Automated design of zoom riflescope with extended parameters

Authors

  • Вячеслав Сокуренко Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», приладобудівний факультет, кафедра комп’ютерно-інтегрованих оптичних та навігаційних систем, Ukraine http://orcid.org/0000-0001-5057-182X
  • Олег Сокуренко ВСП «Оптико-механічний фаховий коледж Київського національного університету імені Тараса Шевченка», Ukraine https://orcid.org/0000-0002-0335-6470

DOI:

https://doi.org/10.20535/kpisn.2022.1-2.252085

Keywords:

automated optical design, zoom riflescope, optical system, parametric synthesis, global optimization, aberration

Abstract

Background. Designing an arbitrary afocal zoom optical system is a complex and multidimensional problem. It cannot be solved analytically and requires the essential experience and efforts of the designer. Objective. The purpose of the paper is to present and verify by simulation the method and means to perform an automated design of complex multi-lens afocal zoom optical systems having variable parameters and characteristics. Methods. Using the developed specialized software with implemented modification of the adaptive Cauchy differential evolution algorithm for the parametric synthesis of multi-component optical systems of zoom riflescopes with extended functional parameters. Results. The developed optical system of the riflescope provides the 5× magnification ratio and the angular field of view in the object space from 3.26° to 0.83°. It has a reticle located in the first focal plane, the entrance pupil diameter of 60 mm, the eye relief within the range of 106...111 mm, and the maximum system length of 390 mm. The riflescope contains 13 lenses in 10 components. The performed simulations showed that the time interval required for the direct automated design of the riflescope’s optical system is about 30–40 hours for the total number of unknown parameters (variables) equal to 91. The root-mean-square values of the angular aberrations of axial beams in all (five) configurations of the synthesized zoom system do not exceed 1.25 arc minute in the whole spectral range. The algorithm helps to determine the prescription data of optical systems, considering the technical requirements and restrictions specified by the designer. Conclusions. Computer simulations of the development of the zoom riflescope with the magnification of 5-25×, the entrance pupil diameter of 60 mm, and the reticle located in the first focal plane have confirmed the effectiveness of the proposed algorithm to design automatically complex multi-lens optical systems with variable parameters. The obtained results proved the high image quality of the generated 13-lens riflescope with the long eye relief. The implemented modification of the adaptive Cauchy differential evolution method can be considered a powerful tool that helps to automate the parametric synthesis of multicomponent optical systems of zoom riflescopes, taking into account the requirements set by the designer. Future research should test the feasibility of the automated design of other riflescopes containing more lenses and providing extreme performances.

References

W. J. Smith, Modern Lens Design, 2nd Edition. McGraw Hill Professional. 2004. - 631 p.

M. Laikin. Lens Design, 4th Edition. CRC Press. 2018. - 512 p.

A. Mann. Infrared optics and zoom lenses. Bellingham, Wash: SPIE Press. 2009. - 164 p.

J. L. Bentley, C. Olson. Field Guide to Lens Design. SPIE, 2012 - 140 p.

S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996). DOI: 10.1117/1.600742.

S. C. Park and S. H. Lee, “Zoom lens design for a 10x slim camera using successive procedures,” J. Opt. Soc. Korea 17(6), 518–524 (2013). DOI: 10.3807/JOSK.2013.17.6.518.

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21(12), 2174–2183 (1982). DOI: 10.1364/AO.21.002174.

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21(22), 4045–4053 (1982). DOI: 10.1364/AO.21.004045.

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22(4), 541–553 (1983). DOI: 10.1364/AO.22.000541.

Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013). DOI: 10.1364/OE.21.007758.

A. Mikš and P. Novák, “Paraxial design of four-component zoom lens with fixed position of optical center composed of members with variable focal length,” Opt. Express 26(20), 25611–25616 (2018). DOI: 10.1364/OE.26.025611.

A. Mikš and P. Novák, “Paraxial design of a four-component zoom lens with zero separation of principal planes and fixed position of an image focal point composed of members with constant focal length,” Appl. Opt. 58(15), 3957–3961 (2019). DOI: 10.1364/AO.58.003957.

Jinkai Zhang, Xiaobo Chen, Juntong Xi, and Zhuoqi Wu, “Paraxial analysis of double-sided telecentric zoom lenses with three components,” Appl. Opt. 53, 4957-4967 (2014). DOI: 10.1364/AO.53.004957.

Eiben A., Smith J. Introduction to Evolutionary Computing; Springer-Verlag: Berlin, 2003. 300 p.

Haupt R., Haupt S. Practical Genetic Algorithms. Wiley-Interscience; 2nd edition, 2004. 272 p.

Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems. / H. Gross, H. Zugge, M. Peschka, F. Blechinger; Edited by Herbert Gross. – WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. – ISBN 978-3527403790.

V. M. Sokurenko, V. S. Nedilyuk, “Numeric study of stochastic methods for continuous global optimization,” Research Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute", 2012, #1, pp. 81-88 (in Ukrainian).

D. Dilworth. Lens Design: Automatic and Quasi-autonomous Computational Methods and Techniques. Institute of Physics Publishing, 2018 - 400 p.

K. Höschel, V. Lakshminarayanan, "Genetic algorithms for lens design: a review", Journal of Optics 48(1), pg. 134, (2018); DOI:10.1007/s12596-018-0497-3.

C. Gagné, J. Beaulieu, M. Parizeau, et al., "Human-competitive lens system design with evolution strategies", Applied Soft Computing 8(4), pg. 1439, (2008); DOI: 10.1016/j.asoc.2007.10.018

S. D. Campbell, D. Sell, R. P. Jenkins, et al., "Review of numerical optimization techniques for meta-device design [Invited]", Optical Materials Express 9(4), pg. 1842, (2019); DOI:10.1364/ome.9.001842.

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light: Science and Applications, Vol. 6(10), e17081 (2017). DOI: 10.1038/lsa.2017.81.

B. F. C. Albuquerque, F. L. Sousa, and A. S. Montes, “Multi-objective approach for the automatic design of optical systems,” Opt. Express 24(6), 6619–6643 (2016). DOI: 10.1364/OE.24.006619.

X. Chen and K. Yamamoto, “An experiment in genetic optimization in lens design,” J. Mod. Opt. 44(9), 1693–1702 (1997). DOI: 10.1080/09500349708230769.

S. Pal and L. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51(6), 063001 (2012). DOI: 10.1117/1.OE.51.6.063001.

S. Pal and L. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50(10), 1434–1441 (2011). DOI: 10.1364/AO.50.001434.

Z. Y. Tang, M. Sonntag, and H. Gross, “Ant colony optimization in lens design,” Appl. Opt. 58(23), 6357–6364 (2019). DOI: 10.1364/AO.58.006357.

Xiao Yu, Hanyu Wang, Yuan Yao, Songnian Tan, Yongsen Xu, and Yalin Ding, “Automatic design of a mid-wavelength infrared dual-conjugate zoom system based on particle swarm optimization," Opt. Express 29, 14868-14882 (2021) DOI: 10.1364/OE.418584.

Chengxiang Fan, Bo Yang, Yunpeng Liu, Pengxiang Gu, Xingqi Wang, and Hui Zong, “Zoom lens with high zoom ratio design based on Gaussian bracket and particle swarm optimization," Appl. Opt. 60, 3217-3223 (2021). DOI: 10.1364/AO.418970.

Sun-Hyung Jo and Sung-Chan Park, “Design and analysis of an 8x four-group zoom system using focus tunable lenses," Opt. Express 26, 13370-13382 (2018). DOI: 10.1364/OE.26.013370.

H. Qin, “Aberration correction of a single aspheric lens with particle swarm algorithm,” Opt. Commun. 285(13-14), 2996–3000 (2012). DOI: 10.1016/j.optcom.2012.02.083.

D. B. Guo, L. Yin, and G. Yuan, “New automatic optical design method based on combination of particle swarm optimization and least squares,” Opt. Express 27(12), pp. 17027–17040 (2019). DOI: 10.1364/OE.27.017027.

P. Zhou, X. R. Ma, S. Zhang, Z. G. Liu, Z. Y. Meng, Z. J. Xiang, X. Y. Wang, T. X. Sun, X. Y. Lin, and Y. D. Li, “Application of particle swarm optimization in the design of a mono-capillary X-ray lens,” Nucl. Instrum. Methods Phys. Res., Sect. A 953, 163077 (2020). DOI: 10.1016/j.nima.2019.163077.

Z. C. Fan, S. L. Wei, Z. B. Zhu, Y. Mo, Y. Yan, and D. Ma, “Automatically retrieving an initial design of a double-sided telecentric zoom lens based on a particle swarm optimization,” Appl. Opt. 58(27), pp. 7379–7386 (2019). DOI: 10.1364/AO.58.007379.

Z. C. Fan, S. L. Wei, Z. B. Zhu, Y. M. Yan, Y. Mo, L. S. Yan, and D. L. Ma, “Globally optimal first-order design of zoom systems with fixed foci as well as high zoom ratio,” Opt. Express 27(26), pp. 38180–38190 (2019). DOI: 10.1364/OE.381116

T. J. Choi, C. W. Ahn, J. An, “An adaptive Cauchy differential evolution algorithm for global numerical optimization,” The Scientific World Journal. – 2013. – Vol. 2013. – Article ID 969734, 12 pages. – DOI: 10.1155/2013/969734.

T. J. Choi, C. W. Ahn, “An adaptive Cauchy differential evolution algorithm with bias strategy adaptation mechanism for global numerical optimization,” Journal of Computers, 2014, Vol. 9, No 9, pp. 2139-2145. DOI: 10.4304/cp.9.9.2139-2145.

V. M. Sokurenko, Y. I. Makarenko, “Development of optical systems by global optimization methods,” Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, 2015, #50(2), pp. 51-60 (in Ukrainian).

V. M. Sokurenko, I. S. Builov, “Application of the adaptive Cauchy differential evolution method for designing lenses,” Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, 2016, #51(1), pp. 41-47 (in Ukrainian).

V. M. Sokurenko, O. E. Stikha, “Development of distortion corrected lenses,” Visnyk of Vinnytsia Polytechnical Institute, 2017, #1, pp. 99-105 (in Ukrainian).

V. M. Sokurenko, D. P. Bondarchuk, “Automated parametric synthesis of a lens with reduced distortion,” Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, 2018, #56(2), pp. 18-24 (in Ukrainian).

V. M. Sokurenko, O. V. Trostyanska, “Synthesis of an eyepiece optical system for a high-resolution microdisplay,” Bulletin of Khmelnytsky National University: Technical Sciences, 2019, #6 (279), pp. 206-210 (in Ukrainian). DOI: 10.31891/2307-5732-2019-279-6-206-210.

V. M. Sokurenko, I. O. Smazhko, “Automated design of an optical system of the SWIR lens,” Bulletin of Khmelnytsky National University: Technical Sciences, 2019, #6 (279), pp. 202-205 (in Ukrainian). DOI: 10.31891/2307-5732-2019-279-6-202-205.

V. M. Sokurenko, M. M. Vakulenko, “Automated design of eyepieces with diffractive optical elements,” Herald of Khmelnytsky National University: Technical Sciences, 2018, #1 (257), pp. 107-112 (in Ukrainian).

Downloads

Published

2023-10-27

Issue

Section

Статті