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ACCURATE TOTAL WEIGHTED TARDINESS MINIMIZATION
IN TIGHT-TARDY PROGRESSIVE SINGLE MACHINE SCHEDULING
WITH PREEMPTIONS BY NO IDLE PERIODS

Background. The problem of minimization of total weighted tardiness can be solved either exactly by the corresponding
models or heuristically. As of October 2019, nearly the best heuristic is one based on using remaining available and
processing periods. The heuristic is extremely rapid compared to the exact solution models, but its accuracy can be
both 100 % and intolerably low.

Objective. Issuing from the lack of knowledge in relationship between the heuristic and Boolean linear programming
model provided for exact solutions, the goal is to study statistical difference between them for the preemptive single
machine scheduling problem by no idle periods, in which processing periods are equal by progressively running release
and due dates set tightly.

Methods. The relative gap of the heuristic is defined and then studied how it varies against increasing complexity of
job scheduling problems. The complexity implies the number of jobs and the number of job processing periods. The
computation times of the heuristic and the exact model are registered as well.

Results. The heuristic has successfully replaced the exact model no less than in 72 % of non-timeout instances, where
it schedules with the same minimal total weighted tardiness (100 % accuracy). This rate is about 90 % to 97 % on
average, although huge gaps may appear in the rest of cases. In the practice of fast-refreshable schedules, the Boolean
linear programming model is indeed hardly tractable in scheduling no less than 14 two-parted jobs and no less than 10
three-parted jobs. Scheduling jobs divided into a greater number of parts each will have a significantly lower worst gap
than scheduling jobs divided into a lesser number of parts. If a job is divisible, it is strongly recommended to divide the
job into as great number of its parts as possible. If scheduling only 2 jobs is impossible, it is strongly recommended to
artificially increase the number of jobs to be scheduled.

Conclusions. Total weighted tardiness minimization in tight-tardy progressive single machine scheduling with preemp-
tions by no idle periods can be sufficiently accurate by the heuristic if no less than 7 jobs divided into no less than five
parts each are scheduled (the “7/5” pattern). An exception from this rule is that the heuristic schedules just 2 jobs
always at the 100 % accuracy, not depending on in how many parts the job is divided (the “2/any” exception). An
intermediate between the “7/5” pattern and the “2/any” exception is that scheduling 3 jobs divided into either four or
five parts is sufficiently accurate as well, where the inaccuracy does not exceed 0.7 %. In other cases the heuristic is
either inapplicable or there is a high risk of obtaining intolerable gaps. The inapplicability does not directly imply a bad
inaccuracy, but it implies an unpredictable accuracy drop. For example, 974 of 1000 instances of 3 two-parted jobs
have been scheduled with the 100 % accuracy, but 26 instances have been scheduled with an average gap in 13.31 %,
which is quite intolerable and thus inapplicable.

Keywords: job scheduling; preemptive single machine scheduling; exact model; heuristic; total weighted tardiness; heu-
ristic’s accuracy; relative gap; top worst maximal relative gap.

Introduction

In job scheduling on a single resource/ma-
chine, a very important problem arises when some
jobs are required to be completed till due dates. Due
date is a kind of schedule expiration date, before
which the job can be scheduled in any way favorable
to the system. If a job is completed after its due date,
an additional payment is imposed [1, 2]. The pay-
ment can be expressed as financially, as well as by
reduction of availability. The purpose is to minimize
the additional payments. More formally, it is re-
ferred to as minimization of tardiness.
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The problem is related to minimization of total
weighted completion time [2, 3]. Whereas the latter
operates over associating each job with its processing
time/period, release date, and priority weight, the
tardiness problem includes due dates. Thus, if pri-
ority weights differ, the general problem is to mini-
mize total weighted tardiness. A special require-
ment, by which no idle time intervals are allowed
[1, 4, 5], can be attached. Additionally, preemptions
can be allowed [6].

It is known that the preemptive single machine
scheduling problem of minimizing total tardiness
(when jobs have no weights) with arbitrary release
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and due dates by equal processing periods is poly-
nomially solvable [7]. However, struggling to com-
pute a schedule with the exactly minimal total
weighted tardiness even for a few jobs may become
very resource-consuming (implying processor clock
speed, memory space, and time of computations) [2,
5]. As the number of jobs and the numbers of their
processing periods increase, intractability of the
problem dramatically grows [5, 8, 9].

Obviously, the minimal number of jobs is 2.
Release and due dates are often given as integers.
Setting priority weights at integers is always realiza-
ble. Therefore, a schedule ensuring the exactly min-
imal total weighted tardiness can be found with the
respective integer linear programming problem.
Models based on the branch-and-bound approach
are commonly used for that [8, 10]. They resemble
those intended to minimize the exact total weighted
completion time [8, 9]. Along with models of ob-
taining an exact solution, there are a lot of heuristics
allowing to find an approximate solution, which of-
ten coincides with the exact one and ensures thus
the minimal total weighted tardiness also [4, 5, 7,
11]. The heuristics operate with the remaining avail-
able period [5], remaining slack [5, 11], and remain-
ing processing period [8, 9]. However, the accuracy
of the heuristics for minimizing total weighted tar-
diness is not as high as the accuracy of the rule of
weighted shortest remaining processing period for
total weighted completion time minimization [5,
11]. For instance, the recently substantiated heuris-
tic, in which the decisive ratio is the priority weight
divided by the maximum of a pair of the remaining
processing period and remaining available period [5],
may produce schedules of a few jobs whose total
weighted tardiness is 50 % greater or even worse
than the minimum. Nevertheless, the heuristics are
extremely rapid compared to the exact solution
models [8].

An open question is how close the exact and
approximate solutions are for definite types of the
scheduling problem. The closeness is meant as the
average gap, although maximal gaps are considered
as well. Another open question is what computa-
tional time is taken to find an approximate schedule
by the heuristic compared to the computational time
of the exact model. Finally, it would be very useful
to learn whether “pathological” cases exist in which
the gap is too big, and thus application of the heu-
ristic for such cases is practically impossible. There-
fore, real benefits of schedule approximation by the
heuristic are to be estimated along with emphasizing
cases in which it is inapplicable.

Problem statement

In a way, there are a lot of types of the preemp-
tive single machine scheduling problem with arbi-
trary release and due dates by equal processing pe-
riods. A special class is that which has monotonously
increasing both release and due dates. A subclass of
this one is that where almost all the jobs are tardy
as their due dates are tightly set after the respective
release dates, although one job can always be com-
pleted without tardiness. Hence, issuing from the
lack of knowledge in relationship between the men-
tioned heuristic and Boolean linear programming
model provided for exact solutions, the goal is to
study statistical difference between them for the
preemptive single machine scheduling problem by
no idle periods, in which processing periods are
equal by progressively running release and due dates
set tightly. The tight-tardy progressive single ma-
chine scheduling with preemptions by no idle peri-
ods is one of the hardest cases, which could serve as
an “upper bound” for the statistical difference.
When the tightness is relaxed, the difference will be
expected to be less. To achieve the said goal, a com-
putational study will be carried out with a purpose
to see the inaccuracy of the heuristic. The inaccu-
racy will be studied how it varies against increasing
complexity/size of job scheduling problems. The
computation times are to be compared as well. The
research result is expected to find a point, in which
a hardly tractable exact model could be “linked” to
a sufficiently accurate heuristic (a “lossless transfer”
from the exactness to approximation). Otherwise,
such a point may not exist (e. g., the exact solution
is searched impracticably long, whereas the heuristic
solution is still too inaccurate), but this should be
shown and discussed anyway.

Exact solution by the Boolean linear program-
ming model

First, consider an approach to find the exactly
minimal total weighted tardiness. Let N be a num-

ber of jobs, N € N\ {l}, where job 7 is divided into
H, equal parts (i. e., has a processing period H,),
has a priority weight w

a release date r,, and a

n» no

due date d,, n=1, N . Integer r, is the time mo-

ment, at which job »n becomes available for pro-
cessing. So, in the case of equal processing periods,

H=[H], yeN' (by H=H, vn=1,N) (1)

is a vector of processing periods,
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W =[w,ly e NV (2)
is a vector of priority weights,

R =[]y € NY 3)
is a vector of release dates, and

D =[d,l.n € N¥ (4)

is a vector of due dates. Without loss of generality,
to ensure the condition of “the proper start”, which is

In e{l, N} such that Ty = 1, ®))

let vector (3) consist of a non-decreasing set of in-
tegers, where r, = 1. This is the first additional con-

straint to release dates (3). The second one comes
from that there are no idle periods, i. e. condition

k -
1+Y H,>r,, Vk=1,N-1 (6)
n=l1

holds as well. Narrowing the problem to the already
mentioned tight-tardy progressive single machine
scheduling (with preemptions by no idle periods),
the release dates are

r,=n vYn=1 N @)
and the due dates are
d =H+n-1vn=1N. (8)
Condition (8) is equivalent to condition

d,=r,+H -1 VYn=1,N. )

In other words, condition (9) implies that one job
herein can always be completed without tardiness.

The goal is to minimize the total weighted tar-
diness, i. e. to schedule the jobs so that sum

% w, -max{0, 0(n; H)-d,}

n=1

(10)

would be minimal, where job #n is completed after
moment 0(xn; H), which is

o(n; H) e {1, T} by T:if]n =N-H. (11)
n=1

This goal is equivalent to minimizing sum

N H T
Z Z zxnh,,txnh,,z

n=1 h,=1t=1

(12)

by the known Boolean linear programming model
(applied for minimizing total weighted completion
time also) [8, 9], where X 1 is the decision variable

about assigning the #,-th part of job n to time mo-
ment 7: x,,, =1 if it is assigned; x,, , =0 other-
wise. The triple-indexed weights are calculated as
follows:

Kht=0

n

(13)

n
by
ro—l+h <t<T-H+h Vh =1 H-1 (14)

and

15)

Mpp s =0

n

by a sufficiently great positive integer o (similar to
the meaning of infinity) when (14) is not true;

At =0 (16)
by
r,-1+H <t<d, (17)
and
Mntir = W, (t —d,) (18)
by
d,<t<T (19)
and
Mot = @ (20)

when both (17) and (19) are not true. In (15) and
(20), for instance,

(21)
can be used [8, 9]. So, sum (12) is defined on set
X = {xu i na Y €@,

where & is a set of all possible versions of the de-
cision variables’ set. The goal is to find such a set
X = oo WL e (22)

on which minimum
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(23)

M~

) N H
mlg, z z A‘nhntxnh,,t

Xe® Db 11

=
I
—

n

is achieved by constraints constituting set % (an
integer binary lattice) [8, 9]:

Xy €{0, 1) by n=1, N

_ (24)
and h,,:I,Hand =1, T,
T __
anhn,zlbynzl,Nand h,=1, H, (25)
1=1
N H
ZZx =lbyt=1T (26)
n=1h,=1
X, +Hx, ;. <H
PP " (27)

byn=1, Nandr=1T 1.

If (22) is a solution of the problem, Es the
optimal job schedule S" = [s: li.r by s: e{l, N} for
every f = 1, T. Then

H T

N
8 (N H = z z anh,,txnhnt
n=1 t=1

(28)

is the exactly minimal total weighted tardiness for
those N jobs. Obviously, a few optimal schedules
ensuring the same minimum (28) can exist.

A heuristic based on remaining available and
processing periods

The heuristic is an online scheduling algo-
rithm, which returns a schedule stepwise as time ¢
progresses. Let

Q= [Qn]lxN =H-= [H]lxN

be a starting vector containing the remaining pro-
cessing periods. Later on, elements of vector (29)
will be decreased as time ¢ progresses. Denote by

S =[5,],.; the whole set of jobs scheduled by the
algorithm, where §, € {I, N} for every ¢ = I, T. For
every set of available jobs

A()={ie{l, N}:r, <tand g, > 0} = {I, N} (30)

(29)

the remaining available time is calculated:

b =max{0,d, —t+1} Vie A(f). 31)

Paper [5] claims that the remaining slack
¢, =max{0, b, —q;} Vie A(r) (32)

must be found also. Then a set of decisive ratios

qi + ci icA(t)

is calculated. With remaining slack (32), however, it
is easy to see that the ratio in (33) factually is

(33)

Wi

q; +¢; -

because the denominator in the central fraction of
statement (34) becomes equal to g; by b, <g; and

itis b; by b, > q;. Therefore, a set of decisive ratios

Wi

g; + max{0, b, — g;} B

Vi (34)

max{q;, b;}

W
—L—— Vie At 35
maxia by O 3
is considered instead of (33). The maximal ratio is
achieved at subset

w;
A1) = —t 36
(1) = arg lrer}fg() max{g;, b} (36)

If |47 (¢)|=1, where
A1) ={i"} = A(r) = {1, N},
then
" by ¢ =g, and g, =¢'*™ -1; (37)
otherwise
AW ={i} c Aty I, N} by L>1, (38)
whence
by q("bs) =4, and q; q(IObS) 1. (39)

Assignment (39) executed by condition (38) for
subset (36) implies that, in a case when there are
two or more maximal decisive ratios, the earliest job
is preferred to be scheduled. This is especially
reasonable for the tight-tardy progressive single ma-
chine scheduling, in which the earlier releasable job
has an earlier due date.

An approximately minimal total weighted tardi-

ness is calculated successively for every n=1, N as
follows: if

gé(n;h”) =n th = 1, H 5
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then job n is completed after moment 6(#; H). Fi-
nally, using formula (10),

N
YN, H)= an -max{0, 0(n; H)-d,} (40)

n=l1
is an approximately minimal total weighted tardiness
that corresponds to schedule S =[3,];,;. This sche-

dule often coincides with the schedule produced by
exact solution (22):

N
8 (N, H) =" w, -max{0, 0 (n; H)—d,}, (41)
n=l1
where 0(n; H) is a moment after which job n is
completed, i. e.

ES

Sgny =" Vh =L H.

Obviously, if amounts (40) and (41) are equal, a dif-
ference between schedules S=[5],; and S =[s/ ]+
does not matter. Moreover, the Boolean linear pro-
gramming model by (1)—(27) may return more than
one optimal schedule. The heuristic by (29)—(39)

returns a single schedule. Eventually, if amounts
(40) and (41) are different, i.e.

(N, H)> 9 (N, H) (42)

by whichever the respective schedules are, it only
matters how far amount (40) is from amount (41).

Computational study

In computational studies, the relative error or
gap of total weighted tardiness minimization in
scheduling N jobs is

SN, H) -9 (N, H)

e(N, H) =100 .
S"(N, H)

(43)

in percentage terms. Inasmuch as computation time
U(N, H) of the heuristic is always far less than com-
putation time t (N, H) of achieving minimum (23)
by (24)—(27), then it is suitable to use a computa-
tion time ratio

T (N, H)

YW ) == N

(44)

Consider the following generator of the schedul-
ing problem instances. Priority weights (2) are

W =[w, ]y =v(100-0L N)+1)  (45)

where operator O(1, N) returns a pseudorandom
Ix N vector whose entries are drawn from the
standard uniform distribution on the open interval
(0; 1), and function (&) returns the integer part of
number & (e.g., see [8, 12]). Release dates (3) are
taken as (7), and due dates are taken as (9). At first,
we try to schedule up to 12 jobs. The minimal num-
ber of job parts is 2, whereas scheduling jobs of
the single part, which herein is S = [A]i.n » has no
tardiness. A reasonable time period, through which
a schedule is expected to be found, is of order of a

minute. As the size of the scheduling problem grows,
the exact model (1)—(27) may take more than 60 se-
conds to output a solution. This is called a timeout.
So, denote the relative gap with excluding one-
minute timeouts by &4, (N, H) . Additionally, de-

note the number of one-minute-timeout cases by
O.¢o(N, H) and denote the respective relative gap

by &.¢¢(N, H) . The number of one-minute-timeout
cases, in which ¢ (N, H) =20, i. e. the exact solu-
tion is not worse than a heuristic solution, is denoted
by U, (N, H).

Fig. 1 shows gap (43) averaged over 1000 in-
stances generated for each N =2, 12 by when each

job has only two processing periods (i. e., is divided
into two identical parts). The “correct” gap
€«60(N, 2) is plotted on the same axes. There is no
gap in scheduling only a pair of jobs. Scheduling
12 jobs is the most inaccurate on average, although
the gap in 0.38 % seems to be tolerable. However,
the instance with priority weights

W =[w,]s =116 36 56 6 100]

(46)

has the worst gap in 34.29 %, where the exact model
produces an optimal schedule

S =lslo=I113355224 4@

ensuring the exactly minimal total weighted tardi-
ness value 210 as against the heuristic producing a
schedule

S=[5]o =01 2 2 33 551 4 4] 48

whose total weighted tardiness is 282 (the second
part of job 1 and the two parts of job 2 are like to
have been just interchanged). The overall number of
such bad gap instances is not as small as it would
have seemed with the top average gap in 0.38 %:
there are 72 instances (out of grand total 11000
ones) when the gap is no less than 10 %, and there
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are 203 instances when the gap is no less than 5%
(that still can be intolerable). There are no one-mi-
nute-timeout cases when scheduling less than 10
jobs. But starting off 10 jobs, a difference between
gaps &(N,2) and e,(N,2) becomes more ap-

parent. The “incorrect” gap e.4,(N, 2) in Fig.2 is

shown just for such an interval of the number of
jobs. It is expectedly decreasing as the number of
one-minute-timeout cases for the interval is clearly
increasing (see Fig. 3, where the number of “suc-
cessful” timeouts U, (N, 2) is shown as well). Ob-

viously, 29 % of timeouts in scheduling 12 jobs mean
that the exact model is too slow for this case. Mean-
while, the respective computation time ratio resem-
bles an exponential increase (Fig. 4).

856[)(N9 2)

o
w
T T T T

O O«
88 ¢

2 3 4 5 6 7 8 9 10 1" 12

Fig. 1. Gap (43) averaged over 1000 instances generated for each
N =2,12 by H =2 (no timeouts until 10 jobs)
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270 | Q>6O(N> 2) 4
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20b 920 d
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170 -
160  60f J
150 4
140 S0 4
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120+ 40 4
M0+ 4
100F 30 E
90 |- 4
80 20 Jd
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40| 0 4
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Fig. 3. The number of one-minute-timeout cases came out for
each N =10, 12 by H =2 with the number of “success-
sul” timeouts

In scheduling 11 two-parted jobs, 88 one-mi-
nute-timeout cases came out of 1000. Therefore, we
study scheduling three-parted jobs only for up to 10
jobs. Fig. 5 shows gap &(N, 3) which drops since §

jobs because of timeouts (averaging over 1000 in-
stances becomes incorrect since this moment). The
“correct” gap e.)(N,3) and “incorrect” gap

€.60(NN, 3) are both shown on the same plot (Fig. 6).
Note that the “correct” gap for 10 jobs e, (10, 3)

is about 1.6 % (which is far greater than the “cor-
rect” gap in 0.38 % for 12 jobs in Fig. 1) but it is
averaged over just 86 cases (see Fig.7) as against
those 910 cases without timeouts for 12 jobs (Fig. 3).
This is why the respective computation time ratio
herein does not resemble an exponential increase
(Fig. 8) having a drop at N =10 (the size of the

0.05+ ~
ol 8>50(N; 2) |
0151 4
02 -
025) 4
03 4
035 -
0.4 m
-0.45 _
0.5 B
0.55F B
0.6 B
085} -
o7t o
0751 L L L L . L L . . N
2 3 4 5 6 7 8 9 10 1 12

Fig. 2. A decreasing gap averaged over one-minute-timeout cases
came out for each N =10,12 by H =2

150 = T T T T T T T T

1o} y(N, 2)-1073 /'—

10+ _/./ N—

e i A

5. L
2 3 4 5 6 7 8 9 10 1" 12

Fig. 4. Computation time ratio (44) averaged over 1000 instances
generated for each N =2,12 by H =2
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scheduling problem has grown and the heuristic
takes more time to find a solution whereas the exact
model, in cases without timeouts, still takes no more
than 60 seconds). Not considering scheduling of 11
and 12 jobs, ratio y(N, 3) is apparently greater than

v(N, 2). Another noticeable fact is that the worst

gap here is 18.05 %, and it is produced by the in-
stance with priority weights

W=[w, e =[13 20 15 59] (49)
optimal schedule for which
* *
S =[5 |2
=1 11444222333 (50
02~ . ; , - -
o..—.—/\’ o 4
N3
0.16
04E g 1s) T
06F 014
-0.8} 0.13 Bl
1 0.12 Bl
a2b 011 i
145 0.1 4
0.08
16 008 1
-1.8F 007 1
2+ 0.06 —
221 0.05) 4
4| 004 ]
0.03
280 o2 T
281 001 1
32 0 3 4 ]
3.4 4
36 §
28l . . . . . . . N
2 3 4 5 6 7 8 9 10
Fig. 5. Gap (43) averaged over 1000 instances generated for
each N =2,10 by H =3 (no timeouts until 8 jobs)
900f T r
asol  Q-c0(NV, 3)
800 140
750
w0l 1sal Uso(N, 3)
650 110
600} 100
550 90
500 | 801
450 gg
400 |- 50
350F 49
300+ 30
250+ 20
200f 10
150 |- 0 2 3 4 5 6 7 8 9 10
100 -
50
ol . . . . L N
2 3 4 5 8 7 8

Fig. 7. The number of one-minute-timeout cases came out for
each N =8, 10 by H =3 with the number of “success-
ful” timeouts

with 9 (4, 3) =205 is “torn” into an approximate
schedule

S = [jt ]l><12

=1 22244411333 (51

with 9(4, 3) = 242 similarly to the instance with pri-

ority weights (46) and schedules (47) and (48) (once
again, the last two parts of job 1 and the three parts
of job 2 are like to have been just interchanged).
The overall number of bad gap instances now is
smaller: there are only 23 instances (out of grand
total 9000 ones) when the gap is no less than 10 %,
and there are 54 instances when the gap is no less
than 5 %.
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Fig.6. A timeout-exclusion gap and a gap averaged over

one-minute-timeout cases came out for each N =8, 10

by H=3
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Fig. 8. Computation time ratio (44) averaged over 1000 instances
generated for each N =2,10 by H =3
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In scheduling 9 three-parted jobs, 612 one-mi-
nute-timeout cases came out of 1000. Therefore, we
study scheduling four-parted jobs only for up to
8 jobs. Fig. 9 shows gap &(N, 4) which drops since
7 jobs because of timeouts. The “correct” gap
e50(N,4) and “incorrect” gap e.4(N,4) both
shown on the same plot (Fig. 10) resemble those
ones in Fig. 6, especially that unexpected jump at
the maximal number of jobs. Although
€60(8,4) ~ 0.36 % versus &e,(10,3) ~1.6 %, the

jump when scheduling four jobs is stronger because

£ (103 948420 ang 0B 11965,

£<60(9 3) ece0(7, 4)
02— . . . . ‘ .
ofe — _
eV, 4]
04 J
061 004 , . . \
0.038 \
08 o3 \ 1
1 0.034 / E
0.032
A2r 003 1
44f o028 1
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A8F 0024
18 0022 1
2l 002 _
0.018 /
22L 0016 1
o4l 0014 J
24 0.012 ‘
26} 001 ] VA
ogl 0008 ] \ ]
28 0.008 ] \
3t 0.004 1 Voo
0.002
32 0 ; . . A 1
34f 2 3 4 5 6 1
36} 1
38F, 1 1 1 1 L N -
2 3 4 5 6 7 8

Fig.9. Gap (43) averaged over 1000 instances generated for
each N =2,8 by H =4 (no timeouts until 7 jobs)
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Fig. 11. The number of one-minute-timeout cases came out for
N =7 and N =8 by H =4 with the number of “suc-
cessful” timeouts

which is pretty weird itself. Indeed, Fig. 11 showing
the number of one-minute-timeout cases does not
contain a huge jump. As in the previous case, the
respective computation time ratio herein does not
resemble an exponential increase (Fig. 12) having a
drop at N =8. Meanwhile, the worst gap here in
9.28 % 1is caught in scheduling 6 jobs. The overall
number of bad gap instances is small: there are only
3 instances (out of grand total 7000 ones) when the
gap is no less than 5 %, and there are 50 instances
when the gap is no less than 1 % (that can be inter-
preted as a tolerable value). Furthermore, only 89
instances have been scheduled with the gap no less
than 0.1 %.
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Fig. 10. A timeout-exclusion gap and a gap averaged over
one-minute-timeout cases came out for N =7 and
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Fig. 12. Computation time ratio (44) averaged over 1000
instances generated for each N = ﬁ by H=4
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Consequently, we continue to study scheduling
for an increased number of job parts. Fig. 13 shows
gap &(N,5) for five-parted jobs which drops since
6 jobs because of timeouts. Once again, the
“correct” gap e.)(N,5) and “incorrect” gap
€.60(NV,5) both shown on the same plot (Fig. 14)
resemble those ones in the previous cases (for three-
and four-parted jobs). However, now there is an un-

expected drop at 7 jobs, whereas all 1000 instances
at 8 jobs are timeouts (Fig.15). The respective

computation time ratio (Fig. 16) therein does not
resemble that in Fig. 12. Meanwhile, the worst gap
here drops to 7.12 % caught in scheduling 6 jobs
once again. The overall number of bad gap instances
is small similarly to the previous case: there are only
4 instances when the gap is no less than 5 %, and
there are 32 instances when the gap is no less than
1 %. Furthermore, only 64 instances have been
scheduled with the gap no less than 0.1 % (that is a
quite tolerable value).
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Fig. 13. Gap (43) averaged over 1000 instances generated for Fig. 14. A timeout-exclusion gap and a gap averaged over
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Fig. 16. Computation time ratio (44) averaged over 1000 in-
stances generated for each N =2, 8 by H =5
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As it is easily seen, the worst scheduling cases,
when the gap achieves practically intolerable values,
cannot be excluded or prevented. In such cases, the
heuristic by (29)—(39) does not help and the exact
model remains the only means to find a schedule.
Knowing the worst gap values thus is fundamentally
needful. Maximal relative gap denoted by &(N, H)

is shown for the studied schedulings in Fig. 17. This
is a qualitative and very important supplement to
Figs. 1—16. Despite £(12,2) >19.23 % for the in-

stance with priority weights

W=[w,l., =110 13 1 27 62 12
92 40 31 3 92 8j] (52)
optimal schedule for which
S™ =15, hos
=1 1225577
8 8 11 11 12 12 9 9
4 4 6 6 10 10 3 3] (53)

with 9 (12, 2) = 884 is “torn” into an approximate
schedule

S = [§t]1><24
=[112 45577
4 8 11 11 12 12 8 9

926 6 10 10 3 3 (54)

with 9(12,2) =1054, it is clearly seen that the
greater number of processing periods lessens the
worst gap values. The top worst maximal relative gap
£(5, 2) is obtained by the instance with (46) whose
optimal schedule (47) with 9" (5, 2) =210 is “torn”
into an approximate schedule (48) with
9(5, 2) = 282. Fig. 17 also allows to suppose that the
top worst gaps are concentrated over scheduling 3
to 6 jobs.

It is clear that the study of the predominant
one-minute-timeout cases should be supplemented
also. For this, let the timeout threshold be elongated
to 10 minutes. So, denote the relative gap with ex-
cluding 10-minute timeouts by &) (N, H). The
number of 10-minute-timeout cases is denoted by
O.¢00(V, H) and the respective relative gap is
denoted by e.¢y (N, H). The denotation of the

number of 10-minute-timeout cases, in which
e.600(IV, H) 20, i. e. the exact solution is not worse

than a heuristic solution, is remained the same — it
is U, o(N, H). Unlike the initial study, for the sup-

plementary study, we take 200 instances (instead of
1000). This is forced by the two factors. Firstly, the
increased span for the solving (from 1 minute to 10
minutes), considering the number of jobs at which
timeouts are very likely, may require a way longer
computation time than that for the initial study.
Secondly, the amount of 1000 instances itself is
some overstated for the reliable averaging and there-
fore can be reduced.
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Fig. 17. Maximal relative gaps (over 1000 instances generated for
each number of jobs by the respective number of job
parts), where a bigger square marker corresponds to a
greater number of processing periods
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For each N =10,16 by H =2 Fig. 18 shows

the “correct” gap averaged over only cases from
which 10-minute timeouts are excluded. This can be
imagined as a natural extension of the “correct” gap
in Fig. 1. Obviously, the peak at 15 jobs is casual.
The respective gap (43) and the “incorrect” gap are
shown in Fig. 19, where we see that the 10-minute
timeouts start here at 12 jobs. The number of 10-
minute-timeout cases (Fig.20) is immensely in-
creasing, and only 34 instances of scheduling 16
two-parted jobs have been solved in no more than
600 seconds. The respective computation time ratio
(Fig. 21) starts roughly resembling an S-shaped
curve. As it is clearly seen, in scheduling 16 two-
parted jobs, the heuristic by (29)—(39) is about one
million times (!) faster than the Boolean linear
programming model by (1)—(27).

0.9

In scheduling three-parted jobs the “correct”
gap averaged over only cases from which 10-minute
timeouts are excluded has a decreasing trend
(Fig. 22). Now at 10 jobs we can see only a casual
peak, rather than that huge jump up at about 1.6 %
in Fig. 6. Consequently, that value of £ (10, 3) in

Fig. 6 is a computational artifact, although it has
been revealed under the same generator of the
scheduling problem instances, where priority
weights (2) are pseudorandomly generated by (45).
The respective gap (43) and the “incorrect” gap are
shown in Fig. 23, where we see that the 10-minute
timeouts start at 9 three-parted jobs. The number
of 10-minute-timeout cases (Fig. 24) is more im-
mensely increasing, and now only 12 instances
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Fig. 18. A gap averaged over only timeout-exclusion cases out of
200 instances generated for each N =10,16 by H =2
(the 10-minute timeouts start at 12 jobs)
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Fig. 19. Gap (43) averaged over 200 instances generated for
each N =10,16 by H =2 and a gap averaged over

10-minute-timeout cases came out for each N =12, 16
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Fig. 20. The number of 10-minute-timeout cases came out for
each N =12,16 by H =2 with the number of “suc-
cessful” timeouts
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of scheduling 16 three-parted jobs have been solved
in no more than 600 seconds. This is why the re-
spective computation time ratio (Fig.25) has been
“contorted” again (similarly to Figs.8, 12, 16).
Nevertheless, in scheduling 12 three-parted jobs, the
heuristic is about half a million times faster than the
Boolean linear programming model. This ratio in
scheduling 12 two-parted jobs (Fig.21) is about
2.5 times less.

Maximal relative gap for the supplementary
study (Fig. 18—25) is shown in Fig. 26. These two

polylines confirm the previously inferred suspicion
about the worst gap values dropping as the number
of processing periods increases. Indeed, the huge
value of £(15,2) is a computational artifact issued

from the instance with priority weights

W =[w,li.qs
_[16 60 31 1 23 62 50 16
35 100 98 13 35 77 81] (55)

optimal schedule for which
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Fig. 22. A gap averaged over only timeout-exclusion cases out of
200 instances generated for each N =8,12 by H =3
(the 10-minute timeouts start at 9 jobs)
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Fig. 23. Gap (43) averaged over 200 instances generated for
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generated for each N =8,12 by H =3



38

KPI Science News

2019/5-6

S™ =15, lso

=1 2233646 771010
11 11 14 14 15 15 13 13 9

91558 8 12 12 4 4] (56)
with 9°(15, 2) = 2046 is “torn” into an approximate
schedule

S =15 l.30
=1 221336°%677
10 10 11 11 15 15 14 14 9 9

1313558812124 4 (57

with 8(15,2) = 2319 . The frequency of such huge-
gap computational artifacts is not significant for
considering them as statistically regular.

In the end, it is very important to learn a ratio
of non-timeout instances, in which the heuristic
gives the minimal total weighted tardiness, to the
total number of non-timeout instances (i. €., a frac-
tion or percentage of cases when the exact model
is factually needless). Denote this ratio by
p.o(N, H). Fig.27, in which the supplementary
study results are drawn with a thicker line, and a
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Fig. 26. Maximal relative gaps (over 200 instances generated for
each number of jobs by the respective number of job
parts)

bigger square marker corresponds to a greater num-
ber of processing periods, shows that the heuristic
has successfully replaced the exact model no less
than in 72 % of non-timeout instances. As the num-
ber of jobs increases, the fluctuations in those pol-
ylines become severer, that is explained with the de-
creasing number of non-timeout instances causing
less statistical reliability of the ratio. In scheduling
just 2 jobs, whichever way they are parted, the heu-
ristic always gives the minimal total weighted tar-
diness.

Any further extensions and supplements of the
computational study are worthless as they would re-
quire raising the timeout threshold up to half an
hour and even to a few hours, and that is leading to
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Fig. 27. The ratio of non-timeout instances, in which the heuris-
tic gives the minimal total weighted tardiness, to the total
number of non-timeout instances
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what we call “intractability” of the exact model. For
example, if there is an international airport, its
schedules of departures and arrivals are frequently
corrected (e. g., by reason of specific meteorological
conditions, delays, flight cancellations, etc.), and
thus recalculating an optimal schedule for even a
few minutes may be critical. This is not a direct task
of the air traffic controller. The special software
should fast-refreshably trace the optimality of the
schedules. Otherwise profitability of the airline will
drop, the rate of flights will be reduced, and subse-
quently a lot of the concerned passengers will suffer
losses.

Discussion

Turning back to the expected research result,
where is the point of the “lossless transfer” from the
exactness to approximation? Could the hardly trac-
table Boolean linear programming model by (1)—
(27) eventually be “linked” to the sufficiently accu-
rate heuristic by (29)—(39)? Based on Figs. 1-3, 5—
7, 9—11, 13—15, 17-20, 22—24, and 26, the answer
to the first question is negative — there is no the
“lossless transfer” point. On average, the heuristic
produces schedules with the same minimal total
weighted tardiness just as the exact model does at
pretty high rate (see Fig. 27). However, “pathologi-
cal” cases like those with priority weights (46), (49),
(52), (55), whose corresponding optimal schedules
47), (50), (53), (56) differ from respective heuristic
schedules (48), (51), (54), (57) not so much, do exist.
Unfortunately, they cannot be predicted or system-
ized. This is so because the way in which the heu-
ristic “tears” the optimal schedule is unclear so far.
For example, the instance with priority weights

W=1w,lis

=[28 85 81 67 35 45 70 86] (38)
of three-parted jobs has heuristic schedule
S = [gt]1><24
=122 2 3338
8 8 77 7 4 4 4
6 6 6 1155 5] (39)

which looks like a “torn” one. Nevertheless, sched-
ule (59) is optimal for (58) by

38, 3) = 9°(8, 3) = 2706.

The similar seeming “tear”-in-schedule example is
that with priority weights (55), heuristic schedule
(57) for which is not optimal.

The Boolean linear programming model by
(1)—(27) is indeed hardly tractable in scheduling no
less than 14 two-parted jobs (see Fig. 20) and no less
than 10 three-parted jobs (see Fig. 24). Whereas the
top worst maximal gap for three-parted jobs is not
greater than 6 % (for no less than 10 three-parted
jobs), it may be beyond 10 % for two-parted jobs
(see those peaks in Fig.26). Therefore, scheduling
three-parted jobs by the heuristic herein is preferable
to scheduling two-parted jobs. Moreover, owing to
Fig. 17, the following can be generalized for the
heuristic:

1. Scheduling jobs divided into a greater num-
ber of parts each will have a significantly lower worst
gap than scheduling jobs divided into a lesser num-
ber of parts.

2. If a job is divisible, it is strongly recom-
mended to divide the job into as great number of its
parts as possible (thus, allowing more preemptions,
job shifts, job “tears”, etc.).

3. If scheduling only 2 jobs is impossible, it is
strongly recommended to artificially increase the
number of jobs to be scheduled (along with super-
dividing each job).

Hence, the listed three items make a “link” to
the sufficiently accurate heuristic by (29)—(39) plau-
sible. Besides, scheduling a fewer number of jobs (up
to 12) divided into only two parts each by the heu-
ristic is inapplicable. The high risk of obtaining a
huge heuristic gap exists for three-parted jobs as
well. On the other hand, scheduling either 3 or no
less than 7 jobs divided into five parts each ensures
the most accurate heuristic schedules (very close to
the minimal total weighted tardiness). Specifically,
scheduling 3 five-parted jobs have had no gaps
through 1000 instances (see Fig. 14).

Conclusions

The heuristic based on remaining available and
processing periods is an extremely rapid and simple
technique of scheduling with minimizing total
weighted tardiness: it has taken on average between
0.13 to 1.2 milliseconds to complete a schedule for
the generated instances. In the worst cases, the
heuristic’s computation time has varied between
1.1 to 44 milliseconds. It is obvious that the
computation time (both for the heuristic and the
Boolean linear programming model) stretches out as
the job scheduling problem complexity/size in-
creases. And even with this stretch the compu-
tation time ratio is still gigantic: it can reach beyond
10° in scheduling multiple jobs having two processing
periods each, although it drops down to 10* when
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the number of processing periods (or job parts) in-
creases. Meanwhile, the risk of obtaining a huge
heuristic gap is higher at the computation time ratio
maxima.

Total weighted tardiness minimization in tight-
tardy progressive single machine scheduling with
preemptions by no idle periods can be sufficiently
accurate by the heuristic if no less than 7 jobs di-
vided into no less than five parts each are scheduled.
This is the main conclusion (let it be called the
“7/5” pattern). An exception from this rule is that
the heuristic schedules just 2 jobs always at the
100 % accuracy, not depending on in how many
parts the job is divided (let it be called the “2/any”
exception). An intermediate between the “7/5” pat-
tern and the “2/any” exception is that scheduling 3
jobs divided into either four or five parts is suffi-
ciently accurate as well, where the inaccuracy does
not exceed 0.7 %. These three cases (the “7/5” pat-
tern, “2/any” exception, and intermediate) consti-
tute a domain where the heuristic is fully applicable
and should entirely replace the exact approach. In
other cases (which can be thought of as the comple-
ment of the domain) the heuristic is either
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B.B. PomaHiok

TOYHA MIHIMISALIA 3AFANIbHOIO 3BAXEHOIO 3AMISHIOBAHHA Y WINIbBHOMY TMPOMPECYOHOMY OAHO-
MALUNHHOMY MNAHYBAHHI 3 MEPEMWKAHHAMW BE3 MNEPIOAIB MPOCTOIO

Mpobnemartuka. 3agava MiHiMi3auii 3aranbHOro 3BaXxeHOro 3ani3HBaHHA Moxe OyTu po3B’sizaHa abo TOYHO 3a BiANOBIOHUMU
mMoaensamu, abo eBpncTuyHo. Ha MomeHT xoBTHS 2019 p. 6nn3bkol 40 HaWMKPaLLOi € eBPUCTUKA HA OCHOBI BUKOPVCTAHHS 3aIULLKOBOIO
HasiBHOTO pecypcy Ta 3anuLIKOBOro nepiogy Ao obpobku. Lis eBpucTvka € Hag3BMYalHO LUBMAKOK MOPIBHAHO 3 MOAENSMU TOYHOro
po3B’s3Ky, ane ii To4HiCTb Moxe ByTu sk 100 %, Tak i HeAONYCTUMO HU3bLKOH.

MeTa gocnigxeHHs. 3 ornagy Ha BiACYTHICTb 3HaHb LLOAO B3aEMO3B’A3Ky MiX LIi€0 €BPUCTUKOD Ta Modenmno 6yneBoro niHinHoro
nporpaMyBaHHsl ANsi TOYHUX PO3B’A3KIB METOK € BUBYEHHSI CTAaTUCTUYHOI Pi3HMLI MK HUMW NS OOHOMALUMHHOI 3afadvi nnaHyBaHHSA 3
nepemMukaHHsMu 6e3 nepiodis NPocTol, y SAKin nepiogn obpobku € piBHUMU, @ MOCNIAOBHO NPOrpecyoyi MOMEHTM 3anycKy Ta Npuiiomy
BUKOHAHHSA 3afaHi WinbHO.

MeTopuka peanisauii. BusHauyaeTbCs BiAHOCHa NoxmMbKa eBPUCTUKM, @ NOTIM BUBYAETLCS, SIK BOHA 3MIHIOETBLCS 3aneXHo Bif 3poc-
Tal4oi cknagHoOCTI 3aJay nnaHyBaHHS 3aBAaHb. ia cknagHicTo po3yMIETbCS KiNbKiCTb 3aBAaHb pa3oM i3 KiMbKicTio nepioais 06pobkm
O[HOrO 3aBAaHHS. TpuBanocTti 064MCrNeHb eBPUCTUKM | TOYHOT Mogeni GiKCyITbCA TakoX.

PesynbTaTtn gocnigxeHHs. EBpucTyKa ycnillHO 3aMiHnna TO4YHY MoAernb He MeHL HiX Y 72 % okpemux npuknagis 6e3 nepesu-
LLleHHs NiMITY Yacy, ie BOHa pO3nnaHoBYE 3aBAaHHSA 3 TUM CaMUM MiHIManbHUM 3aranbHUM 3BaXeHUM 3ani3HioBaHHAM (100 %-Ba Tou-
HICTb). Y cepedHbOMy Liel piBeHb konveaeTbes BiA 90 Ao 97 %, xo4a y peLuTi BUNaakiB MOXyTb 3'ABMATUCS BENUYE3HI NOXMBKN. Y npak-
TULi pO3KNajiB i3 BUMOraMu LUBUOKOTO OHOBJIEHHSI MOAENb GyneBoro NiHiMHOro NporpaMyBaHHS HAcMpaBai € Nefb 34iNCHEHHO, KONn
MOeTbCcs Npo NnaHyBaHHS PO3KMNagiB He MeHLW Hik 14 3aBOaHb, e KOXHe 3aBAaHHS CKMafaeTbCs 3 ABOX YACTMH, Ta HE MEHLU HiX
10 3aBOaHb, e KOXHe 3aBAaHHs CKIagaeTbCs 3 TPbOX YacTuH. [1naHyBaHHS 3aBAaHb, Ae KOXKHe 3aBAaHHs po3aineHe Ha BinbLuy KinbKicTb
YaCTMH, MaTMMe 3HAaYHO MEHLLY HanripLly NoxmbKy, HiXX NNaHyBaHHS 3aBAaHb, e KOXXHE 3aBAaHHsi pO3ifieHe Ha MEHLLY KiNbKiCTb YaCTUH.
AKLWO 3aBAAHHS LLe MOXHa po34inuTK, TO HanonernMBo peKoMeHAYETbCS OiNUTU 3aBAaHHA Ha skoMora Binbluy KinbKiCTb YacTWH. AKLO
nraHyBaHHs nuLle 2-X 3aBAaHb € HEMOXIMBUM, TO HAMOJErNMBO PEKOMEHAYETLCS LUTYYHO 36iNbLUMTY KiNbKICTb 3aBAaHb Ans CKNafaHHs
ix posknagy.

BucHoBkK. MiHiMi3aLis 3aranbHOro 3BaXxeHoro 3anisHioBaHHS Y LLiNbHOMY NPOrpecytoyoMy OAHOMAaLLMHHOMY NnaHyBaHHI 3 nepe-
MUKaHHsMK Ge3 nepiodiB NpocTol Moxe ByTU 4OCTaTHLO TOYHOK 32 [ONOMOro EBPUCTUKM, SIKLLO CKINadaeTbCs po3knag Arns He MeHLU
HK 7-X 3aBOaHb, e KOXHEe pO3[ineHe He MEHLW HiK Ha M'siTb 4YacTuH (cxema “7/5”). BuHATkOM 3 LbOro mpasBuna € Te, WO nuvlie
2 3aBfaHHS eBpUCTUKa PO3NIaHoBYE 3aBXau 3 TouHicTio 100 %, He3anexHo Bif TOro, Ha CKiNbKW YaCTUH 3aBAaHHS po3gineHe (BUHATOK
“2/any”). [eBHOI NPOMIKHOI NaHKOI MiX cxeMoto “7/5” Ta BUHATKOM “2/any” € Te, Wo nnaHyBaHHS 3-x 3aBAaHb, e KOXHe po3dineHe Ha
4oTMpM abo M'ATb YACTWH, € TAKOX AOCTATHBO TOYHUM, Ae HETOUHICTb He nepesuye 0,7 %. B iHWKX BuNnagkax abo eBpuCTUKa He3acTo-
COBHa, abo iCHye BenuKuii pu3vk OTPUMaHHS HeJOoNyCTUMKX MOXMOOK. He3acToCOBHICTE TYT He O3Havae ogpasy CUIbHY HETOYHICTb, a
MaeTbCs Ha yBas3i HenepeabayyBaHe iCHyBaHHS Cepiio3Horo cnagy TouHocTi. Hanpuknag, 974 3 1000 okpeMux npuknagis, Wo ckrnaga-
nncA 3 BUKIIOYHO 3-X 3aBAaHb, PO3AifieHnX Ha ABi YacTuHKW, 6ynu posnnaHoBaHi 3 TouHicTio 100 %, ane 26 npuknagis 6ynu po3nnaHoBaHi
i3 cepeaHboto noxubkoto B 13,31 %, WO € BKpaw HeJomyCTUMUM i, BiAMOBIAHO, HE3aCTOCOBHMM.

KnrouyoBi cnoBa: nnaHyBaHHS 3aBAaHb; NilaHyBaHHsS HA OOHIN MaLUWHI 3 NepeMUKaHHAMU; TOYHa MOZENb; €BPUCTUKA; 3aranbHe
3Ba)XkKeHe 3ari3HIoBaHHS; TOYHICTb EBPUCTMKM; BiAHOCHA Noxmnbka; BepX HaWripLLIOi MakcumarnbHOI BiGHOCHOI MOXUOKN.

B.B. PomaHiok

TOYHAA MWHUMU3ALIMA OBWEFO B3BEWEHHOIO 3AMA30bIBAHWA B MNOTHOM TMPOMPECCUPYIOWEM
OAHOMALWMHHOM MNAHUPOBAHWW C NMEPEKNOYEHNAMK BE3 NMEPUOAOB NPOCTOA

Mpo6nemartuka. 3agava MUHUMK3aLMK 06LLLEro B3BELLEHHOTO 3ana3fblBaHNs MOXET ObITb peLleHa Unu TOYHO MO COOTBETCTBYHO-
MM MOoAensiM, Unu aBpuctudeckn. Ha MomeHT okTs6psa 2019 r. 6rM3KoN Kk Hauny4Llen ABNsSIeTCA 3BPUCTMKA HA OCHOBE UCMONb30BaHMUS
0OCTaTOYHOro MMEHOLLErOCs pecypca U 0CTaToOYHOro nepuoaa k 0bpaboTke. OTa aBpUCTHKA SBMSETCS Ype3BblvaiHO ObICTPON B CpaBHEHNUN
C MOZEenNsiMU TOYHOTO PEeLLEHUs!, HO €€ TOYHOCTb MOXeET GbITb kak 100 %, Tak U HEAOMYCTUMO HU3KOM.

Llenb nccnegoBaHus. Vicxons s oTCyTCTBUS 3HAHWIA O B3aUMOCBA3M MeXAyY AaHHOW 3BPUCTUKON U MOAENbi0 ByneBoro nuHemn-
HOro NPOrpaMMM1POBaHUS AN TOYHbIX PELLEHU, Lienblo SABNSETCA U3y4YeHne CTaTUCTUYECKON PasHULbl MeXAY HUMU ANs O4HOMALUNHHON
3a4a4u NnaHUpoBaHKs C NepeknioYeHsamMmn 6e3 nepnoaoB NPOCTOs!, B KOTOPOW Nepuodbl 06paboTku ABNAKOTCS paBHLIMK, a NocregoBa-
TENbHO NPOrpeccupyloLLe MOMEHTbI 3anycka 1 NpuemMa BbIMOSIHEHUS 3a4aHbl NIIOTHO.

MeToauka peanusauumn. OnpegensieTcs oTHOCUTENbHasA MOrpeLLHOCTb 3BPUCTUKK, @ 3aTEM U3yvaeTcsl, Kak OHa MEHsieTCs B 3a-
BVMCUMOCTY OT BO3pacTaloLLEel CMIOXHOCTM 3aay NrnaHMpoBaHus 3agaHunii. 3Ta CroXHOCTb NoApa3yMeBaeT KONMYECTBO 3afaHunii BMecTe
C KONNYECTBOM NeprnoaoB 06paboTku 0AHOro 3agaHus. AnUTenbHOCTM BbIYMCTIEHMIA 3BPUCTUKM U TOYHON MOAENW PETUCTPUPYIOTCS Takxke.

Pe3ynbTaThbl ccnegoBaHUA. OBPUCTMKA YCMELIHO 3aMeHUNa TOYHY0 MoJernb He MeHee YeM B 72 % oTaenbHbIX npuMepoB 6e3
NPEeBbLILEHUS NMUMUTA BPEMEHMW, TAe OHa NiaHupyeT 3ajaHus C TeM CamMblM MWHMMasbHbIM OOLMM B3BELLEHHBIM 3anasfblBaHUEM
(100 %-Has TouHOCTb). B cpegHem aToT ypoBeHb Konebnetcsa ot 90 go 97 %, XoTA B oCTanbHbIX Cry4asx MOryT NOSABASTLCA OFPOMHbIE
norpewiHocTu. B npaktuke pacnucanuin ¢ TpeboBaHnsamu BeicTporo obHoBNEHNs Mogenb ByneBoro NMMHEHOro NPorpaMMUpoOBaHUS Ha
camoM fene efBa OCyLIeCTBUMa, Koraa pedb UaeT O NNaHMpoBaHUM pacnucaHuin He MeHee Yem 14 3ajaHui, roe kaxaoe 3ajaHue co-
CTOUT U3 ABYX YacTen, n He MeHee Yyem 10 3agaHun, rae Kaxagoe 3aiaHne CocTouT U3 Tpex vacTen. MNnaHMpoBaHue 3agaHui, rae Kaxaoe
3afaHvie pa3geneHo Ha Gonbluee KONMYecTBoO YacTel, OyaeT MMeTb 3HAYUTENbHO MEHbLLYIO HauXyALLY0 NOrPeLlHOCTb, YeM MiaHupo-
BaHWe 3afaHunii, rae Kaxaoe 3aJaHue pasfeneHo Ha MeHbllee KonmyecTBo YacTen. Ecnv 3agaHue elle MOXHO pasgenvTb, TO HacTon-
UMBO pPEKOMEHAYeTCH AenuTb 3adaHve Ha Mo BO3MOXHOCTM Oonbluee KonuyecTBO vacTen. Ecnv nnaHupoBaHvne nuwb 2-x 3agaHui
SIBNSIETCS HEBO3MOXHbIM, TO HAacTOMYMBO PEKOMEHOYETCSl UCKYCCTBEHHO YBENMWUYUTb KONMMYECTBO 3adaHUi AN COCTaBMEHWUst UX
pacnucaHusi.

BbiBoabl. MuHMMUK3aLusi obLiero B3BELLEHHOIO 3anasabiBaHusl B MIOTHOM MPOrpeccupyoLemM ogqHOMaLLMHHOM MaHUpOBaHUM ¢
nepekntoYeHnsiMun 6e3 NepuoaoB NPOCTOst MOXET ObITb 4OCTATOMHO TOYHOW C MOMOLLbIO 3BPUCTUKM, ECNM COCTaBNAETCS pacrnmcaHune ansi
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He MeHee YeM 7-Mu 3afiaHuii, TOe KaXaoe pasferieHo He MeHee YeM Ha NsaTb YacTen (cxema “7/5”). VickniodeHnem 13 3Toro npaswna
SIBNSIETCH TO, YTO NMULWb 2 3afaHnsa 3BpPUCTMKA NnaHupyeT Bcerga ¢ TouyHocTbio 100 %, BHE 3aBUCUMMOCTM OT TOrO, Ha CKOJbKO YacTewn
3afaHvie pasfeneHo (McknoveHne “2/any”). OnpeaeneHHbIM NPOMEXYTOYHBIM 3BEHOM MEXAY cxemon “7/5” n ucknioyeHnem “2/any” sB-
NsieTCs TO, YTO NNaHMpoBaHue 3-x 3aAaHui, rae Kaxaoe pasfeneHo Ha YeTbipe Unu NATb YacTen, Takke sSIBNSETCS OCTaTOYHO TOYHbIM,
roe HeTo4YHOCTb He npesbiwaeT 0,7 %. B gpyrux crnyyasx unm aBpucTMKa HEMPUMEHUMA, UMK CyLLecTByeT OONbLION PUCK MONyYeHUst
He[oMyCTUMbIX NMOrpeLlHocTen. HenpumMeHMoCTb 34ech He 03Ha4YaeT cpasy CUMbHY HETOUYHOCTb, @ UMEeeTCs B BUAy He noaaatoLleecs
NPOrHO3MPOBaHUIO CYLLECTBOBaHME CEPbE3HOro cnaga TodHocTu. Hanpumep, 974 13 1000 oTaenbHbIX NMPUMEPOB, KOTOPblE COCTOANN U3
VCKIIOYNTENBHO 3-X 3aaHniA, pa3geneHHbIX Ha ABe YacTu, bbinu pacnnaHnpoBaHbl ¢ TO4HOCTbI0 100 %, HO 26 NpumepoB Gbiny pacnna-
HMpOBaHbI CO cpefHen norpeluHocTbio B 13,31 %, 4TO KpariHe HeonyCTMMO U, COOTBETCTBEHHO, HEMPUMEHVMO.

KnioueBble cnoBa: nnaHMpoBaHue 3aaHuii; NNiaHMPOBaHUE Ha OOHOM MaLUMHE C NEPEKIIOYEHUSIMU; TOYHAst MOAETb; 3BPUCTUKA;
obLee B3BELLEHHOE 3ana3ablBaHNe; TOYHOCTb 3BPUCTUKW; OTHOCUTENbHAsS MOrPELLHOCTb; BEPX Hauxyawen MakcMmarnbHOW OTHOCUTE b-
HOW MOrpeLIHOCTH.
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