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FINITE APPROXIMATION OF NON-COOPERATIVE 2-PERSON GAMES PLAYED 
IN STAIRCASE-FUNCTION CONTINUOUS SPACES

Background. There is a known method of approximating continuous non-cooperative 2-person games, wherein an 
approximate solution (an equilibrium situation) is considered acceptable if it changes minimally by changing the sam-
pling step minimally. However, the method cannot be applied straightforwardly to a 2-person game played with stair-
case-function strategies. Besides, the independence of the player’s sampling step selection should be taken into account.
Objective. The objective is to develop a method of finite approximation of 2-person games played in staircase-function 
continuous spaces by taking into account that the players are likely to independently sample their pure strategy sets.
Methods. To achieve the said objective, a 2-person game, in which the players’ strategies are staircase functions of time, 
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions of time, and 
the time is thought of as it is discrete. The conditions of sampling the set of possible values of the player’s pure strategy 
are stated so that the game becomes defined on a product of staircase-function finite spaces. In general, the sampling 
step is different at each player and the distribution of the sampled points (function-strategy values) is non-uniform.
Results. A method of finite approximation of 2-person games played in staircase-function continuous spaces is pre-
sented. The method consists in irregularly sampling the player’s pure strategy value set, finding the best equilibria in 
“smaller” bimatrix games, each defined on a subinterval where the pure strategy value is constant, and stacking the 
equilibrium situations if they are consistent. The stack of the “smaller” bimatrix game equilibria is an approximate 
equilibrium in the initial staircase game. The (weak) consistency of the approximate equilibrium is studied by how 
much the payoff and equilibrium situation change as the sampling density minimally increases by the three ways of the 
sampling increment: only the first player’s increment, only the second player’s increment, both the players’ increment. 
The consistency is decomposed into the payoff, equilibrium strategy support cardinality, equilibrium strategy sampling 
density, and support probability consistency. It is practically reasonable to consider a relaxed payoff consistency.
Conclusions. The suggested method of finite approximation of staircase 2-person games consists in the independent 
samplings, solving “smaller” bimatrix games in a reasonable time span, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appropriate if at least the respective approximate (stacked) equilibrium is 
e-payoff consistent.
Keywords: game theory; payoff functional; staircase-function strategy; bimatrix game; irregular sampling; approximate 
equilibrium consistency.

Introduction

Non-cooperative 2-person games model pro-
cesses where two sides referred to as persons or 
players struggle for optimizing the limited resources 
distribution implying as real-world resources, fa-
cilities, tools, funds, energy, etc., as well as more 
abstract objects whose utility is assessed as the play-
er’s payoff [1, 2]. A possible action of the player is 
called its (pure) strategy used to receive closely the 

best possible payoff under conditions of uncertainty 
generated by actions of the other player [3, 4]. The 
strategy can be as a simple (point) action, as well 
as a process consisting of an order of simple ac-
tions [1, 5, 6]. In the simplest case, the player’s pure 
strategy is a short action whose duration is negligi-
ble. This negligible-duration action is represented as 
just a time point. In a more complicated case, the 
player’s pure strategy is a function of time [4, 7, 8], 
so the player’s action is a complex process [6, 9]. 
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Such strategies are used in multistage optimization 
[10], planning and control processes [11], schedul-
ing [12], multistage corrective action processes [13], 
etc., modelled under uncertainties and influence of 
other competitive factors [5, 6, 9].

Whichever the pure strategy form is, the sim-
plest 2-person game is a bimatrix game. Any bimatrix 
game has an equilibrium – a finite number or con-
tinuum of equilibria, either in pure or mixed strat-
egies [1, 2]. Infinite or continuous 2-person games, 
where the players’ payoff functions are meshes or 
surfaces of two variables defined on finite-dimen-
sional compact Euclidean subspaces, are far more 
complicated [1, 2, 7, 14]. A simple example of the 
subspace is a unit square [2, 15]. Even if the sur-
faces do not have a discontinuity, the equilibrium 
is not always determinable as opposed to bimatrix 
games [2]. Moreover, 2-person games defined on 
open (or half-open) subspaces (e. g., open square) 
may not have an equilibrium at all [2, 16, 17]. 
Therefore, rendering a 2-person game to a bimatrix 
one is a crucial task in game modelling as it allows 
assuredly having a game solution (equilibrium point) 
as a pair of the players’ best strategies. Without ren-
dering, a 2-person game may have an intractable 
equilibrium (if any), when the equilibrium strategy 
support is infinite or continuous (e. g., see the ex-
amples in [1, 7, 16, 17]). 

A 2-person game, in which the player’s strategy 
is a function (e. g., of time), is a far more compli-
cated case. In such games, the payoff kernel must be 
a functional mapping every pair of functions (pure 
strategies of the players) into a real value [7, 8, 
18, 19]. A game played with such function-strategies 
is rendered down to a bimatrix game only when each 
of the players possesses a finite set of one’s func-
tion-strategies. Obviously, the rendering is theoret-
ically impossible if the set of the player’s strategies 
is infinite.

The question of rendering an infinite game to 
a finite one was studied in [14, 20]. Regardless of 
antagonism of the players’ interests, it consists in 
approximating the infinite game so that the approx-
imated game would not lose the properties of the 
initial game. There are two fundamental conditions 
in the game approximation core that allow rendering 
a 2-person game with strategies as functions down 
to a bimatrix game: the time sampling and finiteness 
of possible values of the player’s function-strategy.

According to the first fundamental condition, a 
time interval, on which the pure strategy is defined, 
should be broken into a set of subintervals, on which 
the strategy could be (maybe, approximately) con-

sidered constant. It can be done according to the 
rules of a system to be game-modelled, where the 
administrator (supervisor, manager, controller, etc.) 
does always define (or constrain) the form of the 
strategies players will use [1, 8, 10, 11, 13]. More-
over, any process is interpreted static on a sufficient-
ly short time span. Henceforward, the time sampling 
condition is considered automatically (by default) 
fulfilled. Then the function-strategy becomes stair-
case. To keep the terminology simple, the respective 
game can be called staircase.

The second fundamental condition requires 
that the set of possible values of the player’s func-
tion-strategy be finite. It is imposed for the natural 
reason that the number of factual actions of the play-
ers (in any game) is always finite. While the players 
may use strategies of whichever form they want, the 
number of their actions has a natural limit (unless 
the game is everlasting; but the everlasting game is 
an unreal mathematical object) [5, 7, 9, 10, 12]. 
Thus, the set of function-strategies used in a 2-per-
son game is finite anyway. Therefore, any non-ev-
erlasting 2-person game is played as if it is a bima-
trix game. However, the size of this bimatrix game 
depends on how each of the players has decided on 
discretizing (i. e., finitely approximating) one’s set 
of function-strategy values. It does not seem that 
a player is likely to independently discretize the set 
identically to the other player’s discretization.

A method of approximating continuous 2-per-
son games is known from [8, 14, 20]. It is similar to 
the method for approximating continuous zero-sum 
games, but the principal difference is that there may 
be multiple equilibria in a 2-person game whose 
payoffs (unlike in a zero-sum game) are not equiv-
alent. Theoretically, the continuous game approxi-
mation is based on sampling (discretizing) either the 
players’ payoff kernels or the sets of players’ pure 
strategies. Basically, this is the same as it results in 
finite sets of players’ payoffs.

In general, an approximate solution is consid-
ered acceptable if it changes minimally by changing 
the sampling step minimally. This is the main re-
quirement to accept an approximate solution. Ob-
viously, the independence of the player’s sampling 
step selection should be taken into consideration. 

Problem statement

Although it is impossible to apply the approxi-
mation method straightforwardly to a 2-person game 
played with staircase-function strategies, a part of 
the staircase 2-person game considered on a time 
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subinterval where the players’ strategies are constant 
can be directly approximated by the method. Issued 
from the impossibility of solving 2-person games 
played in staircase-function continuous spaces, the 
objective is to develop a method of finite approx-
imation of such games by taking into account the 
independence of the player’s sampling step selection 
(i. e., the players are likely to independently sample 
their pure strategy sets). The approximate solution 
type is the Nash equilibrium. For achieving the ob-
jective, the following six tasks are to be fulfilled:

1. To formalize a non-cooperative 2-person 
game, in which the players’ strategies are functions 
of time.

2. To formalize a non-cooperative 2-person 
game, in which the players’ strategies are staircase 
functions. In such a game, the set of the player’s 
pure strategies is a continuum of staircase functions 
of time, and the time is thought of as it is discrete.

3. To state conditions of sampling the set of 
possible values of the player’s pure strategy so that 
the game be defined on a product of staircase-func-
tion finite spaces. By this, the sampling step is to be 
different at each player, and the distribution of the 
sampled points (function-strategy values) must not 
be necessarily uniform.

4. To state conditions of the appropriate finite 
approximation applicable to the non-cooperative 
2-person game. This implies also the staircase-func-
tion space convergence.

5. To discuss the independence of the player’s 
sampling step selection. The reconciliation of the 
difference of the players’ sampling step selection on 
the background of multiplicity of equilibria is to be 
discussed as well. Eventually, the applicability and 
significance of the finite approximation method for 
the game theory is to be argued for.

6. To make an unbiased conclusion on the 
contribution to the game theory field. An outlook of 
how the research might be extended and advanced 
is to be made as well.

A 2-person game played with strategies as 
functions

Denote a pure strategy of the first and second 
players by x(t) and y(t), respectively, where each of 
the players uses one’s strategy during (time) interval 
[t1; t2] by t2 > t1. Functions x(t) and y(t) defined al-
most everywhere on interval [t1; t2] are bounded, i. e.

min max( )a x t a    by  min maxa a<          (1)

and

( )min maxb y t b    by  min maxb b< .        (2)

Besides, the square of the function-strategy is pre-
sumed to be Lebesgue-integrable [21]. The sets of 
the players’ pure strategies are

( ) [ ]{ ( )
} [ ]

1 2 1 2 min max

min max 2 1 2

, ; , :

by ;

X x t t t t t t a x t a

a a t t

= ∈ <

< ⊂

 

  (3)

and

( ) [ ] ( ){
} [ ]

1 2 1 2 min max

min max 2 1 2

, ; , :

by ; ,

Y y t t t t t t b y t b

b b t t

= ∈ <

< ⊂

 

  (4)

respectively. Each of sets (3) and (4) is a rectangular 
functional space, in which every element is a 
bounded function of time by (1) and (2).

The first player’s payoff in situation 

( ) ( ){ },x t y t                       (5)

is 

( ) ( )( ),K x t y t                     (6)

and the second player’s payoff in situation (5) is

( ) ( )( ), .H x t y t                    (7)

Payoffs (6) and (7) are presumed to be integral 
functionals [21]:

( ) ( )( ) ( ) ( )( ) ( )
[ ]1 2;

, , ,
t t

K x t y t f x t y t t d t= µ∫   (8)

and

( ) ( )( ) ( ) ( )( ) ( )
[ ]1 2;

, , ,
t t

H x t y t g x t y t t d t= µ∫   (9)

with functions 

( ) ( )( ), ,f x t y t t                  (10)

and

( ) ( )( ), ,g x t y t t                  (11)

of x(t) and y(t) explicitly including time t. Therefore, 
the continuous 2-person game

{ } ( ) ( )( ) ( ) ( )( ){ }, , , , ,X Y K x t y t H x t y t  (12)

is defined on product 

[ ] [ ]2 1 2 2 1 2; ;X Y t t t t× ⊂ ×           (13)
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of rectangular functional spaces (3) and (4) of play-
ers’ pure strategies. It is worth noting that the game 
continuity is defined by the continuity of spaces (3) 
and (4), whereas payoff functionals (8) and (9) still 
can have discontinuities. In general, each of payoff 
functionals (6) and (7) may have a terminal com-
ponent like

( ) ( )( )
( ) ( )( ) ( )

[ ]
( ) ( )( )

1 2

2 2 2
;

,

, , , ,f
t t

K x t y t

f x t y t t d t T x t y t t= µ +∫  (14)

and

( ) ( )( )
( ) ( )( ) ( )

[ ]
( ) ( )( )

1 2

2 2 2
;

,

, , , ,g
t t

H x t y t

g x t y t t d t T x t y t t= µ +∫  (15)

by some terminal functions [22]

( ) ( )( )2 2 2, ,fT x t y t t                 (16)

and

( ) ( )( )2 2 2, ,gT x t y t t                 (17)

depending on only the final state of the player’s 
strategy, but this case is not to be considered here.

A zero-sum game defined on product (13) [23] 
is a partial case of 2-person game (12). However, 
whereas the zero-sum game has an optimal solution 
whose payoff is constant (whichever the number of 
saddle points is), the 2-person game not being a 
zero-sum game does not have an optimal solution. 
It has an equilibrium point or may have multiple 
equilibria, at which the players’ payoffs may induce 
contradictions with respect to payoff profitability 
and fairness [1, 2, 9, 24].

As it has been argued above, 2-person game 
(12), in which the players’ strategies are functions 
of time, in practical reality is played discretely 
during time interval [t1; t2]. The time step is the 
same for each of the players because it is presumed 
to be established either by the rules of the system 
game-modelled or by the administrator. Herein, 
the influence of terminal functions (16), (17) is 
presumed to be embedded into integral functionals 
(8), (9).

A 2-person game with staircase-function 
strategies

As the 2-person game is played discretely during 
a time interval, then there is a number of subinter-
vals at which the player’s pure strategy is constant. 
Denote this number by N, where { }\ 1 .N ∈   Al-
though the player’s pure strategy can still have a 
continuum of possible values, it is now a staircase 
function having only N different values. So, there 
are N - 1 time points at which the staircase-func-
tion strategy can change its value. These points are 

{ } 1( )

1
,

Ni

i

-

=
t  where

(0) (1) (2) ( 1) ( )
1 2.

N Nt t-= t < t < t < < t < t =

  (18)

The breaking by (18) is not necessarily to be equidis-
tant. However, points { }( )

0

Ni

i=
t  are the same for each 

of the players. Besides, points { }( )

0

Ni

i=
t  do not change 

as the 2-person game is repeated. For real practice, 
surely, only a finite number of repetitions is consid-
ered (the game does not last forever).

What happens at each of those “internal” 

{ } 1( )

1
,

Ni

i

-

=
t  points, at which the player can “switch” 

the line? To answer this question, it is sufficient to 
imagine that the strategy value starts changing be-
fore exactly arriving at moment t = t(i). But the start 
should be as late as possible (that is, as close as 
possible to moment t = t(i)). In terms of the func-
tional analysis, this is called to be right-continuous 
[21, 23]. Thus, the staircase-function strategies are 
right-continuous: if the strategy value is changed at 
t = t(i), then

( ) ( )( ) ( )

0
0

lim i ix x
e>
e→

t + e = t               (19)

and

( ) ( )( ) ( )

0
0

lim i iy y
e>
e→

t + e = t               (20)

for 1, 1,i N= -  whereas

( ) ( )( ) ( )

0
0

lim i ix x
e>
e→

t - e ≠ t               (21)

and

( ) ( )( ) ( )

0
0

lim i iy y
e>
e→

t - e ≠ t               (22)
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for 1, 1,i N= - . As an exception, 

( ) ( )( ) ( )

0
0

lim N Nx x
e>
e→

t - e = t             (23)

and

( ) ( )( ) ( )

0
0

lim ,N Ny y
e>
e→

t - e = t            (24)

so 

( ) ( )( 1) ( )N Nx x-t = t                (25)

and 

( ) ( )( 1) ( ) .N Ny y-t = t                (26)

As both functions x(t) and y(t) are constant 

)( 1) ( );i it -∀ ∈ t t   for  1, 1i N= -
 

and  ( 1) ( ); ,N Nt - ∀ ∈ t t 

then game (12) can be thought of as it is a succes-
sion of N continuous 2-person games

[ ] [ ]{ } ( ) ( ){ }min max min max; , ; , , , ,i i i ia a b b K Hα β α β  (27)

defined on rectangle

[ ] [ ]min max min max; ;a a b b×

by 

( ) [ ]min max;i x t a aα = ∈   and  ( ) [ ]min max;i y t b bβ = ∈
 

)( 1) ( );i it -∀ ∈ t t   for  1, 1i N= -   

and  ( 1) ( ); ,N Nt - ∀ ∈ t t               (28)

where the factual first player’s payoff in situation

{ },i iα β                       (29)

is

( ) ( ) ( )
)( 1) ( );

, , , ,
i i

i i i iK f t d t
-t t

α β = α β µ∫
  

1, 1i N∀ = -                   (30)

and

( ) ( ) ( )
( 1) ( );

, , , ,
N N

N N N NK f t d t
- t t 

α β = α β µ∫  (31)

and the factual second player’s payoff in situation 
(29) is

( ) ( ) ( )
)( 1) ( );

, , ,
i i

i i i iH g t d t
-t t

α β = α β µ∫

1, 1i N∀ = -                   (32)

and

( ) ( ) ( )
( 1) ( );

, , , .
N N

N N N NH g t d t
- t t 

α β = α β µ∫   (33)

Henceforward, game (12) equivalent to the succession 
of N continuous 2-person games (27) by (28)–(33) 
is called staircase. A pure-strategy situation in stair-
case game (12) is a succession of N situations 

{ }{ }
1

,
N

i i i=
α β                     (34)

in games (27). In staircase game (12), the set of 
the player’s pure strategies is still a continuum of 
staircase functions of time, but the time is discrete 
according to the breaking by (18). This time-dis-
cretization property, implying constant values of the 
players’ strategies on every subinterval, allows, in 
addition to the succession of N continuous 2-person 
games (27), decomposing staircase game (12) with 
respect to the (staircase) payoff.

Theorem 1. In a pure-strategy situation (5) of 
staircase game (12), represented as a succession of 
N games (27), functionals (8) and (9) are re-written 
as subinterval-wise sums

( ) ( )( ) ( )
1

, ,
N

i i
i

K x t y t K
=

= α β =∑

( ) ( )
)

( ) ( )

( 1) ( )

( 1) ( )

1

1 ;

;

, ,

, ,

i i

N N

N

i i
i

N N

f t d t

f t d t

-

-

-

= t t

 t t 

= α β µ

+ α β µ

∑ ∫

∫          (35)

and

( ) ( )( ) ( )
1

, ,
N

i i
i

H x t y t H
=

= α β =∑

( ) ( )
)

( ) ( )

( 1) ( )

( 1) ( )

1

1 ;

;

, ,

, , ,

i i

N N

N

i i
i

N N

g t d t

g t d t

-

-

-

= t t

 t t 

= α β µ

+ α β µ

∑ ∫

∫          (36)

respectively.
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Proof. Time interval [ ]1 2;t t  can be re-written as

[ ] )
-

- -

=

   = t t t t    




1
( 1) ( ) ( 1) ( )

1 2
1

; ; ;
N

i i N N

i

t t .   (37)

Therefore, the property of countable additivity of 
the Lebesgue integral can be used:

( ) ( )( ) ( ) ( )( ) ( )
[ ]

= µ∫
1 2;

, , ,
t t

K x t y t f x t y t t d t

( ) ( )( ) ( )
)

-
- -

=

    t t t t     

= µ∫




1
( 1) ( ) ( 1) ( )

1

; ;

, ,
N

i i N N

i

f x t y t t d t

( ) ( )( ) ( )
)

( ) ( )( ) ( )

-

-

-

= t t

 t t 

= µ

+ µ

∑ ∫

∫

( 1) ( )

( 1) ( )

1

1 ;

;

, ,

, , .

i i

N N

N

i

f x t y t t d t

f x t y t t d t       (38)

Owing to (28), ( ) = αix t  and ( ) = βiy t , so (38) is 
simplified as follows:

( ) ( )( ) ( )
)

( ) ( )( ) ( )

-

-

-

= t t

 t t 

µ

+ µ

∑ ∫

∫

( 1) ( )

( 1) ( )

1

1 ;

;

, ,

, ,

i i

N N

N

i

f x t y t t d t

f x t y t t d t

( ) ( )
)

( ) ( )

-

-

-

= t t

 t t 

= α β µ

+ α β µ

∑ ∫

∫

( 1) ( )

( 1) ( )

1

1 ;

;

, ,

, ,

i i

N N

N

i i
i

N N

f t d t

f t d t

( )
=

= α β∑
1

, .
N

i i
i

K                   (39)

In staircase game (12), consequently, subinter-
val-wise sum (35) holds in any pure-strategy situ-
ation (5) consisting of staircase-function strategies 
x(t) and y(t). Obviously, subinterval-wise sum (36) is 
proved similarly to (37) – (39).     □ 

It is noteworthy that Theorem 1 can be proved 
also by considering function (10) on a subinterval as 
a function of time t. Denote this function by ( )ψi t . 
Then this function appears to be zero on any other 
subinterval. Subsequently, function (10) is presented 
as the sum of those subinterval functions:

( ) ( )( ) ( )
=

= ψ∑
1

, , ,
N

i
i

f x t y t t t

whereupon (39) is deduced.

Theorem 1 does not provide a method of sol ving 
the staircase game, but it hints about how the game 
might be solved in an easier way. Theorem 1 provides 
a fundamental decomposition of the staircase game 
based on the subinterval-wise summing in (35) and 
(36). This subinterval decomposition allows conside-
ring and solving each game (27) separately, whereup-
on the solutions are stitched (stacked) together.

Reasons for different and irregular sampling

Whichever game type and the number of 
players are, there are two main arguments for consi-
dering different sampling steps at each of the players. 
First, the players cannot agree on the sampling step 
due to the cooperation is excluded. Moreover, the 
players’ ranges of function-strategy values may be 
not equal, i. e.

- ≠ -max min max min ,a a b b

so if even the sampling step length is the same, the 
eventual number of the sampled points may be dif-
ferent. Second, if a player has a wider range of one’s 
function-strategy values then it is likely to be sam-
pled with a greater number of points. This, however, 
does not mean a denser sampling. Meanwhile, the 
sampling densities can be compared only when the 
players use strictly uniform sampling.

In general, the sampling density can vary be-
cause a player may tend to use greater or lesser va-
lues of one’s function-strategy more frequently. This 
is a reason for a denser sampling in a neighbourhood 
of those values. Thus, the sampling (at least at one of 
the players) can be non-uniform (irregular). There-
fore, in a generalized approach to finite approxima-
tion of 2-person games played in staircase-function 
continuous spaces, the players’ samplings (along the 
pure strategy value axis) should be considered diffe-
rent and irregular. The uniform sampling will be just 
a partial case.

Sampling along the pure strategy value axis

In game (27) on subinterval i, the first player 
has its set [ ]min max;a a  of pure strategies, and the sec-
ond player’s pure strategy set is [ ]min max;b b . Let set 
[ ]min max;a a  be sampled non-uniformly (irregularly) 
with M points, ∈  \ {1}M :

( ) { }
{ }{ } [ ]

=

-

=

=

= ⊂

( )

1

1( )
min max min max2

, , ;

Mm

m

Mm

m

A M a

a a a a a      (40)
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by 

=(1)
mina a   and  =( )

max
Ma a ,      (41)

i. e., the endpoints are always included into the sam-
pling. Similarly to this, let set [ ]min max;b b  be sampled 
non-uniformly (irregularly) with J points, ∈  \ {1}J :

( ) { }
{ }{ } [ ]

=

-

=

=

= ⊂

( )

1

1( )
min max min max2

, , ;

Jj

j

Jj

j

B J b

b b b b b       (42)

by 

=(1)
minb b   and  =( )

max .
Jb b          (43)

A pretty trivial case is the roughest sampling by 
M = 2 and J = 2, when 

( ) { } { }= =(1) (2)
min max2 , ,A a a a a          (44)

and

( ) { } { }= =(1) (2)
min max2 , , ,B b b b b         (45)

so only the endpoints are considered without any 
consideration of internal points of the function-strat-
egy value range. It is hardly possible that either of 
samplings (44) and (45) could be sufficient for an 
acceptable finite approximation, but they must be 
nonetheless considered for comparing them to dens-
er samplings.

If either of integers M and J is increased by 1, 
a new sampling must not be of a lower density. In 
other words, a 1-incremented sampling must com-
ply with the previous one. This is a requirement of 
the proper sampling increment.

Definition 1. Sampling

( ) { }
{ }{ } [ ]

+

=

=

Ψ + = λ

= ζ λ ζ ⊂ ζ ζ

1( )

1

( )
min max min max2

1

, , ;

Ss

s

Ss

s

S

     (46)

by ζ < ζmin max
 and ∈  \ {1}S  is a proper sampling in-

crement of sampling

( ) { }
{ }{ } [ ]

=

-

=

Ψ = ζ

= ζ ζ ζ ⊂ ζ ζ

( )

1

1( )
min max min max2

, , ;

Ss

s

Ss

s

S

 
    (47)

if

( ) ( )+ +

= = -
λ - λ < ζ - ζ( 1) ( ) ( 1) ( )

1, 1, 1
max max ,s s s s

s S s S
 (48)

i. e. the S + 1 points in 1-incremented sampling (46) 
are selected denser than S points in sampling (47).

It is worth noting that the proper sampling 
increment does not imply the sampling density in 

a subrange is always increased in a 1-incremented 
sampling. While inequality (48) holds over the en-
tire range between ζmin

 and ζmax
, it may not hold 

between a pair of neighbouring points (see Fig. 1).
 

(1)
minζ = ζ (4)

maxζ = ζ (2)λ (4)λminζ (3)λ
(2) (3)ζ ζ ζmax

(1)
minζ = ζ (4)

maxζ = ζ (2)λ (4)λminζ (3)λ
(2) (3)ζ ζ ζmax

Fig. 1. A 4-point sampling (top) versus a 1-incremented sampling 
(bottom): although inequality (48) holds here (any 
subinterval length on the bottom plot is less than (3) (2)ζ - ζ ),  
the right endpoint subinterval on the bottom plot has 
become a little bit wider ( (4) (3)

max maxζ - λ > ζ - ζ )

With the sampling by (40)–(43), the succession 
of N continuous games (27) by (28)–(33) becomes a 
succession of N bimatrix ×M J  games

{ } { }{ } ( ) ( ){ }
= =

( ) ( )

1 1
, , , , ,

M Jm j
i im j

a b M J M JK H  (49)

with first player’s payoff matrices

( ) ( )
×

 =  , ,i imj M J
M J k M JK           (50)
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whose elements are

( ) ( ) ( )
)( 1) ( )

( ) ( )

;

, , ,
i i

m j
imjk M J f a b t d t

-t t

= µ∫

for  1, 1i N= -                   (51)

and

( ) ( ) ( )
( 1) ( )

( ) ( )

;

, , , ,
N N

m j
Nmjk M J f a b t d t

- t t 

= µ∫  (52)

and with second player’s payoff matrices

( ) ( ), ,i imj M J
M J h M J

×
 =  H           (53)

whose elements are

( ) ( ) ( )
)( 1) ( )

( ) ( )

;

, , ,
i i

m j
imjh M J g a b t d t

-t t

= µ∫

for  1, 1i N= -                   (54)

and

( ) ( ) ( )
( 1) ( )

( ) ( )

;

, , , .
N N

m j
Nmjh M J g a b t d t

- t t 

= µ∫  (55)

So, if integers M and J for game (12) by (28) are 
somehow selected, the staircase game is represented 
as a succession of N bimatrix M J×  games (49). 
The representation implies that staircase game (12) 
and the succession of ordinary (classical) continuous 
2-person games (27) are equivalent.

Definition  2. The succession of N continuous 
2-person games (27) by (28)‒(33) sampled by (40) and 
(42) is called a sampled 2-person game.

With the sampling by (40)–(43), the staircase 
game becomes defined on product ( ) ( ),A M B J×  
which becomes a product of staircase-function fi-
nite spaces by running through all 1, .i N=  Thus, 
staircase game (12) becomes a finite staircase game. 
It might be rendered to a bimatrix game in order to 
obtain a staircase solution (herein, adjective “stair-
case” gives a hint to the type of the game, rather 
than to the structure of its solution). However, there 
is a much easier way to solve a finite staircase game.

Theorem 2. If game (12) on product (13) by 
conditions (1)–(11) is made a staircase game as a 
succession of N continuous 2-person games (27) 
by (28)–(33), whereupon it is sampled by (40) and 
(42), then the respective finite staircase game is al-
ways solved as a stack of successive equilibria of N 
bimatrix games (49) by (50)–(55).

Proof. An equilibrium situation in the bimatrix 
game always exists, either in pure or mixed strate-
gies. Denote by

( ) ( )( )

1
, ,m

i i M
M J p M J

×
 =  P

and

( ) ( )( )

1
, ,j

i i J
M J q M J

×
 =  Q

the mixed strategies of the first and second players, 
respectively, in bimatrix game (49). The respective sets 
of mixed strategies of the first and second players are

( ) ( ){

( )

( )

( )

1

, : , 0,

, 1

M m
i i

M
m

i
m

M J p M J

p M J
=

= ∈


= 


∑

P  p

    (56)

and

( ) ( ){

( )

( )

( )

1

, : , 0,

, 1 ,

J j
i i

J
j

i
j

M J q M J

q M J
=

= ∈


= 


∑

Q  Q

    (57)

so 

( ), ,i M J ∈P p
  ( ), ,i M J ∈Q Q

and 

( ) ( ){ }, , ,i iM J M JP Q              (58)

is a situation in this game, i. e. (58) is a situation on 
subinterval i. Let 

( ) ( ){ }{ }
( ) ( ){ }{ }

* *

1

( )* ( )*

1 1 1

, , ,

, , ,

N

i i
i

N
m j

i iM J i

M J M J

p M J q M J

=

× × =
   =    

P Q

 (59)

be a set of equilibria of N games (49) by (50)–(55). 
The stack of equilibria

( ){ } ( ){ }* ( )*

11 1
, ,

NN m
i i Mi i

M J p M J
×= =

 =  P     (60)

is a stacked strategy of the first player in the staircase 
game (12). The stack of equilibria 

( ){ } ( ){ }* ( )*

11 1
, ,

NN j
i i Ji i

M J q M J
×= =

 =  Q      (61)

is a stacked strategy of the second player in the stair-
case game (12). Then for equilibria (59), inequalities

( ) ( ) ( ) T*, , ,i i iM J M J M J ⋅ ⋅  P K Q

( ) ( ) ( )( ) ( )*

1 1

, , ,
M J

m j
imj i i

m j

k M J p M J q M J
= =

= ∑∑
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( ) ( )
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=
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∫
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imj i i

m j
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( ) ( ) ( ) ( )T* * *, , , ,i i i iM J M J M J v M J = ⋅ ⋅ = P K Q

( ),i M J∀ ∈P p   for  1, 1,i N= -       (62)
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and inequalities
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hold. So, inequalities
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hold as well. Therefore, inequalities (66) and (67) 
along with using Theorem 1 allow concluding that 
the stack of successive equilibria (59) is an equilibri-
um in game (12) by (27) sampled by (40), (42).   □ 

It is quite clear that the solutions of the M J×  
bimatrix games are independent. So these M J×  
bimatrix games can be solved in parallel, without 
caring of the succession. The succession does matter 
when the solutions are stacked (stitched) together to 
form the staircase solution (the solution to the finite 
staircase game). Once N equilibria in the (“smaller” 
or “short”) bimatrix games are found, they are suc-
cessively stacked and the stack, according to Theo-
rem 2, is an equilibrium in the staircase game (12) 
sampled by (40), (42).

A corollary of Theorem 2 is that any combina-
tion of the respective equilibria of the “short” bima-
trix games is an equilibrium of the sampled 2-person 
game. Multiplicity of equilibria on a subinterval tied 
to multiplicity of equilibria on other subintervals 
leads to a sudden growth of the stacked equilibria 
(the stack of the N successive equilibria). Besides, 
there often happen bimatrix games with a continu-
um of equilibria (e. g., the continuum is constituted 
by a linear combination of two equilibrium points). 
This problem makes a fundamental difference be-
tween approximating a zero-sum staircase game and 
a 2-person staircase game (which is not a zero-sum 
one).
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If all N bimatrix games are solved in pure strat-
egies, then stacking the equilibria is fulfilled trivial-
ly. When there is at least an equilibrium in mixed 
strategies for a subinterval, the stacking is fulfilled as 
well implying that the resulting pure-mixed-strategy 
equilibrium of staircase game (12) is realized succes-
sively, subinterval by subinterval, spending the same 
amount of time to implement both pure strategy and 
mixed strategy equilibria (e. g., see [2, 7, 9, 12, 14]). 
Nevertheless, stacking up pure-strategy equilibria and 
mixed-strategy equilibria of M J×  bimatrix games 
(49) can be cumbersome. The best case is when every 
“short” game has a single pure-strategy equilibrium.

Consistency of approximate equilibrium

In the case of the non-cooperative 2-person 
game, the conditions of the appropriate finite approx-
imation are stated by using the known method of ap-
proximating isomorphic infinite 2-person non-coope-
rative games via variously sampling the players’ payoff 
functions and reshaping payoff matrices into bimatrix 
game [20]. The method uses uniform sampling, but 
it is easy to generalize it. There are five items of the 
conditions. The requirement of the smooth sampling 
of the payoff kernel is inapplicable here [24].

First of all, there is an easy-to-find condition 
of the finite approximation appropriateness. It is 
about the equilibrium payoff change, which must 
not change more by the proper sampling increment. 
Inasmuch as an increment is possible from the side 
of both the players, then this condition is a set of 
6N inequalities:
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( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

v M J v M J

v M J v M J

- + +

- - -   for  1,i N= ,  (72)

( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

z M J z M J

z M J z M J

- + +

- - -
( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

z M J z M J

z M J z M J

- + +

- - -   for  1,i N= .  (73)

Conditions (68)–(73) mean that, as the sampling 
density minimally increases, either from the side 
of the first or second player (or both), an equilib-
rium payoff change for both the first and second 
players in an appropriate approximation should not 
grow. 

Definition 3. An approximate equilibrium (59) 
in staircase game (12) is called payoff-{M, J}-con-
sistent if inequalities (68)–(73) hold. Stack (60) is 
called first-player-payoff-{M, J}-consistent if in-
equalities (68), (70), (72) hold. Stack (61) is called 
second-player-payoff-{M, J}-consistent if inequali-
ties (69), (71), (73) hold.

The second condition is the change of the 
equilibrium strategy support cardinality. Denote 
the supports of the equilibrium strategies of the 
players by

( ) { } ( ) { },*

1 1
supp , iU M J M

i u u m
M J m m

= =
= ⊂P      (74)

by the respective support probabilities 

( ){ } ( ),( )*

1
,

i
u

U M Jm
i u

p M J
=

               (75)

and

( ) { } ( ) { },*

1 1
supp , iW M J J

i w w j
M J j j

= =
= ⊂Q      (76)

by the respective support probabilities 

( ){ } ( ),( )*

1
, .

i
w

W M Jj
i w

q M J
=

               (77)

Then 6N inequalities

( ) ( )1, ,i iU M J U M J+    for  1,i N= ,   (78)

( ) ( ), 1 ,i iU M J U M J+    for  1,i N= ,   (79)

( ) ( )1, 1 ,i iU M J U M J+ +    for  1,i N= , (80)

( ) ( )1, ,i iW M J W M J+    for  1,i N= ,   (81)

( ) ( ), 1 ,i iW M J W M J+    for  1,i N= ,   (82)

( ) ( )1, 1 ,i iW M J W M J+ +    for  1,i N=   (83)

require that, by minimally increasing the sampling 
density, either from the side of the first or second 
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player (or both), the cardinalities of the supports not 
decrease.

Definition 4. An approximate equilibrium (59) 
in staircase game (12) is called weakly support-car-
dinality-{M, J}-consistent if inequalities (78)–(83) 
hold. Support (74) is called weakly first-player-sup-
port-cardinality-{M, J}-consistent if inequalities 
(78)–(80) hold. Support (76) is called weakly sec-
ond-player-support-cardinality-{M, J}-consistent if 
inequalities (81)–(83) hold.

Obviously, requirements (78)–(83) can be sup-
plemented (strengthened) by considering a minimal 
decrement of the sampling density. Then another 
6N inequalities

( ) ( ), 1,i iU M J U M J-   for  1,i N= ,   (84)

( ) ( ), , 1i iU M J U M J -   for  1,i N= ,   (85)

( ) ( ), 1, 1i iU M J U M J- -   for  1,i N= , (86)

( ) ( ), 1,i iW M J W M J-   for  1,i N= ,   (87)

( ) ( ), , 1i iW M J W M J -   for  1,i N= ,   (88)

( ) ( ), 1, 1i iW M J W M J- -   for  1,i N=   (89)

are required.
Definition 5. An approximate equilibrium (59) 

in staircase game (12) is called support-cardinali-
ty-{M, J}-consistent if inequalities (78)–(89) hold. 
Support (74) is called first-player-support-cardinal-
ity-{M, J}-consistent if inequalities (78)–(80) and 
(84)–(86) hold. Support (76) is called second-play-
er-support-cardinality-{M, J}-consistent if inequali-
ties (81)–(83) and (87)–(89) hold.

As the sampling density minimally increases, 
the maximal gap between the support indices 
should not increase. Let mu(M, J) and jw(M, J) be 
the respective support indices corresponding to in-
tegers {M, J} on a subinterval by (28). Then 6N 
inequa lities

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

u u
u U M J

m M J m M J+
= + -

 + - + 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

for  1,i N= ,                   (90)

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

u u
u U M J

m M J m M J+
= + -

 + - + 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

for  1,i N= ,                   (91)

( )

( ) ( )
1, 1, 1 1

1

max

1, 1 1, 1

iu U M J

u um M J m M J

= + + -

+ × + + - + + 

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

for  1,i N= ,                   (92)

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

w w
w W M J

j M J j M J+
= + -

 + - + 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

for  1,i N= ,                   (93)

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

w w
w W M J

j M J j M J+
= + -

 + - + 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

for  1,i N= ,                   (94)

( )

( ) ( )
1, 1, 1 1

1

max

1, 1 1, 1

iw W M J

w wj M J j M J

= + + -

+ × + + - + + 

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

for  1,i N=                    (95)

are required. 
Definition 6. An approximate equilibrium (59) 

in staircase game (12) is called weakly sampling-den-
sity-{M, J}-consistent if inequalities (90)–(95) hold. 
Support (74) is called weakly first-player-sampling-den-
sity-{M, J}-consistent if inequalities (90)–(92) hold. 
Support (76) is called weakly second-player-sam-
pling-density-{M, J}-consistent if inequalities (93)–(95) 
hold.

Similarly to strengthening the weak (by Defi-
nition 4) support cardinality to that by Definition 5, 
requirements (90)–(95) can be strengthened by con-
sidering a minimal decrement of the sampling density. 
Then another 6N inequalities

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

u u
u U M J

m M J m M J+
= - -

 - - - 

for  1,i N= ,                    (96)
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( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

u u
u U M J

m M J m M J+
= - -

 - - - 

for  1,i N= ,                    (97)

( )
( ) ( )1

1, , 1
max , ,

i
u u

u U M J
m M J m M J+

= -
 - 

( )

( ) ( )
1, 1, 1 1

1

max

1, 1 1, 1

iu U M J

u um M J m M J

= - - -

+ × - - - - - 



for  1,i N= ,                    (98)

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

( )
( ) ( )1

1, 1, 1
max 1, 1,
i

w w
w W M J

j M J j M J+
= - -

 - - - 

for  1,i N= ,                    (99)

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

( )
( ) ( )1

1, , 1 1
max , 1 , 1
i

w w
w W M J

j M J j M J+
= - -

 - - - 

for  1,i N= ,                    (100)

( )
( ) ( )1

1, , 1
max , ,

i
w w

w W M J
j M J j M J+

= -
 - 

( )

( ) ( )
1, 1, 1 1

1

max

1, 1 1, 1

iw W M J

w wj M J j M J

= - - -

+ × - - - - - 



for  1,i N=                     (101)

are required. 
Definition 7. An approximate equilibrium (59) 

in staircase game (12) is called sampling-densi-
ty-{M, J}-consistent if inequalities (90)–(101) hold. 
Support (74) is called first-player-sampling-densi-
ty-{M, J}-consistent if inequalities (90)–(92) and 
(96)–(98) hold. Support (76) is called second-play-
er-sampling-density-{M, J}-consistent if inequalities 
(93)–(95) and (99)–(101) hold.

Denote by ( )1 ; , ,h i m M J  a polyline whose ver-
tices are probabilities 

( ){ }( )*

1
, ,

Mm
i m

p M J
=

and denote by ( )2 ; , ,h i j M J  a polyline whose ver-
tices are probabilities 

( ){ }( )*

1
, .

Jj
i j

q M J
=

Then, by minimally increasing the sampling density, 
the “neighbouring” polylines should not be farther 
from each other, i. e. inequalities

[ ]
( ) ( )1 10; 1

max ; , , ; , 1,h i m M J h i m M J- +

[ ]
( ) ( )1 10; 1

max ; , 1, ; , ,h i m M J h i m M J- -

for  1,i N= ,                    (102)

[ ]
( ) ( )1 10; 1

max ; , , ; , , 1h i m M J h i m M J- +

[ ]
( ) ( )1 10; 1

max ; , , 1 ; , ,h i m M J h i m M J- -

for  1,i N= ,                    (103)

[ ]
( ) ( )1 10; 1

max ; , , ; , 1, 1h i m M J h i m M J- + +

[ ]
( ) ( )1 10; 1

max ; , 1, 1 ; , ,h i m M J h i m M J- - -

for  1,i N= ,                    (104)

and

[ ]
( ) ( )2 20; 1

max ; , , ; , 1,h i j M J h i j M J- +

[ ]
( ) ( )2 20; 1

max ; , 1, ; , ,h i j M J h i j M J- -

for  1,i N= ,                    (105)

[ ]
( ) ( )2 20; 1

max ; , , ; , , 1h i j M J h i j M J- +

[ ]
( ) ( )2 20; 1

max ; , , 1 ; , ,h i j M J h i j M J- -

for  1,i N= ,                    (106)

[ ]
( ) ( )2 20; 1

max ; , , ; , 1, 1h i j M J h i j M J- + +

[ ]
( ) ( )2 20; 1

max ; , 1, 1 ; , ,h i j M J h i j M J- - -

for  1,i N= ,                    (107)

along with

( ) ( )1 1; , , ; , 1,h i m M J h i m M J- +

( ) ( )1 1; , 1, ; , ,h i m M J h i m M J- -

in  [ ]2 0; 1   for  1,i N= ,         (108)

( ) ( )1 1; , , ; , , 1h i m M J h i m M J- +

( ) ( )1 1; , , 1 ; , ,h i m M J h i m M J- -

in  [ ]2 0; 1   for  1,i N= ,         (109)
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( ) ( )1 1; , , ; , 1, 1h i m M J h i m M J- + +

( ) ( )1 1; , 1, 1 ; , ,h i m M J h i m M J- - -

in  [ ]2 0; 1   for  1,i N= ,         (110)

and

( ) ( )2 2; , , ; , 1,h i j M J h i j M J- +

( ) ( )2 2; , 1, ; , ,h i j M J h i j M J- -

in  [ ]2 0; 1   for  1,i N= ,         (111)

( ) ( )2 2; , , ; , , 1h i j M J h i j M J- +

( ) ( )2 2; , , 1 ; , ,h i j M J h i j M J- -

in  [ ]2 0; 1   for  1,i N= ,         (112)

( ) ( )2 2; , , ; , 1, 1h i j M J h i j M J- + +

( ) ( )2 2; , 1, 1 ; , ,h i j M J h i j M J- - -

in  [ ]2 0; 1   for  1,i N= ,         (113)

are required. 
Definition 8. An approximate equilibrium 

(59) in staircase game (12) is called probabili-
ty-{M, J}-consistent if inequalities (102)–(113) hold. 
The set of probabilities (75) of support (74) is called 
first-player-probability-{M, J}-consistent if inequal-
ities (102)–(104) and (108)–(110) hold. The set 
of probabilities (77) of support (76) is called sec-
ond-player-probability-{M, J}-consistent if inequali-
ties (105)–(107) and (111)–(113) hold.

In accordance with Definitions 3–8, a player’s 
equilibrium strategy (or its support, or the support 
probabilities) may be consistent while an equilibrium 
strategy of the other player is not consistent. This is 
done intentionally because it is not worth cancelling 
the player’s equilibrium strategy consistency when 
for the other player the consistency conditions do 
not hold. 

If inequalities (68)–(73), (78)–(83), (90)–(95), 
(102)–(113) hold for some i, then bimatrix game 
(49), assigned to the subinterval between t(i-1) and t(i), 
has a weakly consistent approximate solution to the 
corresponding continuous game (27) by (28)–(33). 
On this basis, the weak consistency of an approxi-
mate solution to a staircase game (12) is formulated. 

Definition 9. The stack of successive equilibria 
(59) is called a weakly {M, J}-consistent approxi-
mate solution of staircase game (12) if inequalities 
(68)–(73), (78)–(83), (90)–(95), (102)–(113) hold. 

Stack (60) is called weakly first-player-{M, J}-con-
sistent if inequalities (68), (70), (72), (78)–(80), 
(90)–(92), (102)–(104), (108)–(110) hold. Stack 
(61) is called weakly second-player-{M, J}-consistent 
if inequalities (69), (71), (73), (81)–(83), (93)–(95), 
(105)–(107), (111)–(113) hold.

Similarly to strengthening Definitions 4 and 6, 
the weak consistency can be strengthened by add-
ing the requirements with inequalities (84)–(89) and 
(96)–(101).

Definition  10. The stack of successive equi-
libria (59) is called an {M, J}-consistent approxi-
mate solution of staircase game (12) if inequalities 
(68)–(73) and (78)–(113) hold. Stack (60) is 
called first-player-{M, J}-consistent if inequalities 
(68), (70), (72), (78)–(80), (84)–(86), (90)–(92), 
(96)–(98), (102)–(104), (108)–(110) hold. Stack (61) 
is called second-player-{M, J}-consistent if inequali-
ties (69), (71), (73), (81)–(83), (87)–(89), (93)–(95), 
(99)–(101), (105)–(107), (111)–(113) hold.

As in the case of the zero-sum game [23], the 
approximate solution consistency theoretically pro-
poses a better approximation than the weak consis-
tency. The weak consistency notion by Definition 9 
may be thought of as it is decomposed by Definitions 3, 
4, 6, 8. Thus, the consistency notion by Definition 10 is 
decomposed into Definitions 3, 5, 7, 8. 

Payoff consistency relaxation

Although there are six inequalities to be checked 
after solving seven bimatrix games on each subinter-
val, the payoff consistency is checked the easiest and 
fastest. Even if an approximate solution is not weakly 
consistent, it may be, e. g., payoff-consistent. A pay-
off-consistent solution can be sufficient to accept it 
as an appropriate approximate solution [1, 2, 14, 24]. 
However, if a one of 6N inequalities (68)–(73) is vi-
olated, even this type of consistency does not work. 
Meanwhile, the violation may be induced by a very 
small growth of the payoff change at a player (on a 
subinterval). Therefore, it is useful and practically 
reasonable to consider the payoff consistency adding 
a relaxation to inequalities (68)–(73). 

Definition 11. An approximate equilibrium (59) 
in staircase game (12) is called e-payoff-{M, J}-con-
sistent if inequalities

( ) ( )
( ) ( )

* *

* *

, 1,

1, ,

i i

i i

v M J v M J

v M J v M J

- + - e

- -

by  some  0e >   for  1,i N= ,       (114)
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( ) ( )
( ) ( )

* *

* *

, 1,

1, ,

i i

i i

z M J z M J

z M J z M J

- + - e

- -

by  some  0e >   for  1,i N= ,       (115)

( ) ( )
( ) ( )

* *

* *

, , 1

, 1 ,

i i

i i

v M J v M J

v M J v M J

- + - e

- -
  

by  some  0e >   for  1,i N= ,       (116)

( ) ( )
( ) ( )

* *

* *

, , 1

, 1 ,

i i

i i

z M J z M J

z M J z M J

- + - e

- -

by  some  0e >   for  1,i N= ,       (117)

( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

v M J v M J

v M J v M J

- + + - e

- - -
  

by  some  0e >   for  1,i N= ,       (118)

( ) ( )
( ) ( )

* *

* *

, 1, 1

1, 1 ,

i i

i i

z M J z M J

z M J z M J

- + + - e

- - -

by  some  0e >   for  1,i N=        (119)

hold. Stack (60) is called first-player-e-payoff-
{M, J}-consistent if inequalities (114), (116), (118) 
hold. Stack (61) is called second-player-e-payoff-
{M, J}-consistent if inequalities (115), (117), (119) 
hold. 

To ascertain whether the stack of successive 
equilibria (59) is weakly consistent or not, the seven 
bunches of N bimatrix games (49) should be solved, 
where the sampling density is defined by integers 

{ }1, 1 ,M J- -
 { }1, ,M J-

 { }, 1 ,M J -
 { }, ,M J

 
{ }1, ,M J+

 { }, 1 ,M J +
 { }1, 1 .M J+ +

It is worth noting once again that the players select 
their respective integers M and J independently and, 
moreover, the sampling by an integer S means that 
those S - 2 points within an open interval can be 
chosen in any way, not necessarily to be uniformly 
distributed through the interval. Only the require-
ment of the proper sampling increment (by Defi-
nition 1) is followed. Nevertheless, the consisten-
cy meant by some sampling density integers {M, J} 
does not guarantee that both the players will select 
such sampling density. Moreover, it is hard to find 

a continuous 2-person game, for which a consistent 
approximate equilibrium could be determined at ap-
propriately small integers M and J. However, it is 
quite naturally to expect that, as they are increased 
(i. e., the sampling is made denser), the approximate 
equilibria (stacked equilibria) must converge to the 
respective equilibrium of staircase game (12). Here, 
it is quite important to use the phrase “respective 
equilibrium” because the initial staircase game (12) 
may have multiple staircase equilibria or a continu-
um of staircase equilibria (although adjective “stair-
case” gives a hint to the type of the game, rath-
er than to the structure of its equilibria, a player’s 
strategy in a staircase equilibrium is equivalent to a 
staircase function if the strategy is a stack of subin-
terval pure strategies; even when the stack has mixed 
strategies on some subintervals, the eventual view of 
the stacked strategy is staircase-like). Therefore, the 
most appropriate (e. g., profitable for both players) 
staircase equilibrium should be selected. Besides, 
the approximate equilibria must become “more” 
consistent, which means that more inequalities of 
the bunch of inequalities (68)–(73) and (78)–(113) 
must hold.

An example of 2-person game approximation

To give an example of 2-person game approxi-
mation, consider a case in which [ ]0.1 ; 0.9 ,t ∈ π π  the 
set of pure strategies of the first player is

( ) [ ] ( ){ }
[ ]2

, 0.1 ; 0.9 : 4 7

0.1 ; 0.9

X x t t x t= ∈ π π

⊂ π π

 

   (120)

and the set of pure strategies of the second player is

( ) [ ] ( ){ }
[ ]2

, 0.1 ; 0.9 : 1.5 7.5

0.1 ; 0.9 ,

Y y t t y t= ∈ π π

⊂ π π

 

  (121)

where each of the players is allowed to change its 
pure strategy value at time points

{ } { }7 7( )

11
0.1 0.1 .i

ii
i

==
t = π + π

          
(122)

The players’ payoff functionals are

( ) ( )( )

[ ]

( )

2

0.1 ; 0.9

3 0.015

,

2 sin 0.5
8

7
sin 0.2

13
xt

K x t y t

xt

yt e d t

π π

-

π = + 
 

π × - µ 
 

∫

       (123)
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and

( ) ( )( )

[ ]

( )

2

0.1 ; 0.9

2 0.021

,

2 sin 0.25
10

4
sin 1.05 .

5
yt

H x t y t

xt

yt e d t

π π

π = - 
 

π × + µ 
 

∫

       (124)

So, each of the players possesses 8-subinterval 
staircase function-strategies defined on interval 
[ ]0.1 ; 0.9 .π π  Hence, the 2-person staircase game is 
represented as a succession of 8 2-person games (27)

[ ] [ ]{ } ( ) ( ){ }4; 7 , 1.5; 7.5 , , , ,i i i iK Hα β α β  (125)

by 

( ) [ ]4; 7i x tα = ∈  and ( ) [ ]1.5; 7.5i y tβ = ∈
 

[ )0.1 ; 0.1 0.1t i i∀ ∈ π π + π  for 1, 7i =

and [ ]0.8 ; 0.9 ,t∀ ∈ π π              (126)

where the factual payoff of the first player in situa-
tion (29) is

( )
[ )

( )

2

0.1 ; 0.1 0.1

0.0153

, 2 sin 0.5
8

7
sin 0.2 1, 7

13
i

i i i
i

t
i

K t

t e d t i

π π+ π

- α

π α β = α + 
 

π × β - µ ∀ = 
 

∫

 (127)

and

( )
[ ]

( )8

2
8 8 8

0.8 ; 0.9

0.0153
8

, 2 sin 0.5
8

7
sin 0.2 ,

13
t

K t

t e d t

π π

- α

π α β = α + 
 

π × β - µ 
 

∫

  (128)

and the factual payoff of the second player in situ-
ation (29) is

( )
[ )

( )

2

0.1 ; 0.1 0.1

0.0212

, 2 sin 0.25
10

4
sin 1.05 1, 7

5
i

i i i
i

t
i

H t

t e d t i

π π+ π

β

π α β = α - 
 

π × β + µ ∀ = 
 

∫

 (129)

and

( )
[ ]

( )8

2
8 8 8

0.8 ; 0.9

0.0212
8

, 2 sin 0.25
10

4
sin 1.05 .

5
t

H t

t e d t

π π

β

π α β = α - 
 

π β + µ 
 

∫

 (130)

The first player’s payoff functional (123) on each 
subinterval of set

[ ){ } [ ]{ }7

1
0.1 ; 0.1 0.1 , 0.8 ; 0.9

i
i i

=
π π + π π π   (131)

is shown in Fig. 2. Compared to the second play-
er’s payoff functional (124) on each subinterval of 
set (131) shown in Fig. 3, the first player’s payoff 
is a slow-changing functional. On the first subin-
terval [ )0.1 ; 0.2π π  it is roughly a plane. Then, as 
time goes by, the first player’s payoff starts slow-
ly varying. The second player’s payoff on the first 
subinterval is also a slow-varying function. As time 
goes by, it starts fluctuating – the closer the end is, 
the more waves it has.

The irregularity (non-uniformity) in the sam-
pling is modelled as follows:

( )
0

3 3
4

1
m m

a
M

-
= +

-
  and  ( ) ( ) 1

0
m ma a

M

x
= +

for  2, 1m M= -                (132)

by (1) 4,a =  ( ) 7,Ma =  and

( )
0

6 6
1.5

1
j j

b
J
-

= +
-

  and  ( ) ( ) 2
0

j jb b
J

x
= +

for  2, 1j J= -                (133)

by (1) 1.5,b =  ( ) 7.5,Jb =  where x1 and x2 are values of 
two independent random variables distributed nor-
mally with zero mean and unit variance. The values 
resulting from (132) and (133) are sorted in ascend-
ing order, whereupon they are checked whether (40) 
and (42) are true. When either integer M or J is 
increased by 1, samplings (40) and (42) are checked 
whether they satisfy the proper sampling increment 
by Definition 1, i. e. whether inequality (48) holds 
for samplings (47) and (46).

Thus, 8 bimatrix games (49) with the players’ 
payoff matrices (50) and (53) are formed from 8 
2-person games (125), where 

( )
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( )( )
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∫

for  1, 7,i =                   (134)
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and
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    (137)

Although the subinterval length in (134)–(137) does 
not change, every subinterval has its “own” bimatrix 
game due to time variable t is explicitly included 
into the functions under the integral. This means 
that, as time goes by, the players develop their ac-
tions subinterval by subinterval.

Fig. 2. The first player’s payoff kernels (127), (128) on the 8 subintervals of set (131)
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Fig. 3. The second player’s payoff kernels (129), (130) on the 8 subintervals of set (131)

One of the trickiest problems with bimatrix 
games consists in multiple equilibria. To select a 
single equilibrium on each subinterval, a selection 
criterion should be defined. Thus, let an equilibrium 
be selected, by which the sum of the players’ payoffs 
is maximal. Only this equilibrium will be visualized 
and discussed below.

Surely, the equilibrium solutions of these 
games (and the equilibrium solution of the initial 
staircase game) badly depend on the sampling. Sub-
interval-wise equilibrium strategies of the players by 
the sampling for every 3, 10M =  and 3, 10J =  are 
shown in Fig. 4 in an indistinguishable bunch. In 
general, it is well seen that as the sampling densi-
ty changes at such a relatively wide range of small 

sampling integers M and J, the player’s equilibri-
um strategy (in every subinterval game, let alone the 
stacked optimal strategy on interval [ ]0.1 ; 0.9π π ) 
badly varies. The only exception is the first, second, 
and fourth subintervals, on which the equilibrium 
strategies are pure and they do not change. Thus, 
the first player’s equilibrium strategy on subintervals

[ )0.1 ; 0.2 ,π π
 [ )0.2 ; 0.3π π

is 

( )* 7x t =
 [ )0.1 ; 0.3t∀ ∈ π π

and it is

( )* 4x t =
 [ )0.4 ; 0.5 .t∀ ∈ π π         (138)
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The single stable subinterval equilibrium strategy of 
the second player is

( )* 1.5y t =
 [ )0.4 ; 0.5 .t∀ ∈ π π        (139)

The first player’s payoff ( )* ,iv M J  (at the end of the 
i-th subinterval) and the payoff cumulative sum

( ) ( )( )* *

1

, ,
n

n
i

i

v M J v M J
=

= ∑  by 1, 8n =   (140)

are scattered worse than the second player’s payoff 
( )* ,iz M J  and the payoff cumulative sum

( ) ( )( )* *

1

, ,
n

n
i

i

z M J z M J
=

= ∑  by 1, 8n =   (141)

(Fig. 5), where

( ) ( )* (8)*, ,v M J v M J=             (142)

and

( ) ( )* (8)*, ,z M J z M J=             (143)

are the players’ equilibrium payoffs in this staircase 
game.

It is noteworthy that during the first four sub-
intervals there is a single pure strategy equilibrium in 
the subinterval bimatrix game, whichever the sam-
pling is (so the above-mentioned criterion of the 
payoff sum maximization is not applied here at all). 
This fact is seen in Fig. 5 also as the payoffs are less 
scattered by [ ]0.1 ; 0.5t ∈ π π . So, all the equilibria on 
half-interval [ )0.1 ; 0.5π π  are in pure strategies, and 
only during the second half the pure-strategy “mix-
ing” works. There appear multiple equilibria during 
that half, and the payoff sum maximization criterion 
is applied to select the best equilibrium point on the 
subinterval (at given M and J).
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Fig. 4. An indistinguishable bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 3, 10M =  and 
3, 10J =  (here and further below the equilibrium pure strategy is represented by thicker line, pure strategies from the mixed 

equilibrium strategy support are represented by thinner lines)
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Fig. 5. An indistinguishable bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval 
(dots) and their cumulative sum (circles) by 3, 10M =  and 3, 10J =

As the sampling density is further increased up 
to solving 20 20×  bimatrix games, subinterval equi-
librium strategies (both pure and mixed) become 
more “condensed” (Fig. 6), as well as the subin-
terval payoffs and payoffs (140)–(143) do (Fig. 7). 
During the first four subintervals (the first half-inter-
val from 0.1t = π  to 0.5t = π ) there still is a single 
pure strategy equilibrium in the subinterval bimatrix 
game, whichever the sampling is. The first player’s 
equilibrium strategies on the first and fourth subin-
tervals are immobile: they are still

( )* 7x t =
 [ )0.1 ; 0.2t∀ ∈ π π          (144)

and (138). The single stable subinterval equilibrium 
strategy of the second player is (139). So, there is 
the immobile pure strategy equilibrium point on the 
fourth subinterval consisting of (138) and (139). It 
is remarkable that the payoff cumulative sums at the 
end of the fourth subinterval are like to make a bun-
dle (compare Fig. 7 to Fig. 5 at 0.5t = π ).

Nevertheless, the first player’s equilibrium 
payoffs in this staircase game appear to be badly 

scattered in a really wide range. It is likely that 
the growing multiplicity of equilibria influences 
(for instance, there are 187 equilibria on the last 
subinterval over all 64 versions of the sampling, 
whereas there are just 85 equilibria by 3, 10M =  
and 3, 10J = ). Although the range in Fig. 7 is 
narrower than that in Fig. 5 (see the vertical line 
of circles at 0.9t = π ), the result is not satisfacto-
ry. This implies that the first player will definitely 
try to sample denser. The second player seems to 
do that too because the range of payoffs (143) is 
pretty wide also. So, as the sampling density is 
further increased up to solving 30 30×  bimatrix 
games, the condensation of subinterval equilibrium 
strategies (Fig. 8) and payoffs (Fig. 9) progresses. 
The first player’s equilibrium strategies on the first 
and fourth subintervals are still (144) and (138), 
whereas the single stable subinterval equilibrium 
strategy of the second player is (139). To state it in 
advance, this stable part of the staircase game does 
not change at all by any sampling.
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Fig. 6. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 13, 20M =  and 13, 20J =
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Fig. 7. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their 
cumulative sum (circles) by 13, 20M =  and 13, 20J =
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Fig. 8. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 23, 30M =  and 23, 30J =
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Fig. 9. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their 
cumulative sum (circles) by 23, 30M =  and 23, 30J =
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Despite the growing multiplicity of equilibria 
(there are 192 equilibria on the last subinterval over 
all 64 versions of the sampling), now it is quite clear 
that the approximate equilibria (stacked equilibria) 
converge to the respective equilibrium of the staircase 
game by (120)–(124). This is easily seen by comparing 
Fig. 4, 6, 8. The convergence of payoffs is even clear-
er (Fig. 5, 7, 9). The second player’s result seems 
almost satisfactory unlike that of the first player. It 
is noteworthy that the bunch of the first player’s 
payoffs makes a tight bundle at the end of the sixth 
subinterval. This bundle is tighter than the bundle of 
the second player’s payoffs at 0.7t = π  (Fig. 9).

Unfortunately, the players’ equilibrium strate-
gies (stacked equilibria) at these samplings are not 
even e-payoff-{M, J}-consistent by sufficiently great 
e. It is some paradoxical that the first player receives 
e-consistent payoffs earlier than the second player 
does. However, this happens at an inappropriately 
big payoff consistency relaxation. The “paradox” is 
easily explained with that the range of the first play-
er’s payoff is far narrower with respect to that of the 
second player.

Will it be improved when the sampling is 
denser? Solving bigger games up to 40 40×  bima-
trix ones confirms the stacked equilibria conver-
gence (Fig. 10). Compared to Fig. 8, no considerable 

changes in Fig. 10 are visible. The same concerns 
the payoffs (Fig. 11), where the tight bundle of the 
first player’s payoffs is seen at 0.7t = π . The problem 
with the payoff consistency remains, though. The first 
player’s subinterval equilibrium strategies are e-pay-
off-consistent on the first four subintervals by

( )*0.0297 ,iv M Je = ⋅   at  1, 4i =

by every 

34, 39M =   and  34, 39J = .

So, if the staircase game was defined on just interval 
[ ]0.1 ; 0.5π π , the first player’s stacked equilibrium 
strategies would be e-payoff-{M, J}-consistent.

Further increasing sampling density (thickening 
the samplings) does not make sense: stacked equi-
libria do not change (compare Fig. 12 to Fig. 10) 
and the payoffs remain with almost the same ranges 
(compare Fig. 13 to Fig. 11). If the staircase game 
was defined on just interval [ ]0.1 ; 0.5π π , the first 
player’s stacked equilibrium strategies would be 
e-payoff-{M, J}-consistent by

( )*0.016 ,iv M Je = ⋅   at  1, 4i =

by every

44, 49M =   and  44, 49J = .
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Fig. 10. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 33, 40M =  and 33, 40J =
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Fig. 11. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their 
cumulative sum (circles) by 33, 40M =  and 33, 40J =

If it was interval [ ]0.1 ; 0.6π π , the first player’s stacked 

equilibrium strategies would be e-payoff-{M, J}-con-
sistent by

( )*0.2016 ,iv M Je = ⋅   at  1, 5i =

within the same samplings. Herein, if 

( )*0.1073 ,iz M Je = ⋅   at  1, 5i = ,

the approximate equilibrium in the staircase game by 
(120)–(124) would be e-payoff-{M, J}-consistent.

Eventually, this example shows that it may be 
very hard to find such an e for which an approximate 
equilibrium in the staircase game would be e-payoff- 
{M, J}-consistent. The matter is the range of pay-
offs of a player’s may significantly differ from the 
range of the other player’s payoffs. For instance, in 
the staircase game by (120)–(124), the first player’s 
payoff varies roughly between -0.5772 and 0.4894, 
whereas the second player’s payoff varies roughly 
between 0.0002 and 0.6408. Unlike the first play-
er’s payoff, the second player’s payoff is always 
positive.

However, all the approximate equilibria in Fig. 12 
are e-payoff-{M, J}-consistent by e  = 0.4888 (although 
it is too big payoff consistency relaxation). Moreover, 
every approximate equilibrium obtained by 

{ }44, 45, 46, 47, 48, 49M J= ∈

is e-payoff-{M, M}-consistent by e  = 0.3553, whe reas 
every approximate equilibrium obtained by

{ }46, 47, 48, 49M J= ∈
 

is e-payoff-{M, M}-consistent by e  = 0.2043, which is 
relatively not that bad. Although the solution con-
vergence is apparent, the players’ equilibrium strate-
gies will not produce more consistent payoffs by fur-
ther thickening the samplings. This is an evidence of 
that the solution convergence has reached its satu-
ration, and further thickening the samplings will not 
improve the solution approximation nor improve the 
consistency. Therefore, the approximate solution to 
the 2-person staircase game by (120)–(124) can be 
accepted by the independent sampling at both play-
ers with the integers between 23 and 40 (of course, 
not necessarily identical).
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Fig. 12. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by 43, 50M =  and 43, 50J =
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Fig. 13. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their 
cumulative sum (circles) by 43, 50M =  and 43, 50J =
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Discussion of the contribution

Without considering each subinterval bimatrix 
game separately, it would be intractable to straight-
forwardly solve the sampled staircase game. For 
instance, by sampling the 2-person staircase game 
given by (120)–(124), where each of the players 
uses 8-subinterval staircase function-strategies, even 
with, say, M = 24 and J = 23, the resulting 8 824 23×  
bimatrix game (in which, e. g., the first player has 
110075314176 pure strategies) cannot be solved in 
a reasonable time span. Indeed, it is at least hard to 
store those more than 110 billion pure strategies, let 
alone processing them (in searching for equilibria). 
Therefore, solving subinterval bimatrix games (which 
are obviously “smaller”) separately and then sta cking 
(or stitching, in more understandable terms) their 
solutions is a far more efficient way to obtain an ap-
proximate solution of the initial staircase game. The 
applicability of this method may be limited to the 
subinterval bimatrix game size defined by M and J. 
For instance, the computation time has an exponen-
tially-increasing dependence on the size of the square 
matrix. Solving bimatrix games, in which each of the 
players has at least a few hundred pure strategies, may 
be time-consuming in applications requiring fast up-
dates of the solution (when the structure of the initial 
staircase game changes itself).

The (weak) consistency of an approximate 
solution is a criterion of its acceptability. However, 
a (weakly) consistent approximate solution may not 
exist at appropriately small (tractable) M and J. So, 
the consistency decomposition into parts by Defini-
tions 3–8 and particularly isolating an e-payoff con-
sistency by Definition 11 is justified and practically 
applicable.

There are still many open questions, though. 
First, the requirement of the proper sampling in-
crement (Definition 1) given by strict inequality (48) 
may seem not enough rigorous. The matter is that it 
cannot guarantee that the sampled points in a 1-in-
cremented sampling will be closer to each other (see 
Fig. 1). However, the respective requirement in the 
form of inequality

( ) ( )( 1) ( ) ( 1) ( )

1, 1, 1
max mins s s s

s S s S

+ +

= = -
λ - λ < ζ - ζ    (145)

guaranteeing the mentioned property appears to be 
too rigorous. Indeed, if the player follows (145), the 
proper sampling increment is going to fail if there is 
a pair of too close points in the previous sampling.

Second, it is not proved that limits

( )*

,
lim ,iM J

v M J
→∞ →∞   

1,i N∀ =        (146)

and

( )*

,
lim ,iM J

z M J
→∞ →∞   

1,i N∀ =        (147)

exist and they are equal to the respective equilibrium 
values of the subinterval continuous games. Third, if 
limits (146) and (147) exist, it is not proved that this 
is followed by that any approximate equilibrium (59) 
is e-payoff-{M, J}-consistent for any 

*M M  and 

*J J  ( { }* \ 1 ,M ∈   { }* \ 1J ∈  ), let alone the 
problem of the equilibria multiplicity. The inter-in-
fluence among the consistency decomposition parts 
by Definitions 3–8 is also uncertain yet.

The question of a possible reconciliation of the 
difference of the players’ sampling step selection is 
indeed that hard. The players can select their sam-
plings simultaneously but identical samplings are of 
small likelihood. Even if the ranges of function-strat-
egy values are identical and sampling integers M and 
J are the same (i. e., M = J), implying the uniform 
samplings, a player’s sampling may differ from the 
other player’s sampling due to eventual inaccuracies 
in selecting points. In the example of 2-person game 
approximation, this has been modelled by (132) and 
(133) with using normal “noise” in the point selec-
tion. However, at sufficiently great sampling integers 
M and J, not necessarily equal, significant changes 
in M and J are expected not to influence the ap-
proximate solution much (see Fig. 8, 10, 12, and 
Fig. 9, 11, 13). Just like in the above-considered 
example, the player’s equilibrium strategies converge 
subinterval-wise and the resulting staircase strategy 
appears to be an acceptable approximate equilibrium 
strategy in the initial staircase game.

Therefore, the presented method is a significant 
contribution to the 2-person game theory and its finite 
approximation supplement. It allows approximately 
solving 2-person games with staircase-function strate-
gies in a far simpler manner regardless of the fact that 
the players may sample their sets of function-strategy 
values differently [14, 20, 24]. Once the (weak) con-
sistency is confirmed (the respective approximate 
solution should be at least e-payoff consistent by 
Definition 11), the approximate pure-mixed-strate-
gy solution (like those ones of staircase strategies 
in Fig. 8, 10, 12) can be easily implemented and 
practiced [6, 7, 9, 12, 20]. 

Conclusion

A non-cooperative 2-person game played in 
staircase-function continuous spaces is approximat-
ed to a bimatrix game by sampling the players’ pure 
strategy value sets. Each set is irregularly sampled in 
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its own way so that the resulting samplings may be 
of different cardinalities and varying densities. While 
sampled, the requirement of the proper sampling in-
crement (by Definition 1) must be followed – the 
S + 1 points in a 1-incremented sampling must be 
selected denser than S points.

Owing to Theorem 2, the solution of the bi-
matrix game is obtained by stacking the solutions of 
the “smaller” (“shorter”) bimatrix games, each de-
fined on a subinterval where the pure strategy value 
is constant. In this research, the Nash equilibrium 
has been taken as the solution type, although some 
other types might be considered as well. However, 
this is a matter of future research.

The stack of the “smaller” bimatrix game equi-
libria is an approximate solution to the initial stair-
case game. The (weak) consistency of the approxi-
mate solution is studied by how much the payoff and 
equilibrium change as the sampling density mini-
mally increases by the three ways of the sampling 
increment: only the first player’s increment, only 
the second player’s increment, both the players’ in-
crement. Thus, the consistency, equivalent to the 
approximate solution acceptability, is decomposed 
into the payoff (Definition 3), equilibrium strategy 
support cardinality (Definitions 4 and 5), equilibri-
um strategy sampling density (Definitions 6 and 7), 
and support probability consistency (Definition 8). 
The weak consistency itself is a relaxation to the 
consistency, where the minimal decrement of the 
sampling density is ignored. The suggested method 
of finite approximation of staircase 2-person games 
consists in the independent samplings, solving 
“smaller” bimatrix games, and stacking their solu-
tions if they are consistent.

The most important part is the payoff consis-
tency. It is checked in the quickest and easiest way. 
In practice, it is reasonable to consider a relaxed 
payoff consistency. The relaxed payoff consistency 

by (114)–(119) means that, as the sampling density 
minimally increases (in each of the three ways of 
the sampling increment), the game value change in 
an appropriate approximation may grow at most by 
e for each of the players. The equilibrium strategy 
support cardinality (weak) consistency is checked 
even easier, but it takes some resource to calcu-
late the support cardinality, whereas the payoff is 
received “instantly”. In general, the relaxed payoff 
consistency is the main (and often the single) item 
to be controlled for the successful approximation. 
The finite approximation is regarded appropriate if 
at least the respective approximate (stacked) equilib-
rium is e-payoff consistent (Definition 11).

One can notice that, in staircase game (12) 
decomposed into games (27), the player’s pay-
off value depends only on the subinterval length if 
time t is not explicitly included into the function 
under the respective integral in (8) or (9). If the 
subinterval length does not change, and time t is 
not explicitly included into the functions (10), (11) 
under the integrals in (8), (9), then every subinter-
val has the same bimatrix game. The triviality of 
the equal-length-subinterval solution is explained by 
a standstill of the players’ strategies. For instance, 
time variable t explicitly included into functional 
(8) means that the first player may develop one’s 
actions due to the game-modelled system changes 
(develops) as time goes by.

Finite approximation of games played in stair-
case-function continuous spaces will be extend-
ed and advanced also for the case of three players 
sampling their strategy value sets irregularly. The 
independence of the player’s sampling step selec-
tion may have a deeper incompatibility impact in 
the trimatrix game case, where the problem of the 
equilibria multiplicity and the varying profitability 
have far trickier consequences.
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В. В. Романюк

СКІНЧЕННА АПРОКСИМАЦІЯ БЕЗКОАЛІЦІЙНИХ ІГОР ДВОХ ОСІБ, ЩО РОЗІГРУЮТЬСЯ У НЕПЕРЕРВНИХ ПРОСТОРАХ 
СХОДИНКОВИХ ФУНКЦІЙ

Проблематика. Існує відомий спосіб апроксимації неперервних безкоаліційних ігор двох осіб, де наближений розв’язок 
(ситуація рівноваги) вважають прийнятним, якщо він змінюється мінімально за мінімальної зміни кроку дискретизації. Однак цей 
метод не можна прямо застосувати до гри двох осіб, що розігрується зі стратегіями у формі сходинкових функцій. Крім того, слід 
брати до уваги незалежність вибору гравцем кроку дискретизації.

Мета дослідження. Мета полягає у тому, щоб розробити метод скінченної апроксимації ігор двох осіб, які розігруються 
у неперервних просторах сходинкових функцій, беручи до уваги, що гравці, ймовірно, дискретизують множини своїх чистих 
стратегій самостійно.

Методика реалізації. Для досягнення зазначеної мети формалізується гра двох осіб, в якій стратегії гравців є сходинковими 
функціями часу. У такій грі множина чистих стратегій гравця є континуумом сходинкових функцій часу, і час вважають дискретним. 
Умови дискретизації множини можливих значень чистої стратегії гравця викладаються так, що гра стає визначеною на добутку 
скінченних просторів сходинкових функцій. Загалом крок дискретизації у кожного гравця різний, і розподіл вибіркових точок 
(значень функції-стратегії) неоднорідний.

Результати дослідження. Подано метод скінченної апроксимації ігор двох осіб, які розігруються у неперервних просторах 
сходинкових функцій. Метод полягає у нерегулярній дискретизації множини значень чистої стратегії гравця, знаходженні найкращих 
ситуацій рівноваги у “менших” біматричних іграх, кожна з яких визначена на підінтервалі, де значення чистої стратегії є постійним, 
й укладанні цих рівноважних ситуацій, якщо вони є узгодженими. Уклад рівноваг у “менших” біматричних іграх є наближеною 
рівновагою у вихідній сходинковій грі. Досліджується (слабка) узгодженість наближеної рівноваги тим, наскільки змінюється 
виграш та рівноважна ситуація, коли щільність дискретизації мінімально збільшується трьома способами: лише приріст у першого 
гравця, лише приріст у другого гравця, приріст в обох гравців. Узгодженість розкладається на узгодженість виграшів, узгодженість 
потужності спектра рівноважної стратегії, узгодженість щільності дискретизації рівноважної стратегії та узгодженість спектральних 
імовірностей. Із практичної точки зору доцільно розглядати релаксовану узгодженість виграшів.

Висновки. Запропонований метод скінченної апроксимації сходинкових ігор двох осіб полягає у незалежних дискретизаціях, 
розв’язуванні “менших” біматричних ігор за прийнятний проміжок часу та укладенні їхніх розв’язків, якщо вони є узгодженими. 
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Скінченне наближення вважають прийнятним, якщо принаймні відповідна наближена (укладена) рівновага є узгодженою 
за e-виграшами.

Ключові слова: теорія ігор; функціонал виграшів; стратегія у формі сходинкової функції; біматрична гра; нерегулярна 
дискретизація; узгодженість наближеної рівноваги.
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