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EFFICIENT EXACT MINIMIZATION OF TOTAL TARDINESS
IN TIGHT-TARDY PROGRESSIVE SINGLE MACHINE SCHEDULING
WITH IDLING-FREE PREEMPTIONS OF EQUAL-LENGTH JOBS

Background. A schedule ensuring the exactly minimal total tardiness can be found with the respective integer linear
programming problem. An open question is whether the exact schedule computation time changes if the job release
dates are input to the model in reverse order.

Objective. The goal is to ascertain whether the job order in tight-tardy progressive single machine scheduling with
idling-free preemptions of equal-length jobs influences the speed of computing the exact solution. The Boolean linear
programming model provided for finding schedules with the minimal total tardiness is used.

Methods. To achieve the said goal, a computational study is carried out with a purpose to estimate the averaged
computation time for both ascending and descending orders of job release dates. Instances of the job scheduling problem
are generated so, that schedules which can be obtained trivially, without the exact model, are excluded.

Results. Based on the three-dimensional barred plot of the relative difference between the averaged computation times,
it has been shown that a possibility exists to find schedules more efficiently by manipulating the job order. For instance,
schedules of 5 jobs consisting of two processing periods each are found on average by 14.67 % faster for the descending
job order. In another example of 7 three-parted jobs, an optimal schedule is found on average in 69.51 seconds by the
ascending job order, whereas the descending job order takes just 36.52 seconds to find it, saving thus 32.99 seconds.
Conclusions. Scheduling a fewer jobs divided into a fewer job parts is executed on average faster by the descending job
order. As the number of jobs increases along with increasing the number of their processing periods, the ascending job
order becomes more efficient. However, the computation time efficiency by both job orders tends to be irregular.

Keywords: job scheduling; preemptive single machine scheduling; exact model; total tardiness; computation time; as-

cending job order; descending job order.
Introduction

Minimization of total tardiness is a partial case
of a more general problem, where jobs are associated
with weights and thus total weighted tardiness is
minimized [1, 2]. This partial case has a wide range
of contributions and applications also because not
always the job has its priority [3]. For example, if an
airport supports only ordinary flights, then the only
priority among arrivals comes out from their ap-
proach landing times. Then the landing schedule is
worked out by these times. However, if the approach
landing times appear to be close, the corresponding
flights must be scheduled to land so that the delays
would be minimal. At that, the runways are charged
approximately with the same number of flights (both
arrivals and departures) per hour (or a longer time
period). Besides, the runway is charged so that there
would be no idle periods (considering time measu-
rement standards accepted in aviation, a few mi-
nutes of no taxiing to takeoff or no taxiing from
landing for the runway are not counted as idling).
Therefore, tight-tardy progressive single machine
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scheduling [4] with idling-free preemptions of
equal-length jobs is a problem of the great practical
importance and impact.

A schedule ensuring the exactly minimal total
tardiness can be found with the respective integer
linear programming problem. Models based on the
branch-and-bound approach are commonly used for
that [5, 6]. For tight-tardy progressive single ma-
chine scheduling, where release dates are set at non-
repeating integers from 1 through the total number
of jobs, and due dates are tightly set after the re-
spective release dates (although sometimes a few
jobs can be completed without tardiness), the exact
model simplifies owing to no weights are included
and each job has the same number of processing pe-
riods [7]. An open question is whether the exact
schedule computation time changes if the release
dates are input to the model in reverse order. The
matter is that it was shown in article [8] that, under
some additional conditions, after inputting the re-
lease dates in descending (i. e., in reverse) order the
exact solution for total weighted completion time
minimization is computed on average faster, than
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after inputting the release dates in ascending (i. e.,
starting from 1) order. Does the similar reversion
accelerate tight-tardy progressive single machine
scheduling with idling-free preemptions of equal-
length jobs? Both positive and negative answers with
their peculiarities would be useful to substantiate
and maintain computations efficient.

Problem statement

The goal is to ascertain whether the job order
in tight-tardy progressive single machine scheduling
with idling-free preemptions of equal-length jobs in-
fluences the speed of computing the exact solution.
The Boolean linear programming model provided
for finding schedules with the minimal total tardi-
ness will be used. To achieve the said goal, a com-
putational study should be carried out with a pur-
pose to estimate the averaged computation time for
both ascending and descending orders. For this, a
pattern of generating instances of the job scheduling
problem will be suggested. Then the relative differ-
ence between the computation times is to be treated.
The research result is expected to either reveal or
disprove a possibility to manipulate the job order for
obtaining schedules more efficiently.

Minimal total tardiness by equal-length jobs

Let N be a number of jobs, N e N\({l},

where job » is divided into H equal parts (i. e., has
a processing period H ), has a release date r,, and

a due date d,, n=1, N . Integer r, is the time mo-

ment, at which job n becomes available for pro-
cessing. So, in the case of equal-length jobs,

H=[H],y NV (1)
is a vector of processing periods,

R=[r,].y eN" )
is a vector of release dates, and

D =[d,]y eN" 3

is a vector of due dates. Narrowing the problem to
the already mentioned tight-tardy progressive single
machine scheduling with idling-free preemptions,
the release dates given in ascending order are

r,=n Vn=1L N %
and the release dates given in descending order are

vn=1 N. )

r,=N-n+l1

The due dates are tightly set after the release dates,
in whichever order they are given:

d,=r,+H-1+b, Yn=1 N (6)

for ascending order and

d,=r,+H-1+by_,, Yn=1, N (7)

for descending order, where b, is a random due date
shift taken from vector

B = [b, .y = v(H (1, N)) @®)

with operator =Z(I, N) returning a pseudorandom

1x N vector whose entries are drawn from the
standard normal distribution (with zero mean and
unit variance), and function w(§) returning the

integer part of number & (e. g., see [4, 5, 9]). While

components of due date shift vector (8) are retur-
ned in a (-1) -non-descending order, i. €. while con-

dition

b,-1<)

n n+l

vn=1, N1 9)

is true, vector (8) is re-generated. In other words,
components of due date shift vector (8) are not
given in the (-1)-non-descending order. Otherwise,

operator =(1, N) is executed again for re-generating
vector (8). For instance, vector

B=[1 0 2 2 3]
does not fit here, whereas vector
B=[1 -1 2 2 3]
fits. Besides, vector (8) is re-generated if

a’nl <1 forsome n €{l, N}. (10)
So, for a properly given due date shift vector (8),
where both conditions (9) and (10) must be violated,
due dates (6) set in the order corresponding to as-
cending order of the release dates (4) are

d =H+n-1+b VYn=1 N (11)

and due dates (7) set in the order corresponding to
descending order of the release dates (5) are

d,=N+H-n+by_,, Yn=1,N. (12)

Thus, components of due dates vector (3) are nei-
ther given in non-descending order for the case of
the ascending job order by (4), nor are given in non-
ascending order for the case of the descending job
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order by (5). This is done so because in the case of
when either inequalities

d,<d,, Yn=1,N-1 (13)

or

d,>d,, Vn=1I, N-I (14)

are true, a schedule ensuring the exactly minimal
total tardiness is found trivially, without resorting to
any algorithm or model. This fact is going to be
proved below.

The goal is to minimize the total tardiness, i. e.
to schedule N jobs so that sum

% max{0, 0(n; H)-d,}

n=1

15)

would be minimal, where job #n is completed after
moment 6(n; H), which is

(i, N-H).

This goal is equivalent to minimizing sum

o(n; H) e

H N-H

ZZ z At X nht

n=1h=1 t=1

(16)

by the known Boolean linear programming model
(applied for minimizing total weighted completion
time also) [5, 8], where x,,, is the decision variable

about assigning the A-th part of job n to time mo-
ment ¢: x,, =1 ifitis assigned; x,,, =0 otherwise.

The triple-indexed weights (these ones are not the
job priority weights)

N-H\H \N
{{{tht}tzl }hzl}nzl
are calculated as follows:
Mt =0 (17)

by
r,=l+h<t<(N-DH+h VYh=1, H-1 (18)
and

19)

7\'nhz‘ =a

by a sufficiently great positive integer o (similar to
the meaning of infinity, i. e. it is an infinity “substi-
tute” for real-practice calculations) when (18) is not

true;
Dy = 0 (20)

by

r,-1+H <t<d, 21
and
Mo =1—4d, (22)
by
d,<t<N-H (23)
and
Mt = ¢ (24)

when both (21) and (23) are not true. In (19) and
(24), for instance,

. N N'Ht_N2~H-(N-H+l)

:1 2

(25)

~

n=

can be used [4, 5, 8]. So, sum (16) is defined on set

= {{{xnht} l}h 1}

which is an N x H x (N - H) matrix of ones and ze-
ros, where &, is a set of all possible such matri-

2
S %071C R(NH) ’

ces. It is an integer binary lattice in RVH) whose

vertices consist of only ones and zeros. Conse-
quently, the goal is to find such a set
= {{{xnht} l}h 1}1 1 € 99[0—1] @ (26)
on which minimum
‘ N H N-H
min ZZ D Mt Xnie (27)

Xe@y0cZoo 2 o1 121

is achieved by constraints constituting integer binary
lattice & [0-1] [4, 5, 8]

Xy €{0,1} by n=1, N and h=1, H

_ (28)
and r=1, N-H,

N-H —
Xy =1 by n=1, N and h=1 H, (29)
=1
N H
Zanh,:l by t=1, N-H, (30)
n=1h=1
N-H H-1
Xy + Hxppy <H by n=1, N
j=t+1 h=1 & i (31)

and r=1, N-H -1.

If (26) is a solution of the problem, it is the
optimal job schedule
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S = [St*]lx(NH) by s, e{l, N}

(32)
forevery r=1, N -H.
In schedule (32),
Sem=" Yh=1H by 0 (mh)ye{l, N-H}

and 0 (mh)<0 (mh+l) for h=1, H-1.

Thus, 0 (n; H) is a moment after which job # is
completed, and, according to sum (15),

(N, H) = ﬁ max{0, 0" (n; H)-d,}  (33)

n=l1

is the exactly minimal total tardiness for those N
jobs. Alternatively, amount (33) can be found by so-
lution (26):

N-H

Mot X - (34)

M=
Mm

8" (N, H) =

B
Il
—_
=
T

t=1

Obviously, a few optimal schedules ensuring the
same minimum (33) or, if calculating straightfor-
wardly within model (17)—(31), minimum (34), can
exist. For example, a problem of scheduling 4 jobs
divided into three parts each (i. e., N =4, H =3)
has release dates (in ascending order)

R=[rlu=0 2 3 4] (35)
by (4) and due dates (in ascending order)

D=[d,].4=[3 4 5 6] (36)

by (11) with b, =0 Vn=1, 4. Schedule

S =15, ln»

=1 11222333444 (@37

is optimal for
=3 3 3 3],

(35) and (36), ensuring total tardiness
* 4 *
9 4,3)= Zmax{O, 0 (n;3)-d,}
n=1

_ max{0, 3 - 3} + max{0, 6 — 4}
+max{0, 9 — 5} + max{0, 12— 6} = 12

by statement (33). However, schedule

S = [St*]lxl2

=1 113 33444222 (33

for release dates (35) and due dates (36) is optimal
as well, ensuring the same amount of total tardiness:

9°(4,3) = i max{0, 8" (n; 3) - d,,}

n=1
= max{0, 3 - 3} + max{0, 12 — 4}
+max{0, 6 — 5} + max{0, 9 - 6} = 12.
Note that schedules (37) and (38) differ in only that

job 2 in schedule (38) “leapt” over jobs 3 and 4.
Furthermore, it is easy to check that schedules

S*:[S:]IXIZ

=1 1144 43332272, 39
S*:[St*]lxlz

=1 114 4 42 2 2 3 3 3, (40
S*=[Sz*]1x12

=[1 11333222 4 4 4], 4
S*Z[S:]mz

=[1 1122244433 3 (42

are optimal here also, ensuring minimal total tardi-
ness 8*(4, 3)=12.

In the considered example with due dates (36)
given in ascending order, optimal schedule (37) is
determined trivially, without searching for solution
(26) of problem (27) by (28)—(31). Such examples
and others related to it, where due dates are given
in non-descending order, will not be included into
the computational study. The following theorem rig-
orously describes a class of tight-tardy progressive
single machine scheduling problems with idling-free
preemptions of equal-length jobs which do not need
model (17)—(31).

Theorem 1. A single machine scheduling prob-
lem with idling-free preemptions of equal-length
jobs (1) having release dates (2) as (4) and due dates
(3) by (13) has an optimal schedule

S" = [st*]lx(N~H) by St* =n

_ (43)
Vit=(m-1)H+1,nH for n=1, N
whose total tardiness
N
9 N = Zmax{O, nH -d,} (44)

n=1

is minimal.
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Proof. Suppose that amount (44) can be de-
creased by interchanging some different jobs m and
p in schedule (43), where m < p. The interchange

implies that the job is moved either forward or back-
ward as a comprehensive whole, with all its H parts
standing in a row in schedule (43). Firstly, let

mH -d, >0 and pH-d,>0 (45)

for these jobs. The collective tardiness of jobs m
and p in schedule (43) is

max{0, mH - d,,} + max{0, pH —d }

=mH -d, + pH -d,. (46)

Then, in the new schedule, job m is completed at
moment pH, and job p is completed at moment

mH. As job m is completed later than in schedule
(43), then its tardiness is greater than that in (43):

max{0, pH -d,} > max{0, mH -d,} >0. (47)

If the tardiness of job p, scheduled now earlier than
in schedule (43), is
mH —d, >0
then the collective tardiness of jobs m and p in the
new schedule
max{0, pH —d,,} + max{0, mH —d}

=pH -d,+mH -d, (48)

is the same as the collective tardiness of these jobs
in schedule (43). Otherwise, if

mH -d, <0 (49)

then the collective tardiness of jobs m and p in the
new schedule is greater than (46):

max{0, pH —d,,} + max{0, mH —d }

=pH-d, >mH -d, + pH -d,. (50)
Secondly, let
mH —d, <0 and pH-d,>0. (51)

The collective tardiness of jobs m and p in sched-
ule (43) is

max{0, mH —d,,} + max{0, pH - d}

= pH -d,,. (52)

As d, <d,, inequality (49) is true and inequality

pH -d, >pH -d, (53)

is true as well. Then the collective tardiness of jobs
m and p in the new schedule is not less than (52):

max{0, pH —d,,} + max{0, mH —d }

- pH -d,, > pH —d,,. (54)

Finally, let

mH —d, >0 and pH-d,<0. (53)

The collective tardiness of jobs m and p in sched-
ule (43) is

max{0, mH —d,,} + max{0, pH —d,}

—mH -d,,. (56)

As d, <d,, inequalities (49) and (53) are both true

again. Then the collective tardiness of jobs m and
p in the new schedule is greater than (56):

max{0, pH —d,,} + max{0, mH —d }

=pH —d, >mH —d,. (57)

Therefore, in each of the cases (45), (51), (55), total
tardiness (44) is not decreased. If, occasionally,

mH -d, <0 and pH-d, <0, (58)

then the collective tardiness of jobs m and p in

schedule (43) is zero, and thus it cannot be de-
creased. Interchanging a pair of the completing parts
of two jobs leads to the same conclusions by
straightforwardly using (45)—(58). In general, these
statements imply that moving an earlier job forward
cannot decrease total tardiness (44). Consequently,
schedule (43) is optimal and thus total tardiness (44)
is minimal. The theorem has been proved.

It is worth to note that the conditions of The-
orem 1 hold for any number of jobs. The case with
due dates (3) by (14) is easily proved by using the
obvious symmetry in reasoning. In a partial case of
Theorem 1, when due dates themselves are given in

ascending order as
d,=H+n-1 Vn=1, N (59)

(i.e., b,=0 Vn=1, N), total tardiness (44) is

N
9y =2 max{0, nH —d,}

n=1

= i max{0, (n - 1)(H - 1)}
n=1
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N(N —1)(H 1)

> (60)

N
=Y (n-1)(H-1)=
n=2

The optimal schedules for this partial case possess a
property owing to which they can be derived from
schedule (43) just as schedules (38)—(42) are derived
from schedule (37).

Theorem 2. In a single machine scheduling
problem with idling-free preemptions of equal-
length jobs (1) having release dates (2) as (4) and
due dates (59), where schedule (43) is optimal, for
any permutation set

M ={m, N, {2 N} by

_ (61)
MN{2, N} ={2, N}
schedule
S :[st*]lx(N,H) by s,* =1 vt=1, H and
by s, =m,, Vt=(m-1)H+1,nH  (62)

for n=2, N

is optimal as well by H > N —-1.
Proof. Consider interchanging some different
jobs m and p in schedule (43), where 1 <m < p (as

previously, the interchange implies that the job is
moved either forward or backward as a comprehen-
sive whole). The collective tardiness of jobs m and
p in schedule (43) is
max{0, mH -d,,} + max{0, pH —d }
=max{0, mH — (H + m-1)}
+max{0, pH - (H + p-1)}
= max{0, (m-1)(H -1)}
+max{0, (p - (A -1)}
=(m-D)(H -1 +(p-D(H-1)

—(m+p-2)(H -1). (63)

The collective tardiness of jobs m and p after the
interchange is
max{0, pH —d,,} + max{0, mH —d }
=max{0, pH - (H + m-1)}
+max{0, mH —(H + p-1)}
=max{0, (p—-1D)H —(m-1)}

+max{0, m-1)H —(p-1)}. (64)
As 1<m< p, then
(p-DH -(m-1)>0. (65)

The minimal value of statement

(m-1)H -(p-1) (66)

in (64) is achieved at the least m and the greatest p.
So,at m=2 and p= N statement (66) is

Q-DH-(N-1)=H-(N-1)=>0,
i.e.

(m-1)H -(p-1)=0. (67)

Owing to (65) and (67), collective tardiness (64) of
jobs m and p after the interchange is

max{0, (p-1DH —(m-1)}
+max{0, (m-1)H —(p-1)}
=(p-DH -(m-1)+(m-DHH -(p-1)
=(p-DH - +(m-1)(H -1)

=(m+p-2)(H-1), (68)

i. e. it is (63). Obviously, in scheduling 3 jobs, there
are only two permutation sets

M ={m, %, =032
and
M ={m, | }3,:2 ={2,3

and thus two schedules (62) are optimal for this
case. In scheduling more than 3 jobs, interchanging
only two jobs in schedule (43) does not cover per-
mutation set (61). Suppose that some different jobs
g and w are interchanged now in an optimal

schedule obtained by initially interchanging only
jobs m and p in schedule (43), where 1<¢g <w.

The initial interchange can be fulfilled for multiple
times, and it is done only for those jobs, where job
m is completed at moment mH and job p is com-

pleted at moment pH. Therefore, suppose that, in
the new optimal schedule, job g is completed at

moment mH and job w is completed at moment
pH. The collective tardiness of jobs ¢ and w in

the new schedule is
max{0, mH —d } + max{0, pH —d,}
= max{0, mH —(H +q - 1)}
+max{0, pH —(H +w-1)}
=max{0,m-1)H - (g -1)}

+max{0, (p —-DH —(w-1)}. (69)
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Owing to condition H > N —1 and the reasoning
identical to deducing inequality (67), amount (69) is

max{0, (m-1)H - (g -1)}
+max{0, (p-DH —(w-1)}
=(m-DH -(g-D+(p-DH -(w-1)

=(m+p-2)H -qg-w+2. (70)

Then the collective tardiness of jobs ¢ and w after
the interchange is the same as amount (70):

max{0, pH —d,} + max{0, mH - d,,}
=max{0, (p -DH — (¢ - 1)}
+max{0, (m-1)H —(w-1)}

=(p-DH -(g-D+(m-1)H -(w-1)

=(m+p-2)H —qg-w+2. (71)

Consequently, any interchange of two jobs does not
change their collective tardiness. This is equivalent
to permutations in set (61), after which schedule
(62) is still optimal. The theorem has been proved.
Clearly, the total tardiness for schedules (62)
by (61) is (60). Theorem 2, whose conditions imply
scheduling no less than 3 jobs, helps as building such
schedules, as well as avoiding non-optimal sched-

ules. For example,
S =[sls=[1122334 4 (72

is an optimal schedule for release dates (35) and due
dates

D=[d,]..=[2 3 4 5],
and it ensures the minimal total tardiness
* 4 *

34,2 = Z max{0, 0 (n;2)—d,}
n=1

4.(4-1)-Q2-1)
_ . _

by (60), but schedule
S=[s].g=I114 43 3 2 2]

6,

(73)
is not optimal according to Theorem 2 because
H=2<N-1=3.

Indeed, total tardiness of schedule (73) is greater
than that of (72):

24: max{0, 6(n; 2) —d,}
n=1

= max{0, 2 — 2} + max{0, 8 — 3}

+max{0, 6 — 4} + max{0,4 -5} =7,

so schedule (73) is not optimal.

Obviously, both Theorems 1 and 2 ensure the
reflectively symmetric conclusions for the case,
when the release dates and due dates are given in
descending order, by straightforwardly using (45)—
(58) and (63)—(71). All these cases are excluded
from the computational study.

A pattern of generating instances of the job
scheduling problem

Instances of the job scheduling problem will be
generated by the definite numbers of jobs N and of
job parts H. When due date shift vector (8) is
properly generated, due dates (11) corresponding to
ascending order and due dates (12) corresponding
to descending order are calculated. Then an ascend-
ing order schedule by release dates (4) and due dates
(11) is computed. Alternatively, a descending order
schedule by release dates (5) and due dates (12) is
computed as well.

At fixed numbers of jobs N and of job parts
H, for a job scheduling problem instance tagged by
an integer ¢, denote the schedule computation
times by ascending order and descending order by
84 (N, H,c) and §p,. (N, H,c) in seconds, re-
spectively. Each of these amounts implies computa-
tion time spent on just searching the solution of
problem (27), i. e. on exploring nodes by the
branch-and-bound algorithm. At that, the time
spent on forming the integer binary lattice & [0-1]

by (28)—(31) is not counted in & ,,.(N, H,c) and
8pesc (N, H, c). Therefore, let these amounts be

called inner computation times. If the total number
of the instances is C, then the averaged inner com-

putation times are

C
SASC(N’H):%ZSASC(N’Hi C) (74)
c=1

and

C
6Desc(jv’ H) = éZSDesc(Na H: C).

c=1

(75)

In percentage terms, the relative difference between
inner computation times (74) and (75) is

(Na H)_SDesc(N’ H)
S 4 (N, H)

w, (N, H) =100 e . (76)
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Howeyver, if to count also the time spent on form-
ing the integer binary lattice & [0-11 by (28)—(31),
the difference between the computation times for
both ascending and descending orders may be other.
Thus, denote the schedule computation times by as-
cending order and descending order, spent on form-
ing the integer binary lattice & (_;; by (28)—(31)
and searching the solution of problem (27), by
V4 (N, H,c) and v, (N, H,c) in seconds, re-
spectively. Let these amounts be called outer com-
putation times. It is quite obvious that

v (N, H,c)>8,,.(N, H,c) (77)
and
U pese (N, H, ¢) > 8p,,. (N, H, c). (78)
The averaged outer computation times are
1 C
L 4 (N, H):EZUASC(N, H, o) (79)
c=1
and
1 C
UDesc(jv’ H) = EZUDesc(N’ H, C). (80)

c=1

In percentage terms, the relative difference between
outer computation times (79) and (80) is

UASC(N’ H)_UDesc(N’ H)
V4 (N, H)

(N, H) =100 . (81)

Relative differences (76) and (81) will be esti-
mated over a natural rectangular lattice, which is
formed by

N=2,10 and H=2,6. (82)

It is assumed that the rectangular lattice formed by
(82) is sufficient to obtain reliable statistics for un-
biased estimation of relative differences (76) and
(81). However, the number of instances generated
for greater integers N and H, at which the exact
schedule computation time grows immensely, will
be less than that for a fewer jobs divided into a fewer
parts.

Computational study

Regularly, it is sufficient to generate and ex-
plore 500 instances for a pair of N and H, where
N <7 and H < 7. Nevertheless, even scheduling 4
jobs divided into five parts each may take a few sec-
onds, so it is reasonable to decrease the number of

instances generated for such pairs down to 100. Fur-
ther increment of either N or H and both of them
leads to considerable increment of computation
times. Thus, scheduling 10 jobs divided just into two
parts each may take up to 10 minutes. So, C =30
for this case. Starting off N =8 and H =35, the
computation time drags on beyond 2 hours, which
is technically called a timeout. The same happens at
scheduling 10 jobs divided into more than two parts.
Eventually, the matrix with values of number C
planned over the rectangular lattice formed by (82) is

500 500 100 100 100 10 O 0 O
500 500 100 100 100 10 O 0 O

500 500 500 500 500 10 10 10 0 | (83)
500 500 500 500 500 S50 S50 10 0
500 500 500 500 500 250 250 120 30

and these values are visualized in Fig. 1. There are
eight pairs of integers N and H, at which no in-

stances are generated by reason of 2-hour timeouts.
The pairs corresponding to a greater number of the
generated instances are marked with circles of bigger
size and lighter color.

H

6 | ®e o o . o o °
5+ ® [ ) [ ] ] I} s} o
4 . . .

3 ® ° .

2 ¢ @ .

2 3 4 5 6 7 8 9 10

Fig. 1. The rectangular lattice, where circles differing in size and
color show how many instances are generated according
to matrix (83); the pairs of N and H, at which no in-

stances are generated by reason of timeouts, are marked
with empty circles

The percentage of the relative difference be-
tween outer computation times by (81) is barred in
Fig. 2, where bars of negative values of the differ-
ence are marked with a lighter color. In fact, it is
pretty close to the relative difference between inner
computation times by (76) similarly barred in Fig. 3.
Inequalities (77) and (78) are surely true, but they
do not really matter here. It appears that both values

o (7,5) ~39.4 and (7, 5) ~59.4
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are caused by an artifact of pseudorandomness of op-
erator =Z(1, N) for generating due date shift vector (8).
On the other hand, there are 2-hour timeouts at
N =7 and H =5, so they additionally induce
computational artifacts.

l»lout(]va H)

Fig. 2. The percentage of the relative difference between outer
computation times
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Fig. 3. The percentage of the relative difference between inner
computation times

Apart from the artifact, some regularities are
seen in both Figs. 2 and 3. Firstly, the descending
job order has distinctly shorter computation time in
scheduling 2 to 6 jobs divided into two to four parts
each. Here, schedules by the descending job order
have been found by 2.95 % to 14.67 % faster. Sec-
ondly, this regularity vanishes as either the number
of jobs is increased or the job has a greater number
of processing periods (i. e., is divided into a greater
number of parts). Thus, schedules of 7 to 10 jobs

consisting of just two processing periods each have
been found by 1.83 % to 13.26 % faster by the as-
cending job order. Roughly the same advantage of
the ascending job order has been revealed in sched-
uling 2 to 6 jobs consisting of six processing periods
each.

As it has been already mentioned above, the
computational study is organized so, that the con-
ditions of Theorem 1 are excluded. Owing to this,
the trivial solutions in the form of optimal schedule
(43) whose total tardiness is (44) are not included
into the statistics of computation times as they do
not need model (17)—(31). However, the obtained
statistics contain cases in which the schedule trivi-
ally coincides with optimal schedule (43), although
not obeying the conditions of Theorem 1 (see it
in Fig. 4). In scheduling 2 jobs, the percentage of
such cases is decreasing, being naturally maximal
(72.4 %) at dividing the jobs into just two parts each.
Some kind of a pseudorandomness artifact can be
seen in scheduling 3 to 6 jobs divided into just two
parts each, where no trivial schedules have been reg-
istered except for H =3 whose percentage is 0.2 %.
The same weird zeros are at N =5 and N =6 for
H = 3. After all, despite this weird artifact, the triv-
ial solutions are not believed to affect the statistics,
although it is worth to know about the percentage
and likely unexpectednesses of how it changes.

60
50 +f]
40 -
30—

20+

10~

0-
—10 bt = - 6
- ='45

-20 37‘; r—— J .
Y5 6 7 8 9
N

Fig. 4. The percentage of cases (over the rectangular lattice in
Fig. 1) in which the schedule trivially coincides with op-
timal schedule (43), although not obeying the conditions
of Theorem 1

Before discussing the research result, it is also
worth to note that the exposed artifacts shall not be
tried for rectification or something. Repetitions of
schedules and their triviality like schedule (43) are
not excluded in common practice. For example,
scheduling arrivals and departures at airports (where
the tardiness often occurs having very high costs) is
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tried to be as constant as possible by reason of the
comfort and convenience for passengers and pilots.
Arrivals and departures at railway stations are the
similar example, with lesser costs of the tardiness,
though. Therefore, the artifacts (related to both
pseudorandomness and computations) have been
stored and subsequently exposed in the barred plots.
The artifacts and other seeming “weirdnesses” are a
part of reality and so they should be in the research
result along with the “common” statistics.

Discussion

The research result obtained on the basis of
Figs. 2—4 seemingly proves a possibility to find
schedules more efficiently by manipulating the job
order. Thus, p,,, (5, 2) ~ 14.67 implying that sched-

ules of 5 jobs consisting of two processing periods
each will be found on average by 14.67 % faster for
the descending job order. For instance, consider the
respective job scheduling problem with due dates

D=[d,].s=[5 1 4 3 10] (84)
for the ascending job order and
D=[d,l,s=[10 3 4 1 5] (85)

for the descending job order. An optimal schedule
for due dates (84) is

S™ =15, luo

“[1 223134455 (86)

whose total tardiness is

§@a=imw&€mm—@}
n=1

= max{0, 5 - 5} + max{0, 3 - 1} + max{0, 6 — 4}
+max{0, 8 — 3} + max{0, 10 - 10} = 9.

It is worth to note that, along with optimal sched-
ule (86), schedule

S" =[5, o

-1 223314455 (87)

is optimal also as its total tardiness is the same:
* 5 *
95,2 = Zmax{O, 0 (n;2)-d,}

n=l

= max{0, 6 — 5} + max{0, 3 — 1} + max{0, 5 — 4}
+max{0, 8 — 3} + max{0, 10 - 10} = 9.

Either schedule (86) and schedule (87) is found on
average in 93 milliseconds on CPU Intel Core i5-
7200U@2.50 GHz using MATLAB R2018a. An op-
timal schedule for due dates (85) is

S" =[5, Io

“[54 43532211 (88

and its total tardiness is

§@D:imMQNMJ%@}
n=1

— max{0, 10 — 10} + max{0, 8 — 3} + max{0, 6 — 4}
+max{0, 3 -1} + max{0, 5-5} =9,

whereas schedule (88) is found on average in 73 mil-
liseconds on the same equipment. Surely, another
optimal schedule

S = [Sr* lix10

=54 43352211, (89)

corresponding to schedule (87) with

§@D:imw&§WQ%¢}
n=1

= max{0, 10 — 10} + max{0, 8 — 3} + max{0, 5 — 4}
+max{0, 3 -1} + max{0, 6 -5} =9,

is found in the same time span. Schedule (89) can
be obtained from schedule (88) by aggregating
job 3. It is seems that the difference between the
computation times could be treated as a negligible
one, although the descending job order is 26.5 %
faster here. Indeed, it is so for a single or a few such
scheduling problems, but after scheduling 1000 such
instances the difference becomes very significant
(20 seconds).

Another, more noticeably demonstrative, ex-
ample is for scheduling 7 three-parted jobs whose
due dates are

D=d,).,=[2 7 2 7 7 2 12] (90)
for the ascending job order and
D=[d,].,=0102 2 7 7 2 7 2] 91)

for the descending job order. An optimal schedule
for due dates (90) is

S =[5 =1 113335556
6 6 777444222 @ (92

whose total tardiness is
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7
§°(7,3) = > max{0, 0" (n; 3) - d,,}
n=1
= max{0, 3 - 2} + max{0, 21 — 7} + max{0, 6 — 2}
+max{0, 18 — 7} + max{0, 9 — 7} + max{0, 12 - 2}
+max{0, 15-12} = 45.

Schedule (92) is found on average in 69.51 seconds.
On the other side, model (17)—(31) finds an optimal

schedule for due dates (91), which is not obtained
from schedule (92) by inversing the job number from

nto 7-n+1 for n=1,7 (as it has been for the
previous example with 5 jobs):

S =[5l =177 75556663

33444222111 (93)

whose total tardiness is

7
9°(7,3) = > max{0, 0" (n; 3) - d,,}
n=1
= max{0, 21 -12} + max{0, 18 — 2} + max{0, 12 - 7}
+max{0, 15 - 7} + max{0, 6 — 2} + max{0, 9 - 7}
+max{0, 3 -2} = 45.
Meanwhile, schedule (93) is found on average in

36.52 seconds. This is almost twice faster than com-
puting for due dates (90). Of course, schedule

S =[5l =17 775553332

221114446 6 6] (94)

which can be obtained from schedule (92) by invers-
ing the job number from n to 7-n+1 for n=1, 7
is optimal also as its total tardiness is the same:

7
9°(7,3) = > max{0, 0" (n; 3) - d,,}
n=1
= max{0, 15 - 12} + max{0, 12 — 2} + max{0, 9 - 7}
+max{0, 18 — 7} + max{0, 6 — 2} + max{0, 21 -7}
+max{0, 3 -2} = 45.

In fact, schedule (94) is found just as fast as schedule
(93). In this example, the time saved on a single job
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B.B. PomaHtok

EPEKTMBHA TOYHA MIHIMISALIA 3AFANIBHOIO 3AMISHIOBAHHA Y WINTbHOMY MPOIrPECYHOHOMY OJHOMALLMHHOMY
MNAHYBAHHI PIBHOLIIHHMX 3ABOAHb I3 MEPEMUKAHHAMW BE3 NMPOCTOIO

Mpobnemartuka. Po3knag, wo 3abesnevye cTporo MiHiManbHe 3aranbHe 3anisHBaHHSA, MOXHa 3HaNTK 3a BiAMOBIAHOK Linovuc-
TI0BOO 3afayeto MiHINHOro NporpamMyBaHHs. BigkpuTuM € NUTaHHS Npo Te, YM 3MIHIETLCS Yac 0BYMCNEHHS TOYHOrO po3knaay, SKWo AaTtn
3anycky 3aBaHb BBOASTLCS B MOZENb Y 3BOPOTHOMY MOPSIAKY.

MeTa pocnigxeHHsi. Meta nonsrae y Tomy, o6 BCTAHOBUTU, UM BNMMBAE Ha LIBUAKICTb OBYNCNEHHS TOYHOTO PO3B’si3Ky NOPSAOK
3aBAaHb Y LWiNbHOMY MPOrpecytoyoMy OAHOMALUMHHOMY MaHyBaHHi PiIBHOLIHHUX 3aBAaHb i3 nepemMunkaHHamu 6e3 npoctoto. [Ans nowyky
po3knagiB i3 MiHiManbHUM 3aranbHUM 3ani3HIOBaHHSIM BUKOPUCTOBYETLCSI MOAENb BYNEBOro MiHiMHOrO NporpamyBaHHS.

MeToauka peanisauii. [Ing JOCArHeHHS 3a3HayeHoi MeTV NPOBOAUTBLCA OBYMCNioBarnbHe AOCHIOKEHHS 3 METOH OLiHKM ycepea-
HEHOro Yyacy ob4MCneHHs K ANs BUCXIAHOro NOPSAKyY, Tak i AN cnagHoro nopsaky AaT 3anycKy 3aBdaHb. [Mpuknaau 3agadi nnaHyBaHHS
3aBaaHb reHepyTHCS Tak, Lo pOo3Knaau, siki MoXHa oTpuMaTy TpusianbHo, 6e3 To4YHOI MoZeni, He po3rnsaaalTbes.

Pe3ynbTaTt gocnigxeHHs. Ha ocHoBi TpuBUMipHOro 6pyconopibHoro rpadika BiAHOCHOI pi3HULI MiX ycepeaHeHnMM Yacamu 06-
ynucneHb Byno nokasaHo, WO iCHYE MOXNMBICTb BinbLy edPEKTUBHOIO MOLLYKY PO3KMaAiB 3aBASKU MaHinynloBaHHIO NOPSAKOM 3aBAaHb.
Hanpwvknag, po3knagu 5-T1 3aBaaHb, WO CKNagaTbes 3 ABOX nepioais 06pobku, B cepeaHboMy 3HaxoasTbes Ha 14,67 % weuawe ans
crnafHoro nopsaky 3aefaHb. B iHWOMY npuknagi 3 7-My 3aBAaHb, WO CKNagatoTbCsl 3 TPbOX YaCTUH KOXHE, ONTUMarbHUIA po3knag, 3Ha-
XOAUTbCA B cepefHboMy 3a 69,51 cekyHaM 3a BUCXiZAHOTO MOPSiAKY 3aBAaHb, TOAi SIK Ans CNafHOro nopsiaky 3aefaHb NOTPIOGHO nue
36,52 cekyHaw, Wwo 3aowanxkye 32,99 cekyHau.

BucHoBku. [TnaHyBaHHS MEHLLOI KiflbKOCTi 3aBAaHb, PO3AINEHNX HAa MEHLLY KiNbKICTb YAaCTUH, BUKOHYETLCA B CEPegHbOMY LUBUALLE
3a crnagHoro nopsiaky 3aeAaHb. LLoHO KinbKicTb 3aBAaHb 30iNbLUYETLCS pa3oM 3i 36inbLUEHHAM KiNbKOCTi nepiogis ix 06pobku, BUCXiaHWUIA
nopsiaok 3aBfaHb cTae binblw edekTBHUM. OfHaK ehekTUBHICTbL Yacy obuncneHHs 3a oboma nopsigkamy 3aBAaHb Mae TEHAEHLI J0
HeperynsipHocTi.

KnrouoBi cnoBa: nnaHyBaHHs 3aBAaHb; NiaHyBaHHSA HA OAHIN MalLVHI 3 NEPEMUKAHHSIMU; TOYHa MOZESb; 3ararnbHe 3ani3HIOBaHHS;
Yyac 0buMCnEeHHSsT; BUCXIOHUIA NOPAAOK 3aBAaHb; CnagHui Nopsiaok 3aBAaHb.

B.B. PomaHtok

QOPEKTUBHAA TOYHAA MUHUMUSALIMA OBLLEIO 3AMA3AbIBAHWA B NMNOTHOM NMPOrPECCUPYOLWEM OAHO-
MALUVMHHOM NJIAHUPOBAHUN PABHOLIEHHbLIX 3AOAHWY C NEPEKNIOYEHUAMWM BE3 NMPOCTOA

Mpo6nematuka. PacnucaHne, obecneyunBatoLiee CTPOro MMHUMansHOe obluee 3anasfbiBaHue, MOXHO HaTV N0 COOTBETCTBYIO-
Lei LEemnoYMCIIEHHON 3a4a4e SIMHEeNHOro NporpaMMnpoBaHust. OTKPbITLIM SBIISIETCA BOMPOC O TOM, MEHSIETCS SN BPEMSI BbIMUCTIEHUS
TOYHOTO pacnucaHusl, ecnu Aathl 3anycka 3afaHuii BBoAATCs B Mofdenb B 06paTHOM Nopsiake.

Lienb uccnenosaHus. Lienb COCTOUT B TOM, YTOBbI YCTAHOBUTb, BIIUSIET W HA CKOPOCTb BbIYUCTIEHWSI TOUHOTO PELLEHUS MOPSA0K
3aaHwnii B NIOTHOM MPOrPECCHPYIOLLEM OAHOMALUMHHOM MITAHMPOBaAHUU PABHOLEHHBIX 3aAaHui ¢ nepeknodeHnsmm 6e3 npoctos. [Ans
novcka pacnucaHui ¢ MUHUMarbHbIM OGLLMM 3ana3ablBaHUeM UCTONb3yeTcs Mofernb GyneBoro NIMHEHOro NporpaMM1MpoBaHUsi.

MeToauka peanusaumu. [Ins JOCTUXEHUs! yKa3aHHOM Lienv NPOBOAMTCS BbIYMCIIUTENBHOE UCCMEA0BaHE C LIENbio OLEHKU ycpes-
HEHHOTO BPEMEHM BbIYMCIIEHS KaK AJ1s BOCXOASLLEro nopsiaka, Tak v Ans HUCXOASLWEro nopsiaka aar sanycka 3aganui. MNpyuveps 3a-
Jayun NnaHUpoBaHWs 3a4aHWUi reHepupyITCs Tak, YTO PacnucaHusi, KOTOPbIE MOXHO MOSYYUTb TpUBMANbHO, 6€3 TOYHOW Moaenu, He
paccmaTpuBaloTCs.

Pe3ynbTaTthbl uccrnegoBaHus. Ha ocHoBe TpexmepHoro 6pyconoao6Horo rpacvka OTHOCUTENBHOWM pasHOCTU MEXAY YCPeaHEH-
HbIMW BPEMEHAMM BbIUUCTIEHMI BbINO NOKa3aHO, YTO CYLLECTBYET BO3MOXHOCTb Gonee ahdekTUBHOTO Noucka pacnucaHui nyTemMm MaHu-
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nyrnvpoBaHus NopsiakoM 3adaHuii. Hanpumep, pacnucanust 5-Tu 3agaHuie, COCTosILLMX M3 ABYX NepuoaoB o6paboTky, B CpeaHEM Haxo-
asTcs Ha 14,67 % GbicTpee AN HUCXoAsILLEro nopsigka 3agaHui. B gpyrom npumepe 13 7-muv 3afaHuid, COCTOSALIMX U3 Tpex vacTen
Kaxgoe, onTMManbHoe pacnucaHve HaxoamTcs B cpegHem 3a 69,51 cekyHabl Npy BOCXoAsLWEM NOPSIAKe 3aAaHuii, Torga Kak Arnisi HUCXo-
asuiero nopsigka 3agaHun HyXHo nuwb 36,52 cekyHabl, 4TO 3koHOMUT 32,99 cekyHAbl.

BbiBoAbl. [TnaHMpoBaHWe MeHbLLErO KONMYeCTBa 3aaHnii, pa3aerneHHbIX Ha MeHbLLEe KONMYECTBO YacTel, BbIMOMHSAETCS B cpef-
HeM BbICTpee Npu HACXOAALWEM NopsiAKe 3aaaHuniA. Kak TonbKo KONMYeCTBO 3a4aHni YBENUYMBAETCS BMECTE C YBENUYEHUEM KONUYECTBA
nepuoaoB 1x o6paboTku, BOCXOASLLMIA NOPSAOK 3aAaHunin cTaHoBUTCS Bonee adhdekTuBHbIM. OaHako 3PEeKTUBHOCTL BPEMEHW BbIYUC-
neHus npy obonx nopsigkax 3agaHunin UMeeT TEeHAEHLMIO K HEpPerynspHOCTY.

KnioueBble cnoBa: nnaHnpoBaHue 3agaHuii; nNrnaHMpoBaHME Ha OAHOM MaLUMHE C NepeKntYeHUsiMIU; To4YHas Moaenb; obllee 3a-
nasgbiBaHve; BPEMS BbIYMCIIEHMS; BOCXOAALLMIA MOPSOOK 3aAaHUA; HUCXOLALLMIA NOPSOOK 3a8aHUiA.

PexomennoBana Panoro Hanpiiinuta no penakiii
GdaKkyIbTeTy IPUKIATHOI MaTeMaTUKNA 16 xoBTHs 2019 poky
KIII im. Iropst CikopcbKoro
IMpuiiHsaTa no myGmikaiii
04 motoro 2020 poky
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