK OYiKyeTbCS, BCe OAHO Oyae WBWALle 3a cnagHuMM MOpPsiAKOM, X04a iCHye pu3nK BTpaTu
uiei nepesarn. [insa kinbkocTi 3aBgaHb npnbnusHo Big 90 go 250 BucxigHUIA NOpsAOK 3aBAaHb 3HOBY NPUBOAWTL A0 CKOPOYEHHS Yacy
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o6uncneHb. MNoynHatoum 3 Todkm 6nusbko 250 3aBAaHb, TeHAEHLiS nepesaru (BUCXigHoro abo cnagHoro nopsiaky) Burnsigae 6inbw cra-
OinbHot0.

BucHoBku. [pu nnaHyBaHHi 3a JONOMOrol eBpUCTUKN BBEAEHHS NOPSAKY 3aBAaHb € AiNcHO cyTTeBUM. CepeHs BifHOCHA PisHULS
He nepesuye 1,5 % ans sunaaky Big 2 go 1000 3aBaaHb, Wo MaTb Ao 17 nepiogis Ao 06pobku. [ns oTpUMaHHs CTaTUCTUYHO AOCTO-
BipHOT NepeBaru LWBUAKOCTI OOYMCNEHHS KpaLle po3rnsaaTn BUnagku 3 He MmeHLww sik 250 3aBgaHHAMUN. 3i 36inblUeHHAM KinbKOCTi 3aBAaHb
abo KinNbKOCTi YacTUH OJHOro 3aBAaHHSA nepesara LUBMOKOCTI 06YMCNEeHHS MOXe CTaTu HecTabinbHOK i 3 Yacom 3HWKHYTW. BopgHouac
BUCXiAHWIA NOPSIAOK 3aBAaHb MOXe 3aollaantu 6arato obyMcnioBanbHOro Yacy y BUNagKy ckilagaHHs posknafiB NpUHaNMHI AeKinbKox
TUCAY 3aBAaHb, IO MaloTh NULLE Kinbka nepioAiB 4o 06pobku. Micna po3s’si3aHHSA TUCAY Taknx BUMAOKIB 3a0LLaPKEeHUIN Yac MOXe Hapa-
XOBYBaTW rOANHMN.

Knro4yoBi cnoBa: nnaHyBaHHsi 3aBAaHb Ha OJHIV MaLUWHI 3 NepeMUKaHHAMM; PIBHOLHHI 3aBOaHHS; 3aranbHe 3ani3HIOBaHHS; eBpu-
CTUKa; BUCXiAHUI NOPAAOK 3aBAaHb; CNagHUn NopaaoK 3aBAaHb; Yac obunmcneHb; ehekTMBHUIN NOPSOO0K 3aBaaHb.

B.B. PomaHtok

QPOEKTUBHOCTL MOPAOKA 3AOAHMA B 3BPUCTWKE MNOTHOMO MPOrPECCWPYIOWENO 1-MALIMHHOIO
MAAHUPOBAHWSA PABHOLEEHHbBIX 3AOAHUA C NEPEKIIIOYEHUAMU BE3 MPOCTOA

Mpo6nemaTtuka. B noctaHoBke 3agayuv MUHMMM3aLMKN O6LLEro 3anasabiBaHUs NO 3BPUCTMKE HA OCHOBE MUCMOSb30BaHUS! OCTaTOu-
HOr0 MMEIOLLIEroCsl pecypca 1 0CTaToOYHOro nepuoaa k 06paboTke CyLLeCcTBYIOT ABa NPOTMBOMOSIOXHbBIX cnocoba BBOA4A AaHHbIX: AaTbl
3arnycka 3afaHuii 3a4aloTcsa B Nopsake Bo3pacTaHus unu ybeiBaHusa. HegaBHo ObiNo AokasaHo, YTo adpeKTUBHBIN NOPSAOK 3aaaHui
MOXET C3KOHOMUTb 3HAUUTENBLHOE BPEeMsi BbIYMCIIEHWIA MPU UCTIONb30BaHUM MoAeny 6yneBoro NMHENHOro NporpaMMUpPoOBaHUs Ans No-
1cKa pacnucaHuin co CTPOro MUHMMAIbHBIM 0BLLMM 3anasabiBaHEM.

Llenb nccnepoBanumsa. Llenb cocTonT B yCTaHOBMEHUN TOrO, SIBNSETCS 1M NOPSA0K 3aAaHWi CyLLECTBEHHbIM B COCTaBIIEHWUMN pac-
NUCaHUI C NOMOLLBIO 3BPUCTUKU. DPheKTUBHOCTL Mopsiaka 3afgaHuii 6yaeT uccnefoBaHa Ha NpuMepe NOTHOrO MPOrpPeccUpyroLEero
1-MaLIMHHOrO NMaHNPOBaHNSA PaBHOLEHHbIX 3a4aHU C NepeknoyeHnsiMm 6e3 NpocTos.

MeToauka peanusauuun. [ins 4OCTUXKEHWS yKkazaHHOM Lieny NpoBOAMTCS BbIMUCIMTENbHOE NCCrefoBaHMe C Lenbio OLeHKN ycpea-
HEHHOro BPEMEHW BbIYMCIIEHNS KaK Ansi BOCXOASLLEro nopsiaka, Tak v ANst HUCXoAsILLero nopsigka gat 3anycka 3agaHuii. MNpumepsl 3a-
[ayn NNaHMpOBaHUS 3ajlaHN TEHEPUPYIOTCA Tak, YTO pacnucaHus, KOTOpble MOXHO MONyYnUTb TPMBMANIBHO, 6€3 3BPUCTUKU, HE paccmaT-
puBatoTCs.

Pe3ynbTathbl uccriegoBaHus. B cniyyae HeCKONbKMX 3aAaHnin UX NNaHUPOBaHWE BbIMOSHAETCSt OXUAaeMo GbiCTpee npyu BOCXoAs-
LieM nopsiake, HO B 3TOW YacTW MHOTO BbluMCIMTENbHbIX apTedakToB. Mnanmposanve ot 30 go 70 3apaHuii Ha 1,5-2,5 % GeicTpee npu
Hucxoasiem nopsigke. OgHako nnaHvpoBaHue Ao 90 3agaHuid, Kak oXuaaeTcsi, Bce paBHO ByaeT BbicTpee Npyu HUCXOASALLEM NOPSAKeE,
XOTS CyLeCcTBYeT pUCK NoTepu 3Toro npenmyLiecTsa. [na konnyectsa 3agaHuin npumepHo ot 90 Ao 250 BocxoasLummn NOPSAOK 3agaHni
CHOBa NPVBOAMT K COKpaLLEHWNI0 BPEMEHU BblYMCEHMI. HaunHas ¢ Toukm okono 250 3agaHuin, TeHAeHUus npenMyLLecTsa (BocxogsaLero
UNW HACXOASLLEro nopsiaka) BeirnNsanTt 6onee ctabunbHoM.

BbiBoabl. [Npy nnaHMpoBaHUM C NOMOLLbIO 3BPUCTUKA BBEAEHUE NOpsiAKa 3aAaHuii eNCTBUTENBHO SIBMSIETCS CYLLECTBEHHbIM.
CpepnHsia oTHocuTenbHasi pa3HoCTb He npeBbiwaeT 1,5 % ana cnyyas ot 2 go 1000 3agaHui, nmetowmnx go 17 nepmogos k obpaboTke.
[Ins nonyyeHns cTaTUCTUYECKM AOCTOBEPHOrO NPEUMyLLECTBa CKOPOCTU BbIYMCIEHUS Nyylle paccMaTtpvBaTh Crlydan C He MEHEe YeM
250 3apaHusimu. C yBenuyeHnem KonmyecTsa 3agaHui Unu KonvyecTsa YacTeil 0qHOro 3aaHusi IPEMMYLLECTBO CKOPOCTMU BbIYUCIEHUSI
MOXET CTaTb HECTabWrbHbIM U CO BPEMEHEM UCYE3HYTb. TEM HE MEHEE BOCXOASALLUIA NOPSAOK 3a4aHNA MOXKET CIKOHOMUTb MHOTO Bbl-
YNCIUTENBbHOTO BPEMEHU B CIlyyae COCTaBMNeHWs pacrnmcaHuii Mo KpaHen Mepe HEeCKOMbKUX ThiCSY 3aAaHni, UMELUX N HECKONBbKO
nepuofoB k o6paboTke. [ocne peLueHust ThiCSY TakUX Cry4aeB CIKOHOMIEHHOE BPEMS MOXKET HaCUYUTbIBaTb Yachl.

KniouyeBble cnoBa: nnaHvpoBaHue 3afaHuii Ha O4HOW MalLMHe C NepPeKnoYeHNsIMIN; paBHOLIEHHbIE 3aaHus; obLuee 3anasabiBa-
HUWe; 3BPUCTUKA; BOCXOOALLMI NOPAOOK 3aJaHNIA; HUCXOOALMIA NOPAAOK 3a4aHniA; BPEMS BbIYMCIEHWI; 3h(DEKTUBHBIN NOPAAOK 3a4aHUN.
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