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ANALYSIS OF EFFECTIVENESS OF THRESHOLDING IN PERFUSION ROI DETECTION
ON T2-WEIGHTED MR IMAGES WITH ABNORMAL BRAIN ANATOMY

Background. The brain perfusion ROI detection being a preliminary step, designed to exclude non-brain tissues from
analyzed DSC perfusion MR images. Its accuracy is considered as the key factor for delivering correct results of
perfusion data analysis. Despite the large variety of algorithms developed on brain tissues segmentation, there is no one
that works reliably and robustly on T2-weighted MR images of a human head with abnormal brain anatomy. Therefore,
thresholding method is still the state-of-the-art technique that is widely used as a way of managing pixels involved in
brain perfusion ROI in modern software applications for perfusion data analysis.

Objective. This paper presents the analysis of effectiveness of thresholding techniques in brain perfusion ROI detection
on T2-weighted MR images of a human head with abnormal brain anatomy.

Methods. Four threshold-based algorithms implementation are considered: according to Otsu method as global thresh-
olding, according to Niblack method as local thresholding, thresholding in approximate anatomical brain location, and
brute force thresholding. The result of all algorithms is images with pixels’ values changed to zero for background
regions (air pixels and pixels that represent non-brain tissues) and original values for foreground regions (brain perfusion
ROIs). The analysis is done using comparison of qualitative perfusion maps produced from thresholded images and
from the reference ones (manual brain tissues delineation by experienced radiologists). The same DSC perfusion MR
datasets of a human head with abnormal brain anatomy from 12 patients with cerebrovascular disease are used for
comparison.

Results. Pearson correlation analysis showed strong positive (# was ranged from 0.7123 to 0.8518, p < 0.01) and weak
positive (r < 0.35, p < 0.01) relationship in case of conducted experiments with CBF, CBV, MTT and Tmax perfusion
maps, respectively. Linear regression analysis showed at level of 95 % confidence interval that perfusion maps produced
from thresholded images were subject to scale and offset errors in all conducted experiments.

Conclusions. The experimental results showed that widely used thresholding methods are an ineffective way of managing
pixels involved in brain perfusion ROI. Thresholding as brain segmentation tool can lead to poor placement of perfusion
ROI and, as a result, produced perfusion maps will be subject to artifacts and can cause falsely high or falsely low
perfusion parameter assessment.

Keywords: perfusion dynamic susceptibility contrast magnetic resonance imaging; abnormal brain scans; region of in-
terest; segmentation; thresholding.

Introduction Nowadays, accurate detection of brain perfu-
sion ROI is considered to be more relevant for deliv-
ering correct results of perfusion data analysis [4—6].
It can be explained by the fact that involving of non-

DSC (Dynamic Susceptibility Contrast) perfu-
sion MR (Magnetic Resonance) imaging plays a sig-

nificant role in diagnostic and management of cer-
ebrovascular and intracranial oncological dis-
eases [1—3]. During the DSC MR exam a scanner
provides rapid acquisition of contrast-based image
sequences to measure the first pass of a bolus as it
circulates through the brain vasculature. The sus-
ceptibility of the contrast agent causes a decrease in
signal intensity on the T2-weighted MR images. That
kind of decrease in signal intensity is further converted
into time-concentration curves from which perfusion
data analysis can be performed on pixel-by-pixel basis.
Result of DSC perfusion data analysis is quantitative
values of hemodynamic parameters and perfusion
maps which are their visual interpretation.
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target pixels data in perfusion analysis leads to the
presence of numerous artifacts on perfusion maps
and can cause falsely high or falsely low results of
perfusion parameters assessment.

Accurate detection of brain perfusion ROI is a
task of applying brain tissues segmentation algorithm
that can provide proper results on DSC perfusion
MR images with abnormal brain anatomy. Cer-
tainly, the manual segmentation is able to give ac-
curate results not only on images with healthy tissues
and organs, but with pathological ones too. Unfor-
tunately, manual segmentation of brain tissues
through all DSC exam images is labor intensive and
extremely time-consuming task. In most clinical
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cases, its performance requires a specialist with suf-
ficient knowledge and practical experience to detect
brain anatomical structures and its lesions on
T2-weighted MR images. Therefore, automatic al-
gorithms for segmentation is generally preferable.

Despite the importance, the development of
appropriate and effective automatic, or at least semi-
automatic, brain segmentation algorithm on DSC
perfusion MR images is still required for clinical use.
The explanation for this is actually quite straight-
forward and can be substantiated by the following
items.

Considering the fact that DSC perfusion data
is T2-weighted images, such data is more compli-
cated for automated brain segmentation than
T1-weighted images. It can be explained with fatty
tissues presence between brain and skull. Thus, a lot
of automatic algorithms for brain segmentation are
focused on T1-weighted MR images.

There are automatic algorithms that provide
brain segmentation and simultaneously applicable
to brain tissues detection on TI1-weighted and
T2-weighted MRI images [7, 8]. Such algorithms
require a lot of parameters to be properly estimated
for each, or at least initial, image processing. As a
result, not accurate brain tissues ROIs are detected
if the estimation and initialization are not done
properly or in case of processing of low-contrast and
low-resolution images, like DSC perfusion ones [9].

Any of the methods that are known in the art
as useful for brain segmentation on T2-weighted
MR images are not applicable to clinical use. It can
be explained by required modifications in exam pro-
tocols (in case of utilizing for segmentation process
the benefits from the specific image acquisition
technique [10], or from the high-resolution pairs of
T1-weighted and T2-weighted images [11]), or by
partially eliminated information about studied ob-
jects (in case of parameterization of the T2-weighted
image intensity onto a standardized T1-weighted in-
tensity [12]).

Clinical images in most cases have visualization
of abnormal brain anatomy. So, high amount of le-
sions types and their challenging shape or appear-
ance in the brain are the reason of fails of automatic
algorithm commonly applied for segmentation pur-
poses in the field of computer software related to
different areas of medical image processing [13—15].
In case of applying intensity based segmentation,
like thresholding or clustering, incorrect results are
caused by overlapping pixel intensities in lesion re-
gions and regions which are targeted to be excluded
from the image. In case of pattern recognition, at the
present moment, there is a lack of pre-segmented

templates and training samples for different shape,
density, and location of the lesion for such algo-
rithms applying on images with abnormal brain
anatomy.

According to all the reasons mentioned above,
thresholding method is still the state-of-the-art
technique that is widely used as a way of managing
pixels involved in brain perfusion ROI. For the most
part, software applications for perfusion data analy-
sis are oriented on automatic way of threshold value
selection. However, on practice it is very common
to have further manual turning of the threshold
value to provide more accurate brain perfusion ROI
detection. The basic principle of thresholding
method is to divide pixels into two classes and thus
differentiate the brain perfusion ROI from back-
ground. This principle is useful to implement intui-
tive user controls for threshold value selection, but,
as was mentioned above, overlapping of pixel inten-
sities in lesion regions and background regions can
lead to incorrect brain perfusion ROI detection.

Problem Statement

The purpose of this study is to provide analysis
of effectiveness of thresholding techniques in brain
perfusion ROI detection on T2-weighted MR im-
ages of a human head with abnormal brain anatomy.
This study focuses only on the threshold-based al-
gorithms of low-level intensity pixels extraction that
are widely used for medical image processing or spe-
cifically developed for brain segmentation on
T2-weighted MR images.

The rest of the paper is organized as follows.
The section Material and Methods presents the
background for the experiments in the form of a de-
scription of threshold-based algorithms and their
compliance with the automated brain perfusion ROI
detection on T2-weighted MR images of a human
head. The end part of this section describes the data
used in the experiments. Next, the section Results
and Discussion provides details on the setup of the
experiments, then gives the experimental results and
their discussion. Finally, section Conclusion com-
pletes the paper and references are at the end.

Material and Methods

Any algorithm that uses thresholding technique
for extraction of image pixels with low-level inten-
sity as background defines the binary mask M (x, y)

for the thresholded image as follows:
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1, if I(x,y) >t

M(x,y) =
(x.) {0, if I(x,y) <1,

where /(x,y) — image intensity at point with coor-
dinates (x,y), ¢t — threshold value.

In overall, thresholding algorithms can be clas-
sified as either global or local thresholding based on
the rules of the threshold value detection. Global
thresholding algorithms use a single threshold value
for the entire image processing, whereas local
thresholding algorithms divide the processed image
into sets of pixels (sub-images) and for each of them
a separate threshold value is used.

The analysis of effectiveness of thresholding
techniques was done in accordance with segmenta-
tion results obtained from four different algorithms
that are threshold-based and can be applied for
automated brain perfusion ROI detection on
T2-weighted MR images of a human head.

The first algorithm to be used for the analysis
of effectiveness of thresholding techniques was im-
plemented according to Otsu method [16]. Otsu
method is a type of global thresholding technique
that is very popular and widely used in medical im-
age processing. The algorithm automatically
searches for clustering-based image threshold that
minimizes the intra-class variance. The reason for
such search is that variance is used as a measure of
image region homogeneity (i.e., image regions with
higher homogeneity have lower variance). In order
to find out the threshold value that minimizes the
intra-class variance, the algorithm considers all pos-
sible values of image intensities as threshold candi-
dates and calculates the intra-class variance for each
of the two classes under consideration: the class of
image pixels below and above considered threshold.
Intra-class variance is calculated as follows:

% (1) = 0y (1) - o3 (2) + 0y (1) - 53(¢),

where o,(f) and ®,(f) — the probabilities of two

classes separated by a threshold t;clz(t) and c%(t) —

the variances of these two class. In order to decrease
computation costs, the algorithm maximizes inter-
class variance that is the same as minimizing the
intra-class variance. The inter-class variance is ob-
tained by extracting intra-class variance from the to-
tal variance and can be calculated as follows:

op(1) = 6* — oy (1) = o, (t) -0, (1) - (1 () — o (),

where o, (f) and o,(#) — the class probabilities are

calculated from the L bins of the image histogram
as follows:

o (1) = p(i)
i=1
and
L
oy (1) = > pli),

i=t+1

while the class means are calculated as follows:

1 Lo
w (1) = or0) 'Ep(z)x(z)
and
1 L N
() == X P,

The second threshold-based algorithm to be
used for the analysis was implemented according to
Niblack method [17]. This method is a type of local
thresholding technique, in which the threshold val-
ues are spatially varied and are calculated based on
the local characteristics of the processed image. The
algorithm searches for a local threshold value ¢ for
pixel with coordinates (x, y) within a window of size

wxw as follows:
t(x’y) = uw(x’y)+k'0w(xsy)a

where p,(x,y) and o,(x,y) — the values of local

mean and standard deviation of intensity values for
all the pixels inside the search window respectively;
k — the bias that controls the level of adaptation
varying the threshold value. Histogram equalization
was made as a preprocessing step to improve
Niblack method to be more effective in MR images
thresholding [18].

The third algorithm to be used for the analysis
is also threshold-based and uses approximate ana-
tomical brain location (AABL) as image region for
threshold value calculation [19]. The image pro-
cessing by applying threshold value detected in
AABL region is a type of global thresholding. Simi-
lar to the previous ones, the algorithm output is a
binary mask of perfusion ROI that has zero values
for air pixels and pixels that represent non-brain tis-
sues. The algorithm searches for threshold value ¢
from AABL pixels as follows:

t=Hup (X, ¥) =0 448 (X, ),
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where p 5, (x,y) and o 445 (x,y) — the values of

mean and standard deviation of intensity values for
all the pixels inside the region of approximate ana-
tomical brain location respectively. AABL region is
obtained by cropping the processed image in global
extrema places of the first derivative of the projec-
tion curves. The horizontal Py (x) and vertical

B, (y) projection curves are the 1D functions of the

standard deviation values obtained by projecting the
image pixels onto horizontal or vertical axis as fol-
lows:

M 5 1 M 2

Py (x) = Zl(x,j)—ﬁ(zl(x,j)] /(N =1)
Jj=1 j=1

and
N 5 1 N 2

By =21 (j,y)—ﬁ[zl(j,y)J /(M 1),
Jj=I J=1

where /(x,y) — image intensity at pixel with coor-
dinates (x,y); N — the number of image columns;
and M — the number of image rows. Additionally,
the algorithm uses hole filling [20] and binary region
growing [21] steps to remove falsely detected regions
and produce a region of only brain tissues.

The last one algorithm to be used for the anal-
ysis of effectiveness of thresholding techniques was
implemented as a brute force search of the threshold
value. For this purpose, thresholding was done with
all possible values of image intensities as threshold
candidates. The final threshold value was defined to
present segmentation results with the highest simi-
larity to the reference standard that was defined as
manually marked ROI of the brain perfusion data
by an experienced radiologist and confirmed by a
second radiologist. Agreement with the reference
standard was estimated with usage of Dice similarity
index DSI, which value was calculated as follows:

2.-TP

DSI = ,
2-TP+ FP + FN

where FP — false positive pixels, which are defined
as brain perfusion ROI pixels after thresholding ap-
plying, but they are not in the reference standard;
FN — false negative pixels, which are defined as
pixels not of the brain perfusion ROI after thresh-
olding applying, but they are in the reference stan-
dard; TP — true positive pixels, which are defined

as brain perfusion ROI pixels after thresholding ap-
plying, and they are in the reference standard.

The analysis of effectiveness of threshold-based
techniques in brain perfusion ROI detection was
performed on DSC perfusion MR images of a hu-
man head with abnormal brain anatomy from 12
patients with cerebrovascular disease.

The results shown here are in whole based
upon data generated by the TCGA Research Net-
work: http://cancergenome.nih.gov/.

All analyzed datasets were divided in two
batches according to the scan parameters. The first
batch (here, cases from 1 to 6) scan parameters were:
repetition time = 1900 ms, echo time = 40 ms, flip
angle = 90°, field of view =23x23 cm, image size =
= 128x128 pixels, voxel resolution = 1.875x11.875x
x15 mm?’. The second batch (here, cases from 7
to 12) scan parameters were repetition time = 1550 ms,
echo time =40 ms, flip angle =90°, field of view =
=23x123 cm, image size = 128x1128 pixels, voxel reso-
lution = 1.875x11.875x16 mm?>. Each analyzed MR
dataset consisted of 5 slices with 95 dynamic images
per slice. All images were collected in 12-bit
DICOM (Digital Imaging and Communication in
Medicine) format.

Image postprocessing software program was
in-house developed to perform the analysis of effec-
tiveness of different threshold-based techniques. It
is written in C# and uses an open-source EviiIDICOM
(http://rexcardan.github.io/Evil-DICOM/) for load-
ing medical images. The developed software
program has no preprocessing, such as noise reduc-
tion, motion correction or intensity nonuniformity
correction. Implementation of thresholding segmen-
tation algorithms has no dependency on image res-
olution and is performed using the 4" time-point
image, on which signal intensity is reached a steady
state.

Results and Discussion

In the current study, the analysis was done us-
ing comparison of qualitative perfusion maps that
were produced from segmented images and from the
reference ones. Segmented images were obtained by
applying four threshold-based algorithms to the
original DSC head scans. Reference images were
manually marked ROIs of the brain perfusion data
by one experienced radiologist, and confirmed by
another radiologist.

Pixels values for all images were changed to
zero for background regions (air pixels and pixels
that represent non-brain tissues) and were kept the
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same as original for foreground regions (brain per-
fusion ROIs).

The comparison was performed on the same
DSC perfusion MR datasets of a human head with
abnormal brain anatomy that were selected for the
experiments. Each analyzed MR dataset consisted
of 5 slices; all of them from each dataset were se-
lected as the image set for the experiments. Conse-
quently, the analysis of the effectiveness of thresh-
old-based techniques in brain perfusion ROI detec-
tion was performed on 60 T2-weighted MR images
with abnormal head anatomy.

Cerebral blood flow (CBF), cerebral blood vol-
ume (CBV), mean transit time (MTT), and time to
maximum of residue function (Tmax) maps were cal-
culated by using a deconvolution algorithm. Arterial
input function was determined by using the simplest
pointing to the artery signals in the brain cross-sec-
tion that was performed by one experienced radiol-
ogist and confirmed by another radiologist.

The analysis was done under the considered
machining of perfusion ROIs with regions where an-
alyzed images had non-zero pixel values.

In order to evaluate the effectiveness of thresh-
old-based techniques in brain perfusion ROI detec-
tion, the Pearson correlation coefficient r was cal-
culated to determine correlation between CBF,
CBV, MTT, and Tma perfusion maps from seg-
mented images and from the reference. A difference
with a p-value of less than 0.01 was considered sig-
nificant for all experiments.

The slope and intercept of linear regression
were also determined to evaluate the relationship
between the perfusion maps from segmented images
and from the reference.

Results of the analysis of effectiveness of
threshold-based techniques in brain perfusion ROI

detection on T2-weighted MR images with abnorm-
al head anatomy are shown in two tables: Pearson
correlation results are shown in Table 1, linear re-
gression — in Table 2.

Table 1. Correlation between the perfusion maps that were
produced from the segmented images and from the
reference ones. Data presented are Pearson correlation
coefficients, p-value < 0.01 for significance of correlation

Thresholding method
Map | osu Niblack | AABL | brute
force
CBF 0.8128 0.7229 0.8311 0.8400
CBV 0.8026 0.7123 0.8105 0.8258
MTT 0.8441 0.7738 0.8469 0.8518
Tmax 0.3441 0.3494 0.3452 0.3499

As can be observed from the obtained results,
brute force thresholding produced perfusion maps
with the highest correlation to the reference in all
cases. In most cases, the Otsu and AABL threshold-
ing results were close to the brute force one. How-
ever, perfusion maps produced from the images seg-
mented with AABL thresholding had a little bit bet-
ter correlation with reference. Niblack thresholding
showed the worst results in all cases. It should be
mentioned that Tmax map had the highest subjection
from segmentation among other perfusion maps.
Despite the relatively high correlation results for
CBF, CBV, and MTT maps, correlation with refer-
ence in case of Tmax Was unacceptably poor for all
thresholding methods.

The ideal condition would be to have slope and
intercept of linear regression with reference as 1 and 0,
respectively. However, the results of the regression
analysis indicated that 95 % confidence intervals of

Table 2. Linear regression analysis of the perfusion maps that were produced from the segmented images and from the
reference ones: y = ax + b, x = reference value, y = measured value, a = slope, b = intercept. Data presented are 95 %

confidence intervals for regression coefficients

o Thresholding method
Clinical case Otsu Niblack AABL Brute force

CBF 0.7784 £ 0.0733 1.3691 £ 0.1466 0.7801 £+ 0.0712 0.7844 £ 0.0621
%’. CBV 0.7262 £+ 0.1474 1.0327 £+ 0.1735 0.7298 £ 0.1408 0.7447 £ 0.1389
172} MTT 0.8607 &+ 0.03 0.7363 £+ 0.0287 0.8625 + 0.0299 0.8660 £+ 0.0308

Tmax 0.6426 + 0.0988 0.6208 &+ 0.1058 0.6431 + 0.1044 0.6467 £ 0.0946
B CBF -0.6791 + 1.5882 4.4029 + 2.9543 -0.6696 + 1.5816 -0.6414 + 0.7827
§ CBV 0.3077 £ 0.1747 0.4931 £+ 0.1911 0.2924 + 0.1745 0.2843 £ 0.1714
«2 MTT 0.1404 &+ 0.0346 0.1865 + 0.0396 0.1382 + 0.0354 0.1278 &+ 0.031
~ Tinax 1.0507 + 0.2457 1.4748 + 0.3732 1.0488 + 0.256 1.0435 + 0.2735
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Perfusion maps, examples generated by using the same deconvolution techniques for different brain perfusion ROIs in one subject (all
maps are shown with the same window/level settings): @ — manually marked ROI (reference); b— Otsu thresholding; ¢ — Niblack
thresholding; d — thresholding in AABL region; e — brute force thresholding

slope and intercept values were away from 1 and 0
in most cases. Consequently, perfusion maps pro-
duced from thresholded images were subject to scale
and offset errors.

An example of perfusion maps produced from
reference and thresholded images for representative
case with abnormal brain anatomy is shown in the
Figure.

Conclusions

The effectiveness of thresholding techniques in
brain perfusion ROI detection on T2-weighted MR
images of a human head with abnormal brain anat-
omy was analyzed in the current study. The analysis
was done with the use of four different threshold-
based algorithms that are widely applied for medical
image processing (implementations of Otsu method
as global thresholding and Niblack method as local
thresholding), specifically developed for brain seg-

mentation on T2-weighted MR images (threshold-
ing in approximate anatomical brain location), and
brute force thresholding to present segmentation re-
sults with the highest similarity to the reference
standard. The analysis was performed on 60
T2-weighted MR images obtained from 12 patients
with cerebrovascular disease. Quality of detected
brain perfusion ROIs was considered with perfusion
maps nature. Therefore, thresholded images, as well
as reference ones, were used to produce CBF, CBV,
MTT, and Tuma qualitative perfusion maps by de-
convolution algorithm.

Although Pearson correlation analysis showed
acceptable positive relationship between CBF, CBV,
and MTT perfusion maps from thresholded images
and from the reference in all conducted experiments
(r was ranged from 0.7123 to 0.8518, p<0.01), cor-
relation was weak in case of experiments with Tmax
map (r<0.35, p<0.01). Linear regression analysis
indicated that perfusion maps produced from
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thresholded images were subject to scale and offset
errors at 95% level of confidence.

In conclusion, current study results have
demonstrated that widely used thresholding methods
are an ineffective way of managing pixels involved
in brain perfusion ROI. Any manual turning of the
threshold value to provide more accurate brain per-
fusion ROI detection can easily lead to degradation

of perfusion maps quality. As can be seen from the
performed analysis even insignificant difference in
detected perfusion ROIs can cause a considerable
drop in perfusion analysis results. Furthermore, it
should be pointed out that perfusion ROI detection,
similar to utilized LUT scheme and displayed values
range of perfusion maps, has to be standardized
quality control in perfusion analysis.
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C.M. AnximoBa, C.B. Cntocap

AHAMI3 E®EKTVBHOCTI MOPOrOBOI ®IbTPALIT B 3AOAYI BM3HAYEHHSA 30HW MEP®Y3IT HA T2-3BAXXEHWMX
MAFHITHO-PE3OHAHCHWX MEP®Y3IMHUX 30BPAXXEHHAX MO3KY 3 AHOMATBHOIKO AHATOMIEIO

Mpo6nemartuka. BusHaveHHs obnacTi nepdysii ronoBHOro Mo3ky € nornepeaHiv etanom nepdysinHoro aHanisy, Skuii NpU3HayYeHuin
ONs BUKINIOYEHHS NiKceniB, L0 He XapakTepu3yTb MO30K, i3 300paxeHb AUHAMIYHO-CNPURHATINBOI KOHTPACTHOI MarHiTHO-pe30HaHCHOI
(MP) Tomorpadii. TOYHICTb LibOro etany BBaXaeTbCs KMOYOBUM (haKTOPOM Y HagaHHi MpaBUNbHUX pe3ynbTaTiB nepdysinHoro aHaniay.
HesBaaloum Ha BENUKY KiNbKiCTb anropuTMiB cermeHTaLlii Mo3Ky, He iCHy€e Takux, siki 6 TOUHO | HagiiHo npautoBany Ha T2-3BaxxeHux MP-
300paxeHHAX MO3Ky MOAWHM 3 aHOManbHOW aHaTomieto. OTxe, noporosa dinbTpauis, sk i paHile, 3anuwaeTbcs TUM cnocobom, Lo
LLIMPOKO BUKOPUCTOBYETHLCH B Cy4acHOMY NporpamMHOMy 3abesneydeHHi 3 nepdysiHoro aHanidy Ans BU3HaYeHHs MikcerniB, Sk XxapakTepu-
3ytoTb obnacTb nepdysii rofI0BHOro MO3Ky.

MeTa gocnigxeHHA. AHani3 edbeKTUBHOCTI MeToAiB MOPOroBoi dinbTpauii Woao Bu3Ha4YeHHs obnacTi nepdysii ronoBHOr0O MO3Ky
Ha T2-3BaxeHnx MP-306paxeHHsIX MO3Ky M0AMHM 3 aHOMarbHOK aHaTOMI€e0.

MeToguka peanisauii. PO3rnsHyTo 4oTMpy anropytMu NoLyky nopora: rinobaneHuii nowyk 3a metogom Ouy, NokanbHWUIA NOLLYK
3a meTozoM Hibnaka, nolwyk y AinsHUi aHaTOMIYHOro po3TallyBaHHS MO3Ky i MOLYK 3a MeTogoM nepebopy. Pesynbtatom po6oTu Beix
anropuTmiB Oyno 306paxeHHs i3 3aMiHO0 HyNIbOBVMMU 3HAYEHHAMM MiKceniB poHy (MikceniB NoBiTPS i NiKCenis, O He XapakTepuayTb
MO30K) i 3 OpuriHanbHUMM 3HAYEHHAMM NikceniB 3 obnacTi nepdy3ii ronoBHOro Mo3ky. AHani3 MPOBOAUIM, NMOPIBHIOKYN Nepdy3iiHi kKapTu,
o 6ynu oTprMaHi i3 306paxkeHb nicns 3acTocyBaHHSA NOPOroBoi (inbTpaLlii Ta 3 eTanoHHMX 306paxeHb (MaHyanbHe BU3HAYEHHS AiNsHKN
MO3Ky AOCBIA4YEHUMW peHTreHonoramu). [1ns nopiBHSHHSA Bynu BUKOPWUCTaHI OAHI i Ti caMi 306paKeHHs1 AUHaMIYHO-CMPUAHATIMBOT KOHT-
pacTtHoi MP-Tomorpadii ronosHoro Mo3ky 12 naujieHTiB i3 LepebpoBackynsipHUMM 3aXBOPOBaAHHSMMU.

Pe3ynbTatn pocnigxeHHA. KopensuinHuii aHanis MNipcoHa nokasas cunbHWin no3mtusHui (r 6ys Big 0,7123 go 0,8518, p < 0,01)
i cnabkuii nosutmeHuM (r < 0,35, p < 0,01) B3aemMo3B’A30K y npoBeAeHnx ekcnepumenTax i3 CBF, CBV, MTT i Trax nepdysiiHnmmn kaptamum
BiANoBIAHO. JTiHiiHWI perpeciHuiA aHani3 nokasas., Lo Nepdy3iliHi kapTu, ki bynn oTprMaHi i3 306paxeHb Micns 3acTocyBaHHSA MOPOroBoi
dinbTpaLii, CXunbHi 4O NOMUNIoK MacuTaby i 3cyBy B yCiX NPOBEAEHMX eKCrepuMeHTax 3 ypaxyBaHHAM 95 Y%-Horo foBipyoro iHTepsany.

BucHoBkuW. Pe3ynbTaTi ekcnepMMeHTiB nokasanu, Lo MoLIMpeHe BUKOPUCTAHHS NMOPOroBoi ginbTpaLii € HeeeKTUBHNUM Cnoco-
60M BM3HAYEHHS NikceniB, siki XxapakTepuayoTb obnacTb nepdyasii FofIoBHOro Mo3ky. BukopucTaHHs noporoBoi dinbTpawii sk iHCTpYMeHTY
3 MPOBEAEHHSI CErMeHTaLlii MO3Ky MOXe NpU3BOAWTU 4O HENPaBUIBHOMO BU3HaYeHHs obnacTi nepdyaii, i, Sk Hacnigok, nepdysinHi kapTu
OyayTb CXWnbHi 4O HasABHOCTI apTedakTiB i Npu3BeayTb 4O MOMUIIKOBO BUCOKOT ab0 MOMUIKOBO HU3bKOT OLiHKM napameTpiB nepdyasii.

KniovoBi cnoBa: nepdysinHa AUHAMIYHO-CNPUNHATANBA KOHTPAcTHa MarHiTHO-pe3oHaHCHa Tomorpadisi; 3pisn 3 aHOMarnbHO
aHaTOMIE MO3KY; 30Ha yBaru; cermeHTauig; noporosa ineTpadis.

C.H. Anxumosa, C.B. Crnitocapb

AHAIINZ 3OPEKTUBHOCTU TMOPOIrOBOW ®WINBTPALMU B 3AOAYE OMPELENEHUA OBMACTY MEPOY3UU HA
T2-B3BELWEHHBIX MAMHUTHO-PE3OHAHCHBLIX MEP®Y3VMOHHBLIX W3OBPAXEHUAX MO3FA C  AHOMAJIbHOM
AHATOMUEWN

Mpo6nemartuka. OnpeneneHne obnacTy nepdysun rofioBHOrO MO3ra SIBMsIETCS NpeABapUTeNibHbIM 3TanoM nepgy3nMoHHOro aHa-
nn3a, KOTOpbI NpeAHa3HayYeH AN UCKMIYEHNS He OTHOCSLLMXCS K MO3Ty NuKcenen n3 naobpaxeHuin AMHaMUYHO-BOCTIPUMMYMBOI KOH-
TPaCTHOW MarHUTHoO-pe3oHaHcHow (MP) Tomorpadum. TOYHOCTb 9TOro 3Tana cYMTaeTCs KIoYeBbiIM (DaKTOPOM B NpeaocTaBeHnmn npa-
BUINbHBIX pe3ynbTaToB nepdy3noHHoro aHanmsa. HecmoTpsa Ha Gonbluoe pasHoobpasve anropyTMOB CEermMeHTauuum mMosra, He cylle-
CTBYET TaKux, KOTopble 6bl TOYHO U HaAeXHO paboTanu Ha T2-B3BelleHHbIX MP-1306paxeHnsx Mo3sra YyenoBeka C aHOMarlbHOW aHaTo-
Mueir. Takum obpasom, noporosas unbTPaLMa NO-NPEXHEMY OCTaeTCs LUMPOKO MCMOMNb3yeMbiM CNOcoboM onpeaeneHns nukcenew,
KOTOpble XapaKkTepuaytoT obnacTb nepdysnmn rofloBHOro Mo3ra, B COBPEMEHHOM MPOrpaMMHOM obecneyeHun Ans npoBeaeHus nepdy-
3MOHHOTO aHanuaa.

Llenb nccnepoBanus. AHanu3 aeKTMBHOCT METOA0B MOPOroBoM hunbTpaumm B onpegeneHun obnactu nepdysnm ronoBHOro
Mo3ra Ha T2-B3BeLleHHbIXx MP-13o6paxeHnsix Mo3ra YyernoBeka C aHOMarbHON aHaTOMUEN.

MeTopauka peanusaumn. PaccmoTpeHbl YeTbipe anroputMa novcka nopora: rnobanbHbii nouck metogom Ouy, noKanbHbIA NOUCK
mMeToAoM Hubnaka, novnck B o6racTv aHaTOMUYECKOro pacrosioXeHus Mo3ara 1 rnouck metogom nepebopa. PesynbtaTtom Bcex anroput-
MOB SIBMANOCH N300paxeHne ¢ M3MEHEHHBbIMU Ha HOMb 3HAYEHUAMM NUKcenen Ansa doHa (MMKCenu Bo3ayxa W NMUKCenu, KoTopble npea-
CTaBMAT TKaHW, He ABNAIOLLMECH MO3rOM) U OPUTMHANbHBIMKU 3HAYEHUAMMN AN NUKcenen obnactu nepdysny ronoBHOro Mosra. AHanms
NPOBOAMIICS HA OCHOBaHUW CPaBHEHWSI NePdY3NOHHBIX KapT, MOMyYEeHHbIX U3 OTCErMEeHTUPOBAHHbIX NOPOroBol unbTpaumen nsobpa-
XKEHWI 1 N3 3TanoHHbIX (MaHyanbHoe onpegenexHne obnacTy mosra onbITHbIMU peHTreHonoramm). [ins cpaBHeHNs Obiny NCNonMb30BaHbI
OLHW 1 T€ e U300paKeHUss UHaMUYHO-BOCNPUMMYMBOI KOHTpacTHon MP-Tomorpadum ronoBHoro mosra 12 nauneHToB ¢ LepebpoBac-
KynsipHbIMU 3a00neBaHNAMM.

PesynbTathl uccnepoBaHus. KoppensunoHHbIi aHanu3 MupcoHa nokasan cumbHyto nonoxuTenbHyto (r 6emn ot 0,7123 o
0,8518, p < 0,01) n cnabyto nonoxutensHyto (r < 0,35, p < 0,01) B3aMmocBs3b B criyyae NpoBeAeHHbIX akcnepumeHTos ¢ CBF, CBV, MTT
N Tmax NEPPY3NOHHBIMU KapTaMn COOTBETCTBEHHO. JIMHENHBIN PErpecCMOoHHbLIN aHanna nokasarn, 4YTo nepdyanoHHble KapTbl, KOTOpble
6bINM NONyYeHbl N3 OTCErMEHTMPOBAHHbBIX MOPOroBoN dunbTpaLme n3obpaxeHuit, noaBepxeHbl owmbkam maclutaba n cMeLleHnst BO
BCEX NMPOBEAEHHbIX 3KCNepuMeHTax ¢ y4eTom 95 %-Horo 4oBEepUTENbHOrO UHTEpBana.

BbiBoabl. Pe3ynbTaThl 3KCNepMMEHTOB NoKasan#, YTo LWPOKO NCMOoMb3yeMble METOAbI MOPOroBoi unbTpaLmmn ABNSIOTCA Head-
EeKTMBHBIM CMOCOBOM OonpeaeneHns nvKcenem, KOTopble XxapakTepuayoT o6nacte nepdyanun rofoBHOro Mo3ra. Vicnonb3oBaHue nopo-
roBovi MNbTPaLMM Kak MHCTPYMEHTa AN NPOBEAEHNSA CerMeHTaLmnm Mo3ra MoXeT NPUBOANTL K HeNpaBWbHOMY OnpeAeneHnto obnacTm
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nepdysnu, u, Kak cneacTene, nepdy3noHHble kKapTel OyayT NOABEPXKEHbI HAaNMYMI0 apTedakToB 1 NpUBEAYT K OLUMOOYHO BbICOKOW MNn
OLUMOOYHO HM3KOW OLIeHKe NnapamMeTpoB nepdysunu.

KntoueBble cnoBa: nepdy3noHHas AMHaMUYHO-BOCNPUMMYUMBAst KOHTPACTHast MarHUTHO-pe3oHaHCHasi Tomorpadusi; cpeabl C aHo-
MarnbHOV aHaToOMMen Mo3ra; 30Ha UHTepeca; CermeHTauus; noporosas unbTpauums.

PexomennoBana Pamoro Haniiina no pemaxiiii
(akynbTeTy 6ioMeaMYHOI iHXeHepil 02 yepBHs 2019 poky
KIII im. Iropst Cikopcbkoro
[Tpuiinsra no myoaikanii
05 BepecHst 2019 poky





