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FINITE APPROXIMATION OF NON-COOPERATIVE 2-PERSON GAMES PLAYED
IN STAIRCASE-FUNCTION CONTINUOUS SPACES

Background. There is a known method of approximating continuous non-cooperative 2-person games, wherein an
approximate solution (an equilibrium situation) is considered acceptable if it changes minimally by changing the sam-
pling step minimally. However, the method cannot be applied straightforwardly to a 2-person game played with stair-
case-function strategies. Besides, the independence of the player’s sampling step selection should be taken into account.
Objective. The objective is to develop a method of finite approximation of 2-person games played in staircase-function
continuous spaces by taking into account that the players are likely to independently sample their pure strategy sets.
Methods. To achieve the said objective, a 2-person game, in which the players’ strategies are staircase functions of time,
is formalized. In such a game, the set of the player’s pure strategies is a continuum of staircase functions of time, and
the time is thought of as it is discrete. The conditions of sampling the set of possible values of the player’s pure strategy
are stated so that the game becomes defined on a product of staircase-function finite spaces. In general, the sampling
step is different at each player and the distribution of the sampled points (function-strategy values) is non-uniform.
Results. A method of finite approximation of 2-person games played in staircase-function continuous spaces is pre-
sented. The method consists in irregularly sampling the player’s pure strategy value set, finding the best equilibria in
“smaller” bimatrix games, each defined on a subinterval where the pure strategy value is constant, and stacking the
equilibrium situations if they are consistent. The stack of the “smaller” bimatrix game equilibria is an approximate
equilibrium in the initial staircase game. The (weak) consistency of the approximate equilibrium is studied by how
much the payoff and equilibrium situation change as the sampling density minimally increases by the three ways of the
sampling increment: only the first player’s increment, only the second player’s increment, both the players’ increment.
The consistency is decomposed into the payoff, equilibrium strategy support cardinality, equilibrium strategy sampling
density, and support probability consistency. It is practically reasonable to consider a relaxed payoff consistency.
Conclusions. The suggested method of finite approximation of staircase 2-person games consists in the independent
samplings, solving “smaller” bimatrix games in a reasonable time span, and stacking their solutions if they are con-
sistent. The finite approximation is regarded appropriate if at least the respective approximate (stacked) equilibrium is
g-payoff consistent.

Keywords: game theory; payoff functional; staircase-function strategy; bimatrix game; irregular sampling; approximate
equilibrium consistency.

Introduction best possible payoff under conditions of uncertainty

generated by actions of the other player |3, 4]. The

Non-cooperative 2-person games model pro-
cesses where two sides referred to as persons or
players struggle for optimizing the limited resources
distribution implying as real-world resources, fa-
cilities, tools, funds, energy, etc., as well as more
abstract objects whose utility is assessed as the play-
er’s payoff [1, 2]. A possible action of the player is
called its (pure) strategy used to receive closely the

strategy can be as a simple (point) action, as well
as a process consisting of an order of simple ac-
tions [1, 5, 6]. In the simplest case, the player’s pure
strategy is a short action whose duration is negligi-
ble. This negligible-duration action is represented as
just a time point. In a more complicated case, the
player’s pure strategy is a function of time [4, 7, 8],
so the player’s action is a complex process [6, 9].
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Such strategies are used in multistage optimization
[10], planning and control processes [11], schedul-
ing [12], multistage corrective action processes [13],
etc., modelled under uncertainties and influence of
other competitive factors [5, 6, 9].

Whichever the pure strategy form is, the sim-
plest 2-person game is a bimatrix game. Any bimatrix
game has an equilibrium — a finite number or con-
tinuum of equilibria, either in pure or mixed strat-
egies [1, 2]. Infinite or continuous 2-person games,
where the players’ payoff functions are meshes or
surfaces of two variables defined on finite-dimen-
sional compact Euclidean subspaces, are far more
complicated [1, 2, 7, 14]. A simple example of the
subspace is a unit square [2, 15]. Even if the sur-
faces do not have a discontinuity, the equilibrium
is not always determinable as opposed to bimatrix
games [2]. Moreover, 2-person games defined on
open (or half-open) subspaces (e. g., open square)
may not have an equilibrium at all [2, 16, 17].
Therefore, rendering a 2-person game to a bimatrix
one is a crucial task in game modelling as it allows
assuredly having a game solution (equilibrium point)
as a pair of the players’ best strategies. Without ren-
dering, a 2-person game may have an intractable
equilibrium (if any), when the equilibrium strategy
support is infinite or continuous (e. g., see the ex-
amples in [1, 7, 16, 17]).

A 2-person game, in which the player’s strategy
is a function (e. g., of time), is a far more compli-
cated case. In such games, the payoff kernel must be
a functional mapping every pair of functions (pure
strategies of the players) into a real value [7, 8,
18, 19]. A game played with such function-strategies
is rendered down to a bimatrix game only when each
of the players possesses a finite set of one’s func-
tion-strategies. Obviously, the rendering is theoret-
ically impossible if the set of the player’s strategies
is infinite.

The question of rendering an infinite game to
a finite one was studied in [14, 20]. Regardless of
antagonism of the players’ interests, it consists in
approximating the infinite game so that the approx-
imated game would not lose the properties of the
initial game. There are two fundamental conditions
in the game approximation core that allow rendering
a 2-person game with strategies as functions down
to a bimatrix game: the time sampling and finiteness
of possible values of the player’s function-strategy.

According to the first fundamental condition, a
time interval, on which the pure strategy is defined,
should be broken into a set of subintervals, on which
the strategy could be (maybe, approximately) con-

sidered constant. It can be done according to the
rules of a system to be game-modelled, where the
administrator (supervisor, manager, controller, etc.)
does always define (or constrain) the form of the
strategies players will use [1, 8, 10, 11, 13]. More-
over, any process is interpreted static on a sufficient-
ly short time span. Henceforward, the time sampling
condition is considered automatically (by default)
fulfilled. Then the function-strategy becomes stair-
case. To keep the terminology simple, the respective
game can be called staircase.

The second fundamental condition requires
that the set of possible values of the player’s func-
tion-strategy be finite. It is imposed for the natural
reason that the number of factual actions of the play-
ers (in any game) is always finite. While the players
may use strategies of whichever form they want, the
number of their actions has a natural limit (unless
the game is everlasting; but the everlasting game is
an unreal mathematical object) [5, 7, 9, 10, 12].
Thus, the set of function-strategies used in a 2-per-
son game is finite anyway. Therefore, any non-ev-
erlasting 2-person game is played as if it is a bima-
trix game. However, the size of this bimatrix game
depends on how each of the players has decided on
discretizing (i. e., finitely approximating) one’s set
of function-strategy values. It does not seem that
a player is likely to independently discretize the set
identically to the other player’s discretization.

A method of approximating continuous 2-per-
son games is known from [8, 14, 20]. It is similar to
the method for approximating continuous zero-sum
games, but the principal difference is that there may
be multiple equilibria in a 2-person game whose
payoffs (unlike in a zero-sum game) are not equiv-
alent. Theoretically, the continuous game approxi-
mation is based on sampling (discretizing) either the
players’ payoff kernels or the sets of players’ pure
strategies. Basically, this is the same as it results in
finite sets of players’ payoffs.

In general, an approximate solution is consid-
ered acceptable if it changes minimally by changing
the sampling step minimally. This is the main re-
quirement to accept an approximate solution. Ob-
viously, the independence of the player’s sampling
step selection should be taken into consideration.

Problem statement

Although it is impossible to apply the approxi-
mation method straightforwardly to a 2-person game
played with staircase-function strategies, a part of
the staircase 2-person game considered on a time
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subinterval where the players’ strategies are constant
can be directly approximated by the method. Issued
from the impossibility of solving 2-person games
played in staircase-function continuous spaces, the
objective is to develop a method of finite approx-
imation of such games by taking into account the
independence of the player’s sampling step selection
(i. e., the players are likely to independently sample
their pure strategy sets). The approximate solution
type is the Nash equilibrium. For achieving the ob-
jective, the following six tasks are to be fulfilled:

1. To formalize a non-cooperative 2-person
game, in which the players’ strategies are functions
of time.

2. To formalize a non-cooperative 2-person
game, in which the players’ strategies are staircase
functions. In such a game, the set of the player’s
pure strategies is a continuum of staircase functions
of time, and the time is thought of as it is discrete.

3. To state conditions of sampling the set of
possible values of the player’s pure strategy so that
the game be defined on a product of staircase-func-
tion finite spaces. By this, the sampling step is to be
different at each player, and the distribution of the
sampled points (function-strategy values) must not
be necessarily uniform.

4. To state conditions of the appropriate finite
approximation applicable to the non-cooperative
2-person game. This implies also the staircase-func-
tion space convergence.

5. To discuss the independence of the player’s
sampling step selection. The reconciliation of the
difference of the players’ sampling step selection on
the background of multiplicity of equilibria is to be
discussed as well. Eventually, the applicability and
significance of the finite approximation method for
the game theory is to be argued for.

6. To make an unbiased conclusion on the
contribution to the game theory field. An outlook of
how the research might be extended and advanced
is to be made as well.

A 2-person game played with strategies as
functions

Denote a pure strategy of the first and second
players by x(7) and y(f), respectively, where each of
the players uses one’s strategy during (time) interval
[#; 8] by t, > ¢,. Functions x(#) and y(7) defined al-
most everywhere on interval [#; #,] are bounded, i. e.

amin < x(t) g amax by amin < amax (1)

and

bmin < y(t) < bmax by bmin < bmax‘ (2)

Besides, the square of the function-strategy is pre-
sumed to be Lebesgue-integrable [21]. The sets of
the players’ pure strategies are

<x(t)<a

min ~X max

X={x(t),te[t;t],1,<t,:a

by amin< amax} < ]L2 [tla tz] (3)
and
Y= {y(t)’ Ie [tl; t2]7 tl < t2 : bmin < y(t) < bmax
by bmin < bmax} = I[‘2 [tl; tz]9 (4)

respectively. Each of sets (3) and (4) is a rectangular
functional space, in which every element is a
bounded function of time by (1) and (2).

The first player’s payoff in situation

{x (1), y(1)} (5)
is
K (x(t), (1)) (6)
and the second player’s payoff in situation (5) is
H(x(1), ¥(1)). (7)

Payoffs (6) and (7) are presumed to be integral
functionals [21]:

K(x(0),5(0)= [ F(x(0), v(0).0)du(r) ®)

[h5 0]

(10)
and
g(x(1), y(1),1) (11)

of x(7) and y(7) explicitly including time z. Therefore,
the continuous 2-person game

(X YLK (x (1) p (1), H (x(0), y(1))}) (12)
is defined on product

X xY cL,[t; t,]x 1Ly [#; 1,] (13)
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of rectangular functional spaces (3) and (4) of play-
ers’ pure strategies. It is worth noting that the game
continuity is defined by the continuity of spaces (3)
and (4), whereas payoff functionals (8) and (9) still
can have discontinuities. In general, each of payoff
functionals (6) and (7) may have a terminal com-
ponent like

[h: 1]

by some terminal functions [22]

T, (x(1), y(1,). 1) (16)
and
T, (x(1,), »(t,), 1) (17)

depending on only the final state of the player’s
strategy, but this case is not to be considered here.

A zero-sum game defined on product (13) [23]
is a partial case of 2-person game (12). However,
whereas the zero-sum game has an optimal solution
whose payoff is constant (whichever the number of
saddle points is), the 2-person game not being a
zero-sum game does not have an optimal solution.
It has an equilibrium point or may have multiple
equilibria, at which the players’ payoffs may induce
contradictions with respect to payoff profitability
and fairness [1, 2, 9, 24].

As it has been argued above, 2-person game
(12), in which the players’ strategies are functions
of time, in practical reality is played discretely
during time interval [7,; #,]. The time step is the
same for each of the players because it is presumed
to be established either by the rules of the system
game-modelled or by the administrator. Herein,
the influence of terminal functions (16), (17) is
presumed to be embedded into integral functionals

(8), 9).

A 2-person with  staircase-function

strategies

game

As the 2-person game is played discretely during
a time interval, then there is a number of subinter-
vals at which the player’s pure strategy is constant.

Denote this number by N, where N e N\ {1}. Al-
though the player’s pure strategy can still have a
continuum of possible values, it is now a staircase
function having only N different values. So, there
are N-1 time points at which the staircase-func-
tion strategy can change its value. These points are

~yN-1
{rm}' . » where
i
=17 <t <@ < <™V <™ =g (18)

The breaking by (18) is not necessarily to be equidis-

tant. However, points {r(“}{\j0 are the same for each
of the players. Besides, points {r""}fv

i=l

. do not change

as the 2-person game is repeated. For real practice,
surely, only a finite number of repetitions is consid-
ered (the game does not last forever).

What happens at each of those “internal”

{rm}i;l points, at which the player can “switch”

the line? To answer this question, it is sufficient to
imagine that the strategy value starts changing be-
fore exactly arriving at moment ¢=1®. But the start
should be as late as possible (that is, as close as
possible to moment 7= t?). In terms of the func-
tional analysis, this is called to be right-continuous
[21, 23]. Thus, the staircase-function strategies are
right-continuous: if the strategy value is changed at
t=1%, then

limx (2" +¢) = x(x") (19)
and

limy (9 +¢) = (=) (20)

g
for i =1, N -1, whereas

lig(};x(r(” —¢) = x () (1)
and

lim y (< &) = y (<) (22)

e—0
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for i =1, N —1. As an exception,

{jgglx(am —¢)=x (") (23)
£—0
and
limy () —e)=y(<V). @4
e—0
SO
x (V) = x(zV) (25)
and
y(,c(N*I)) — y(T(N)). (26)

As both functions x(f) and y(7) are constant
vie[r™; ") for i=1,N-1
and Vte [r“"‘”; r‘N)},

then game (12) can be thought of as it is a succes-
sion of N continuous 2-person games

<{[amin; amax]’ [bmin; bmax ]}7 {K((I,—, i)’ H (ai’
defined on rectangle

[amin 5 amax ] x [bmin 5 bmax ]

) @7)

by
ai = x(t) € [amin; amax] and Bi = y(t) € [bmin; bmax]
vie[r™" ") for i=1,N-1

and Ve[t M, (28)

where the factual first player’s payoff in situation

{a;, B;} (29)
is
K (o, B;) = A [ (04, By 1) du (1),
(TVI:T:LN——I (30)
and
K(ay,By)= S oy, By, t)du(t), (31)

[t(Nfl)”:(N)}

and the factual second player’s payoff in situation
(29) is

H(ai’ i)_ I g(OL,-, Bi’t)dli(t)
[Tu—l); )
Vi=1,N-1 (32)
and
H (o, By)= g(ay, By, 1)du(r). (33)
[T(Nfl);T(N)J

Henceforward, game (12) equivalent to the succession
of N continuous 2-person games (27) by (28)—(33)
is called staircase. A pure-strategy situation in stair-
case game (12) is a succession of N situations

{{a"’ i}}i}\il

in games (27). In staircase game (12), the set of
the player’s pure strategies is still a continuum of
staircase functions of time, but the time is discrete
according to the breaking by (18). This time-dis-
cretization property, implying constant values of the
players’ strategies on every subinterval, allows, in
addition to the succession of N continuous 2-person
games (27), decomposing staircase game (12) with
respect to the (staircase) payoff.

Theorem 1. In a pure-strategy situation (5) of
staircase game (12), represented as a succession of
N games (27), functionals (8) and (9) are re-written
as subinterval-wise sums

K(x(1),y(1)) = il((oc,, /)=

=1

(34)

= j ‘ f(aﬂ iat)d“(t)

+ S oy, By, t)du(?) (35)
[T‘N ”;r“"’]
and
H(x(t), y(’)) = ;H(an )=
=Y | glesB.n)du()
i= I:T(zfl);.[(r])
+ j g(oy, By, t)du(t), (36)
[r(N");r‘N)]
respectively.
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Proof. Time interval [#; 1, ] can be re-written as
N-1

[tl; 12] :{ |: (i~ l) (:))} |: (N—l); ’E(N>:|. (37)
i=1

Therefore, the property of countable additivity of
the Lebesgue integral can be used:

- [

[h5 6]

K(x(1),y

- J

{,\Ul [t(ifl); r(‘.))}U[rlN’l); t(N)}

i=1

 y(1), 1)du(7)
S (x(1), v (1), 1)du(7)

-1

IO

+ j F(x(2), y(2), t)du(2). (38)
I:T(Nfl);r(/\/)}
Owing to (28), x(#)=a, and y(t)=p,, so (38) is
simplified as follows:
% 1, 0000
o[ (0.0 1) du ()
[T(an;r(/v)}
=Y £ (0 By 1)dn (1)
i=1 [tu—l);tm)
+ | Floy. By, 1)du(?)
[I(Nfl);T(N):I
= iK(ai’ - (39)

1

In staircase game (12), consequently, subinter-
val-wise sum (35) holds in any pure-strategy situ-
ation (5) consisting of staircase-function strategies
x(#) and y(#). Obviously, subinterval-wise sum (36) is
proved similarly to (37) — (39). O

It is noteworthy that Theorem 1 can be proved
also by considering function (10) on a subinterval as
a function of time . Denote this function by v, ().
Then this function appears to be zero on any other
subinterval. Subsequently, function (10) is presented
as the sum of those subinterval functions:

S (x(8), (1), 1) = 2w (1),

i=1

whereupon (39) is deduced.

Theorem 1 does not provide a method of solving
the staircase game, but it hints about how the game
might be solved in an easier way. Theorem 1 provides
a fundamental decomposition of the staircase game
based on the subinterval-wise summing in (35) and
(36). This subinterval decomposition allows conside-
ring and solving each game (27) separately, whereup-
on the solutions are stitched (stacked) together.

Reasons for different and irregular sampling

Whichever game type and the number of
players are, there are two main arguments for consi-
dering different sampling steps at each of the players.
First, the players cannot agree on the sampling step
due to the cooperation is excluded. Moreover, the
players’ ranges of function-strategy values may be
not equal, i. e.

amax - amin # bmax - bmin’
so if even the sampling step length is the same, the
eventual number of the sampled points may be dif-
ferent. Second, if a player has a wider range of one’s
function-strategy values then it is likely to be sam-
pled with a greater number of points. This, however,
does not mean a denser sampling. Meanwhile, the
sampling densities can be compared only when the
players use strictly uniform sampling.

In general, the sampling density can vary be-
cause a player may tend to use greater or lesser va-
lues of one’s function-strategy more frequently. This
is a reason for a denser sampling in a neighbourhood
of those values. Thus, the sampling (at least at one of
the players) can be non-uniform (irregular). There-
fore, in a generalized approach to finite approxima-
tion of 2-person games played in staircase-function
continuous spaces, the players’ samplings (along the
pure strategy value axis) should be considered diffe-
rent and irregular. The uniform sampling will be just
a partial case.

Sampling along the pure strategy value axis

In game (27) on subinterval i, the first player
has its set [a,,,; @, ] of pure strategies, and the sec-
ond player’s pure strategy set is [b,;.; b, | Let set

[@ins e ] De sampled non-uniformly (irregularly)
with M points, M € N\ {1}:

A(M)={a"}"

= {amin’ {a(M)}:’:;l > amax} < [amin; amax] (40)
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by
and a™ =aqa (41)

i. e., the endpoints are always included into the sam-
plmg Similarly to this, let set [, ; b,..] be sampled
non-uniformly (irregularly) with J points, J € N\ {1} :

( ) {b(l)}

{bmlm {b(j)} ’ max} [bmm’ max]

@ _
a - amin

max

(42)

by
bV =b  and bV =bh

min max *

(43)

A pretty trivial case is the roughest sampling by
M =72 and J =2, when

A (2) = {a(l)’ a(2)} = {amin’ amax} (44)
and
B(2) = {b(l)’ b(2)} = {bmin! bmax}’ (45)

so only the endpoints are considered without any
consideration of internal points of the function-strat-
egy value range. It is hardly possible that either of
samplings (44) and (45) could be sufficient for an
acceptable finite approximation, but they must be
nonetheless considered for comparing them to dens-
er samplings.

If either of integers M and J is increased by 1,
a new sampling must not be of a lower density. In
other words, a l-incremented sampling must com-
ply with the previous one. This is a requirement of
the proper sampling increment.

Definition 1. Sampling

w(S+1)=po)"
= {Qminv { (5)} ) C.;max} < [len’ Cmax] (46)

by ¢ . <¢. . and S e N\{l} isaproper sampling in-
crement of sampling

¥ ()= (V1
={Cmm,{C”)}S: ,Cmax} [Conins Goax] — (47)
if
ax (A =21 <

(48)

(s+1) (s)
max ( )
s=1, 51 5 —6)

i. e. the S+ 1 points in 1-incremented sampling (46)

are selected denser than S points in sampling (47).
It is worth noting that the proper sampling
increment does not imply the sampling density in

a subrange is always increased in a l-incremented
sampling. While inequality (48) holds over the en-
tire range between ¢ . and ¢, it may not hold
between a pair of neighbouring points (see Fig. 1).

N _ 2 3 4
C.y( ! - Qmin Q k g( k C.)max - Q( k

C_amin 7\4(2) 7\.(3) 7\.(4) C.?max

Fig. 1. A 4-point sampling (top) versus a 1-incremented sampling
(bottom): although inequality (48) holds here (any
subinterval length on the bottom plot is less than (& — (@),
the right endpoint subinterval on the bottom plot has
become a little bit wider (¢, —A* > ¢ . -¢®)

With the sampling by (40)—(43), the succession
of N continuous games (27) by (28)—(33) becomes a
succession of N bimatrix M xJ games

({fa )2 (64 0 (0,0, 1, (00, ) 49

with first player’s payoff matrices

)= [k (M. T)],,

(50)



IHOPOPMALLINHI TEXHONOT 1T, CACTEMHUW AHATI3 TA KEPYBAHHS 23

whose elements are

kimj (M, J) - f(a(’”), b(j), t)du(t)
[t(””;t("))
for i=1, N -1 (51)
and
Ky (M, J) = f(a™, b, 1)du(t), (52)

[r‘”’”;r"v)]

and with second player’s payoff matrices

H (M, J)=[h,(M.))],, 3
whose elements are
h,, (M, J)= [T(il)”{”)g(g(m’ b, 1)du (1)
for i=1, N-1 (54)
and
Py (M, ) = g(a™, b9, t)du(r). (55)

[T(N—l);t(N)}

So, if integers M and J for game (12) by (28) are
somehow selected, the staircase game is represented
as a succession of N bimatrix M xJ games (49).
The representation implies that staircase game (12)
and the succession of ordinary (classical) continuous
2-person games (27) are equivalent.

Definition 2. The succession of N continuous
2-person games (27) by (28)-(33) sampled by (40) and
(42) is called a sampled 2-person game.

With the sampling by (40)—(43), the staircase
game becomes defined on product A(M)x B(J),
which becomes a product of staircase-function fi-
nite spaces by running through all i =1, N. Thus,
staircase game (12) becomes a finite staircase game.
It might be rendered to a bimatrix game in order to
obtain a staircase solution (herein, adjective “stair-
case” gives a hint to the type of the game, rather
than to the structure of its solution). However, there
is a much easier way to solve a finite staircase game.

Theorem 2. If game (12) on product (13) by
conditions (1)—(11) is made a staircase game as a
succession of N continuous 2-person games (27)
by (28)—(33), whereupon it is sampled by (40) and
(42), then the respective finite staircase game is al-
ways solved as a stack of successive equilibria of N
bimatrix games (49) by (50)—(55).

Proof. An equilibrium situation in the bimatrix
game always exists, either in pure or mixed strate-
gies. Denote by

P (M,J)= [p,.(”’) (M, J)]IXM
and
Q (M. J)=[q"(M.J)],

the mixed strategies of the first and second players,
respectively, in bimatrix game (49). The respective sets
of mixed strategies of the first and second players are

P={P (M, J)eR": p"™(M,J)>0,

Z (M, J _1} (56)
and
Q={Q,(M,J)eR’ :q" (M, J)=0,
qu (M, J)= } (57)
SO
P(M,J)eP, Q,(M,J)eQ,
and
{P.(M,J),Q,(M,J)} (58)

is a situation in this game, i. e. (58) is a situation on
subinterval i. Let

(B (M,0),Q; (M. 1))}

={{[ (ML) (e (ML) }}NI (59)

be a set of equilibria of N games (49) by (50)—(55).
The stack of equilibria

(Lo ()]

is a stacked strategy of the first player in the staircase
game (12). The stack of equilibria

(Q (M) ={lg (M, )] 1"

is a stacked strategy of the second player in the stair-
case game (12). Then for equilibria (59), inequalities

K, (M,J)-[Q (M, J)]

{P (M, J)}l_ (60)

(61)

P, (M,J).

i‘d klmj (

1j=1

Ma

) o™ (M, T ) (M, )

3
I
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M J . M J .
=2 22" (M, J)g"" (M, J) <22 (M. J)g”" (M, J)
m=1 j=1 m=1 j=1
x j f(a™, b9, t)du(r) x j g(a ""’,b“’,t)dp(t)
[r""’;r‘”) [Tu—l);rm)
M J M J
<2 p" (M, T)g" (M, ) =2 2 Iy (M) p™" (M, J) g (M, ])
m=1 j=1 m=1 j=1
x [ f(a™ b2, 1)du(r) =P (M,J)-H,(M,J)-[Q (M, )] =z (M, J)
I:T(Vfl);,[(rl)
v VQ,(M,J)e@ for i=T, N-1,  (64)
=3k, (M, ) p™ (M, J)g"" (M, J)
m=1 =1 P,(M,J)H,(M,J) [QN (M, J)]
* * T *
SO ) K08 0) [0 00 J—)] _ ) = 35y (M. 1) A0 (M, 7)) (M, )
VP (M, J)eP for i=1, N—1,  (62) Pl o ) L
M J
. T - W (M, g (M, J
Py (M,.J)- K, (M, J)-[Q; (M, )] 2,2 (M. 1) (M. T)
M J . a(m), b(j),t d t
=355 Ky (M0 57 (M )" (M, ) X[ﬂ,m!mg( Ju(0)
m=1 j=1
L - SN (e g9
=S P (M, ) g (M, ) lelp (M, J)
m=1 j=1 m=1 j=
« J f(a(”’), b(j)’ t)du(t) X I g(a(m), b<J)’ [)dp(l‘)
[T<,\r,|),1(,\,,} [T(Nfl);t(NlJ
M ML * P)*
<SSP (M, ) g (M, J) =222 Py (M) P (ML T ) gy (M, T)
m=1 j=1 m=1 j=1
< f(a('”),b(”,t)du(t) =P, (M,J)-H, (M, J)[Q, (M, )]
5] —zy (M, J) vQy(M.J)e@ (65

2 Ky (M, J) P (M, ) g (M, )

=P, (M, J)-K, (M, J)-[Q, (M, ])]
=v(M,J) VP, (M,J)eP (63)

and inequalities
P (M,J)-H,(M,J)-[Q MJ)]

M
m=1

):
By (M, J) p™ (M, J) g (M, J)

M\

~
I

M=

=3 " (M, J)g” (M, J)
1 j=1
< [ g(a™, b, 1)du(r)
[TU—l);tm)

3
I

hold. So, inequalities
S P(M.J) K, (M. ) [Q (M. ])] +

J>-[Q’;v (M, 0]

N-1 M J .
2.2 ki (M, ) P (M, ) g™ (M, J)
i=l m=1 j=1
M J
+2 2 Koy (M 1) P (M, T ) g™ (M, T)
m=1 j=1
N-1

X[ j ., f(a™, b, t)dp(t)j
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M J
+2. 2 o (M, J)gy" (M. J)

f(a(m), b(j), l‘)du(l‘)

f(a(’”), b, t)du(t))

ST (M) a (M)

m=1 j=1
x [ f(a™, b, 1)du(r)
I:.[(N*I);I(V)J
N-1 M J . "
=22 2k (ML) ™ (M, ) g™ (M, T)
i=l m=1 j=1
M J . ok
+ 2 2 Ky (M T) P37 (M, T )" (M, )
m=1 j=1
1

- fP.*(M,J)-K,.(M, J)-[Qi (M, J)]T
+Py (M, J)-K, (M

> (M) -

J)-[Qy (M, )]

v (M, J) (66)

and

=

-1

P (M, J)H,(M,J)-[Q(M,J])]

1

+P

-1

*

(M,J)-H, (M,

J
2y (M

1j=1

J
Z;th/
-1/ M J

(ZZW (M. )q (M, ])

m=1 j=1

J)-[Qy (M. )]

P (M, J)g? (M, J)

=

=

%Ma

i

+ (M,J)p

Ma

(m) (M J) (J)(M,J)

=1

§

2

i=

x[ ) ,')[_ m)g(a(m)’ b, t)d},t(t)j

Y (M

m=1 j=1

X[ (Nfl-)[ (N)]g(a(M), b(J), t)du(t)

(j) (M, J)

M J
S A (M. )" (M. )

g(a(m), b(j)’ t)du(t)

(ML J)H (ML) [Q (M, )]

+Py (M, J)-H, (M, J)[Q, (M, ])]

z (M, J)= (67)

< (M. )

hold as well. Therefore, inequalities (66) and (67)
along with using Theorem 1 allow concluding that
the stack of successive equilibria (59) is an equilibri-
um in game (12) by (27) sampled by (40), (42). []

It is quite clear that the solutions of the M x J
bimatrix games are independent. So these M xJ
bimatrix games can be solved in parallel, without
caring of the succession. The succession does matter
when the solutions are stacked (stitched) together to
form the staircase solution (the solution to the finite
staircase game). Once N equilibria in the (“smaller”
or “short”) bimatrix games are found, they are suc-
cessively stacked and the stack, according to Theo-
rem 2, is an equilibrium in the staircase game (12)
sampled by (40), (42).

A corollary of Theorem 2 is that any combina-
tion of the respective equilibria of the “short” bima-
trix games is an equilibrium of the sampled 2-person
game. Multiplicity of equilibria on a subinterval tied
to multiplicity of equilibria on other subintervals
leads to a sudden growth of the stacked equilibria
(the stack of the N successive equilibria). Besides,
there often happen bimatrix games with a continu-
um of equilibria (e. g., the continuum is constituted
by a linear combination of two equilibrium points).
This problem makes a fundamental difference be-
tween approximating a zero-sum staircase game and
a 2-person staircase game (which is not a zero-sum
one).
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If all N bimatrix games are solved in pure strat-
egies, then stacking the equilibria is fulfilled trivial-
ly. When there is at least an equilibrium in mixed
strategies for a subinterval, the stacking is fulfilled as
well implying that the resulting pure-mixed-strategy
equilibrium of staircase game (12) is realized succes-
sively, subinterval by subinterval, spending the same
amount of time to implement both pure strategy and
mixed strategy equilibria (e. g., see [2, 7, 9, 12, 14]).
Nevertheless, stacking up pure-strategy equilibria and
mixed-strategy equilibria of M xJ bimatrix games
(49) can be cumbersome. The best case is when every
“short” game has a single pure-strategy equilibrium.

Consistency of approximate equilibrium

In the case of the non-cooperative 2-person
game, the conditions of the appropriate finite approx-
imation are stated by using the known method of ap-
proximating isomorphic infinite 2-person non-coope-
rative games via variously sampling the players’ payoff
functions and reshaping payoff matrices into bimatrix
game [20]. The method uses uniform sampling, but
it is easy to generalize it. There are five items of the
conditions. The requirement of the smooth sampling
of the payoff kernel is inapplicable here [24].

First of all, there is an easy-to-find condition
of the finite approximation appropriateness. It is
about the equilibrium payoff change, which must
not change more by the proper sampling increment.
Inasmuch as an increment is possible from the side
of both the players, then this condition is a set of
6N inequalities:

Vi (M, J)=v] (M +1,7)

<

v (M =1,0)=v; (M, J)| for i=1, N, (68)

o (M, J)=2 (M+1,7)
<l (M =1,0)=2 (M, J)| for i=1, N, (69)
Vi (M, J)=v, (M, J +1)
<Py, (M, J -1)-v(M,J)| for i=1,N, (70)
| (M, J) =2 (M, J +1)|

<

G (M, J=1)-z (M, J) for i=1,N, (71)

|v:(M,J)—v,.*(M+1,J+1)|

<

v, (M =1,J =1)=v, (M, J)| for i=1,N, (72)

& (M, J) =2 (M +1,J +1)

<

5 (M=1,J=1)=z (M, J)| for i=1,N.(73)

Conditions (68)—(73) mean that, as the sampling
density minimally increases, either from the side
of the first or second player (or both), an equilib-
rium payoff change for both the first and second
players in an appropriate approximation should not
grow.

Definition 3. An approximate equilibrium (59)
in staircase game (12) is called payoft-{M, J}-con-
sistent if inequalities (68)—(73) hold. Stack (60) is
called first-player-payoff-{M, J}-consistent if in-
equalities (68), (70), (72) hold. Stack (61) is called
second-player-payoff-{ M, J}-consistent if inequali-
ties (69), (71), (73) hold.

The second condition is the change of the
equilibrium strategy support cardinality. Denote
the supports of the equilibrium strategies of the
players by

supp P (M, J) = {m,},\"" < {m}) (74)
by the respective support probabilities
(o (m, )" (75)
and
supp@; (M. J) = (. 1" < (i, (76)
by the respective support probabilities
fatr (v, )" an
Then 6N inequalities
U(M~+1,J)2U,(M,J) for i=1, N, (78)

U,(M,J+1)>U,(M,J) for i=T, N, (79)

UM+1,J+1)2U,(M,J) for i=1, N, (80)

W.(M+1,J)>W,(M,J) for i=1, N, (81)

W, (M, J+1)=W,(M,J) for i=1, N, (82)

W.(M+1,J+1)=W,(M,J) for i=1, N (83)

require that, by minimally increasing the sampling
density, either from the side of the first or second
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player (or both), the cardinalities of the supports not
decrease.

Definition 4. An approximate equilibrium (59)
in staircase game (12) is called weakly support-car-
dinality-{M, J}-consistent if inequalities (78)—(83)
hold. Support (74) is called weakly first-player-sup-
port-cardinality-{M, J}-consistent if inequalities
(78)—(80) hold. Support (76) is called weakly sec-
ond-player-support-cardinality-{ M, J}-consistent if
inequalities (81)—(83) hold.

Obviously, requirements (78)—(83) can be sup-
plemented (strengthened) by considering a minimal
decrement of the sampling density. Then another
6N inequalities

U,(M,J)>U,(M-1,J) for i=1,N, (84)

U, (M,J)>U,(M,J-1) for i=1, N, (85)
U (M,J)>U,(M~1,J-1) for i=1, N, (86)
W, (M, J)=W,(M-1,J) for i=1,N, (87)
W,(M,J)=W,(M,J 1) for i=1, N, (88)

W.(M,J)>W,(M-1,J 1) for i=1, N (89)
are required.

Definition 5. An approximate equilibrium (59)
in staircase game (12) is called support-cardinali-
ty-{M, J}-consistent if inequalities (78)—(89) hold.
Support (74) is called first-player-support-cardinal-
ity-{M, J}-consistent if inequalities (78)—(80) and
(84)—(86) hold. Support (76) is called second-play-
er-support-cardinality-{M, J}-consistent if inequali-
ties (81)—(83) and (87)—(89) hold.

As the sampling density minimally increases,
the maximal gap between the support indices
should not increase. Let m (M, J) and j (M, J) be
the respective support indices corresponding to in-
tegers {M, J} on a subinterval by (28). Then 6 N
inequalities

max [m
u=, U, (ML Ty 4t

(M +1,J)=m,(M+1,J)]

< max
u=1, U;(M, 7)1

[0 (M, ) -

for i=1, N,

m, (M, J)]

(90)

max |:
u=1, U,(M, J+1)-1

My (M, J +1)=m, (M, J +1)]

<ulrun¢[mu+1 (M, J)-m, (M, J)]
for i=1, N, 91)
__max
u=1, U;(M+1, J+1)-1
x[m (M +1,J+1)=m, (M +1,J +1)]
< max_ [m“l (M, J)-m,(M,J)]
for i=1, N, (92)
N %[m (M+1,7)-j,(M+1,J)]
<2 L (M )= (M, )]
for i=1, N, (93)
. ]V[{I(l}%ixm[]wn (M, J+1)-j, (M, J+1)]
€ Ry L (M. 0) =1, (M. )]
for i=1, N, (94)
_ max
w=l, Wi (M+1, J+1)-1
X[J'Wﬂ (M+1,J+1)—jW(M+1,J+1):|
<W:%[jw (M, J)-j,(M,J)]
for i=1, N (95)

are required.

Definition 6. An approximate equilibrium (59)
in staircase game (12) is called weakly sampling-den-
sity-{ M, J}-consistent if inequalities (90)—(95) hold.
Support (74) is called weakly first-player-sampling-den-
sity-{M, J}-consistent if inequalities (90)—(92) hold.
Support (76) is called weakly second-player-sam-
pling-density-{ M, J}-consistent if inequalities (93)—(95)
hold.

Similarly to strengthening the weak (by Defi-
nition 4) support cardinality to that by Definition 5,
requirements (90)—(95) can be strengthened by con-
sidering a minimal decrement of the sampling density.
Then another 6 N inequalities

ul{/nax [mlul M, J) M(M’J)J
< e[, (ML) =m, (M =1, J)]

for i=1, N, (96)
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Ly, (M. T)=m, (M. ])]
<M%[m“1 (M,J-1)=m,(M,J-1)]
for i=1, N, (97)
ul{/ni[mwl M J) (M’J):|
< _max
u=1, U;(M~1,J-1)-1
X[ (M =1, =1)=m, (M ~1,J -1)]
for i=1,N, (98)
e L (M, J) =y (M )]
f?*[f M=1,0)=j. (M =1,7)]
for i=1, N, (99)
Somax [ (M. T) =, (M. )]
<W%[NH (M, J=1)-j,(M,J-1)]
for i=1, N, (100)
wm[JWH M J) jW(M’ J)]
< max
w=l, W, (M-1,J-1)-1
X[y (M =10 =1)= j, (M =1,J = 1)]
for i=1, N (101)

are required.
Definition 7. An approximate equilibrium (59)
in staircase game (12) is called sampling-densi-
ty-{M, J}-consistent if inequalities (90)—(101) hold.
Support (74) is called first-player-sampling-densi-
ty-{M, J}-consistent if inequalities (90)—(92) and
(96)—(98) hold. Support (76) is called second-play-
er-sampling-density-{ M, J}-consistent if inequalities
(93)—(95) and (99)—(101) hold.
Denote by A, (i; m, M, J) a polyline whose ver-
tices are probabilities
{ " (M J)} -1’
and denote by A, (i; j, M, J) a polyline whose ver-
tices are probabilities
{ h* ( M, J)}

4"

Then, by minimally increasing the sampling density,
the “neighbouring” polylines should not be farther
from each other, i. e. inequalities

r[r()1;e1ﬁ(|hl(i; m, M, J)—-h (i m,M+1,J)|

<r[r(};aﬁ<|hl (ism, M =1, J) =y (i5m, M, J )

for i=1, N, (102)
r{ggﬂ/q (i;m, M, J)~h (i;m, M, J+1)|

<r[r.};alli(|/q (i m, M, J =1)=hy (ism, M, J)

for i=1, N, (103)

max|hl (i5m, M, J)=h (i;m, M +1,J +1)|

[0: 1]

<fﬁ%§|h iym, M = 1,0 =1)=h (i;m, M, J)

for i=1, N, (104)
and
r[r01;=13<|h2(i;j,M,J)—hz(i;j,M+1,J)|
<max|f (is j, M =1, J) = (5 j, M. J )|
for i=1, (105)
<max|f, (55 j, M, J =1) = by (i5 j, M. J )|
for i=1, N, (106)

max|h, (is j, M, J) = by (is j, M +1,J +1)

<maxhy (i, j, M =1,J =1)= by (is j, M, )

for i=1, N, (107)
along with
| (55 m, M, T~ by (15, m, M+ 1,0
<[t (i m, M =1, 0) by (i m, M, )|
in L,[0;1] for i=1, N, (108)
| (i m, M Y= By (i m, ML T 1)
< (5 m, M. T =)=y (35 m, M T )|
in L,[0;1] for i=1, N, (109)
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I (i m, M, T) =B (i m, M+ 1,0 + 1))
<[ty (i m, M =1, 0 =1) = h (i m, M, J)|

in L,[0;1] for i=1, N, (110)
and
s (i G ML T) = by (i G, M+ 1,0 )|
<[ (i g M =1,0) = by (i3 j, M, T )
in L,[0;1] for i=1, N, (111)
[ (i . ML T) =y (i3, M, T +1)]
< (5 G ML T 1) =y (i, ML T |
in L,[0;1] for i=1, N, (112)
| (i G, ML )= by (i3 4, M+ 1, +1))
< (5 4o M =1, 0 =1)=hy (i5 j, M, T
in L,[0;1] for i=1, N, (113)
are required.
Definition 8. An approximate equilibrium

(539) in staircase game (12) is called probabili-
ty-{M, J}-consistent if inequalities (102)—(113) hold.
The set of probabilities (75) of support (74) is called
first-player-probability-{ M, J}-consistent if inequal-
ities (102)—(104) and (108)—(110) hold. The set
of probabilities (77) of support (76) is called sec-
ond-player-probability-{ M, J}-consistent if inequali-
ties (105)—(107) and (111)—(113) hold.

In accordance with Definitions 3—8, a player’s
equilibrium strategy (or its support, or the support
probabilities) may be consistent while an equilibrium
strategy of the other player is not consistent. This is
done intentionally because it is not worth cancelling
the player’s equilibrium strategy consistency when
for the other player the consistency conditions do
not hold.

If inequalities (68)—(73), (78)—(83), (90)—(95),
(102)—(113) hold for some i, then bimatrix game
(49), assigned to the subinterval between 1D and 1,
has a weakly consistent approximate solution to the
corresponding continuous game (27) by (28)—(33).
On this basis, the weak consistency of an approxi-
mate solution to a staircase game (12) is formulated.

Definition 9. The stack of successive equilibria
(59) is called a weakly {M, J}-consistent approxi-
mate solution of staircase game (12) if inequalities
(68)—(73), (78)—(83), (90)—(95), (102)—(113) hold.

Stack (60) is called weakly first-player-{M, J}-con-
sistent if inequalities (68), (70), (72), (78)—(80),
(90)—(92), (102)—(104), (108)—(110) hold. Stack
(61) is called weakly second-player-{M, J}-consistent
if inequalities (69), (71), (73), (81)—(83), (93)—(95),
(105)—(107), (111)—(113) hold.

Similarly to strengthening Definitions 4 and 6,
the weak consistency can be strengthened by add-
ing the requirements with inequalities (84)—(89) and
(96)—(101).

Definition 10. The stack of successive equi-
libria (59) is called an {M, J}-consistent approxi-
mate solution of staircase game (12) if inequalities
(68)—(73) and (78)—(113) hold. Stack (60) is
called first-player-{M, J}-consistent if inequalities
(68), (70), (72), (78)—(80), (84)—(86), (90)—(92),
(96)—(98), (102)—(104), (108)—(110) hold. Stack (61)
is called second-player-{M, J}-consistent if inequali-
ties (69), (71), (73), (81)—(83), (87)—(89), (93)—(95),
(99)—(101), (105)—(107), (111)—(113) hold.

As in the case of the zero-sum game [23], the
approximate solution consistency theoretically pro-
poses a better approximation than the weak consis-
tency. The weak consistency notion by Definition 9
may be thought of as it is decomposed by Definitions 3,
4, 6, 8. Thus, the consistency notion by Definition 10 is
decomposed into Definitions 3, 5, 7, 8.

Payoff consistency relaxation

Although there are six inequalities to be checked
after solving seven bimatrix games on each subinter-
val, the payoff consistency is checked the easiest and
fastest. Even if an approximate solution is not weakly
consistent, it may be, e. g., payoff-consistent. A pay-
off-consistent solution can be sufficient to accept it
as an appropriate approximate solution [1, 2, 14, 24].
However, if a one of 6 N inequalities (68)—(73) is vi-
olated, even this type of consistency does not work.
Meanwhile, the violation may be induced by a very
small growth of the payoff change at a player (on a
subinterval). Therefore, it is useful and practically
reasonable to consider the payoff consistency adding
a relaxation to inequalities (68)—(73).

Definition 11. An approximate equilibrium (59)
in staircase game (12) is called e-payoff-{M, J}-con-
sistent if inequalities

v (M, J)=v, (M +1,J)-¢
< (M -1,0)=v] (M, J)

by some £>0 for i=1, N, (114)
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& (M, J) -2 (M +1,J) -2

<Je; (M ~1,0) -5 (M, )

by some >0 for i=1 N, (115)

v, (M, J)=v, (M, J +1)-¢
< (M, J=1)=v] (M, J)

by some >0 for i=1 N, (116)

5 (M, J)=2 (M, J +1) ¢

by some £>0 for i=1, N, (117)

Vi (M, J)=v] (M +1,J +1)-¢
< (M -1,J -1)=v] (M, J])

by some >0 for i=1 N, (118)

G (M, J)=z (M+1,J+1)-¢

e (M 1,0 1)~z (M1,

by some >0 for i=1 N (119)
hold. Stack (60) is called first-player-g-payoft-
{M, J}-consistent if inequalities (114), (116), (118)
hold. Stack (61) is called second-player-e-payoff-
{M, J}-consistent if inequalities (115), (117), (119)

hold.

To ascertain whether the stack of successive
equilibria (59) is weakly consistent or not, the seven
bunches of N bimatrix games (49) should be solved,
where the sampling density is defined by integers

(M-1,J -1}, (M-1,J}, {M,J-1}, {M,J},
(M +1,J}, {M,J+1}, {M+1,J+1}.

It is worth noting once again that the players select
their respective integers M and J independently and,
moreover, the sampling by an integer .S means that
those §'— 2 points within an open interval can be
chosen in any way, not necessarily to be uniformly
distributed through the interval. Only the require-
ment of the proper sampling increment (by Defi-
nition 1) is followed. Nevertheless, the consisten-
cy meant by some sampling density integers {M, J}
does not guarantee that both the players will select
such sampling density. Moreover, it is hard to find

a continuous 2-person game, for which a consistent
approximate equilibrium could be determined at ap-
propriately small integers M and J. However, it is
quite naturally to expect that, as they are increased
(i. e., the sampling is made denser), the approximate
equilibria (stacked equilibria) must converge to the
respective equilibrium of staircase game (12). Here,
it is quite important to use the phrase “respective
equilibrium” because the initial staircase game (12)
may have multiple staircase equilibria or a continu-
um of staircase equilibria (although adjective “stair-
case” gives a hint to the type of the game, rath-
er than to the structure of its equilibria, a player’s
strategy in a staircase equilibrium is equivalent to a
staircase function if the strategy is a stack of subin-
terval pure strategies; even when the stack has mixed
strategies on some subintervals, the eventual view of
the stacked strategy is staircase-like). Therefore, the
most appropriate (e. g., profitable for both players)
staircase equilibrium should be selected. Besides,
the approximate equilibria must become “more”
consistent, which means that more inequalities of
the bunch of inequalities (68)—(73) and (78)—(113)
must hold.

An example of 2-person game approximation

To give an example of 2-person game approxi-
mation, consider a case in which ¢ [O.In; 0.97:], the
set of pure strategies of the first player is

X ={x(r), 1 €[0.1%; 0.9n] : 4<x (1) <7}

< L, [0.17; 0.9n] (120)

and the set of pure strategies of the second player is

Y ={y(r), 1 €[0.1m 0.97] : 1.5< p (1)< 7.5}

< L, [0.1m; 0.97], (121)

where each of the players is allowed to change its
pure strategy value at time points

() = {0.0n+0.1mi}) . (122)
The players’ payoff functionals are
K (x(1), y(1))
= .f 2sin? (O.Sxt +Ej
[0.]1[; 0.91[] 8
03 Tn) ooisx
xsin (O.2yt—ﬁje du(?) (123)
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and
H(x(1), y(r))

- j 2sin> (0.25xt -
10

[O.In; 0.91‘{]

xsin’ (I.OSyt +45—nje°'°21y’du(t). (124)

So, each of the players possesses 8-subinterval
staircase function-strategies defined on interval
[0.1m; 0.97]. Hence, the 2-person staircase game is
represented as a succession of 8 2-person games (27)

({4 7], 1.5 751}, {K (a,, B,), H (o1, B;)}) (125)
by
o, =x(t)e[4;7] and B, = y(1) e[1.5 7.5]
v e[0.1ni; 0.1 + 0.1ni) for i=1,7

and Vvt [0.87; 0.97], (126)

where the factual payoff of the first player in situa-
tion (29) is

K(a;,B;)=

[0.11[; 0417[+0417[i)

2sin’ (O.Scxl.t + gj

vi=1,7 (127)

xsin’ (0.2[3,1 — I—;[] el dp (1)

and

K(OLS, Bs) =

[0.87[; 0.9n]

2sin’ (O.Socxt + gj
<sin’ (O.ZBSt - Z—’;j ey (1), (128)

and the factual payoff of the second player in situ-
ation (29) is

H(O‘i’ i)=

[0.17; 0.17+0. 17 )

xsin’ (I.OSBit + %) " d (1)

2sin’ (O.ZSait —ij
10

vi=1,7 (129)
and

H(ayg, Bg) =

[0.87:; 0A9n]

sin’ (1.05[381 + 45—n] "M dy(1).

2sin’{ 0.250,f - —
10

(130)

The first player’s payoff functional (123) on each
subinterval of set

{{[0.17; 0.1+ 0.1mi)),[0.8% 0.9q]|  (131)

1 b

is shown in Fig. 2. Compared to the second play-
er’s payoff functional (124) on each subinterval of
set (131) shown in Fig. 3, the first player’s payoff
is a slow-changing functional. On the first subin-
terval [O.In; 0.2m) it is roughly a plane. Then, as
time goes by, the first player’s payoff starts slow-
ly varying. The second player’s payoff on the first
subinterval is also a slow-varying function. As time
goes by, it starts fluctuating — the closer the end is,
the more waves it has.

The irregularity (non-uniformity) in the sam-
pling is modelled as follows:

ay" = 4+M and a" =a\" +i
M -1 M
for m=2, M -1 (132)
by a =4, a™ =7, and
B = 15,076 4 po_ B =)
J -1 J
for j=2,J-1 (133)

by b =1.5, b =7.5, where &, and &, are values of
two independent random variables distributed nor-
mally with zero mean and unit variance. The values
resulting from (132) and (133) are sorted in ascend-
ing order, whereupon they are checked whether (40)
and (42) are true. When either integer M or J is
increased by 1, samplings (40) and (42) are checked
whether they satisfy the proper sampling increment
by Definition 1, i. e. whether inequality (48) holds
for samplings (47) and (46).

Thus, 8 bimatrix games (49) with the players’
payoff matrices (50) and (53) are formed from 8§
2-person games (125), where

K,y (M, J) = 2sin’ [0.5a<m>r +Ej

8

[04115; 041n+041ni)

xsin® (0.2b(’)t - %) e gy (1)

for i=1,7, (134)
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Ky (M, J) = 2sin’ [O.Sa“”)t + Ej
" [0.87 0.95] 8 Hg (M, J)
.3 ) TR 00154 -2 (m) T
xsin’| 0.26Yt —— |e du(t) (135) = J. 2sin’] 0.25¢"™f — —
13 [0.87; 0.97] 10
and xsin? (I.OSb(”t + 4?”} " du (1), (137)
s (M, J)
., . T Although the subinterval length in (134)—(137) does
= ,[ 2sin [0'25‘1 - Ej not change, every subinterval has its “own” bimatrix
[0.17; 0.17+0.17i)

xsin’ (I.OSb(f’t + %) """ dp (1)

for i=17, (136)

game due to time variable 7 is explicitly included
into the functions under the integral. This means
that, as time goes by, the players develop their ac-
tions subinterval by subinterval.

Fig. 2. The first player’s payoff kernels (127), (128) on the 8 subintervals of set (131)
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Fig. 3. The second player’s payoff kernels (129), (130) on the 8 subintervals of set (131)

One of the trickiest problems with bimatrix
games consists in multiple equilibria. To select a
single equilibrium on each subinterval, a selection
criterion should be defined. Thus, let an equilibrium
be selected, by which the sum of the players’ payofts
is maximal. Only this equilibrium will be visualized
and discussed below.

Surely, the equilibrium solutions of these
games (and the equilibrium solution of the initial
staircase game) badly depend on the sampling. Sub-
interval-wise equilibrium strategies of the players by
the sampling for every M =3,10 and J =3,10 are
shown in Fig. 4 in an indistinguishable bunch. In
general, it is well seen that as the sampling densi-
ty changes at such a relatively wide range of small

sampling integers M and J, the player’s equilibri-
um strategy (in every subinterval game, let alone the
stacked optimal strategy on interval [0.1w; 0.9x])
badly varies. The only exception is the first, second,
and fourth subintervals, on which the equilibrium
strategies are pure and they do not change. Thus,
the first player’s equilibrium strategy on subintervals

[0.17; 0.2m), [0.27; 0.37)
is
x (1)=7 Vte[0.1x; 0.3n)
and it is

x (t)=4 vte [0.4n; 0.5m). (138)
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The single stable subinterval equilibrium strategy of and
the second player is . .
Py (M, )= (M, T) (143)

y (t)=1.5 Vvt e[0.4m;0.57). (139)

The first player’s payoff v; (M, J) (at the end of the
i-th subinterval) and the payoff cumulative sum

v (M, J):Zn:v:(M, J) by n=1,8 (140)
i=1

are scattered worse than the second player’s payoff
z; (M, J) and the payoff cumulative sum

2 (M, J):Zn:z:(M, J) by n=1,8 (141)
i=1

(Fig. 5), where
v*(M, J)=v(8)*(M, J) (142)
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58~
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55
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are the players’ equilibrium payoffs in this staircase
game.

It is noteworthy that during the first four sub-
intervals there is a single pure strategy equilibrium in
the subinterval bimatrix game, whichever the sam-
pling is (so the above-mentioned criterion of the
payoff sum maximization is not applied here at all).
This fact is seen in Fig. 5 also as the payoffs are less
scattered by 7 €[0.1x; 0.5x]. So, all the equilibria on
half-interval [0.1z; 0.57) are in pure strategies, and
only during the second half the pure-strategy “mix-
ing” works. There appear multiple equilibria during
that half, and the payoff sum maximization criterion
is applied to select the best equilibrium point on the
subinterval (at given M and J).
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Fig. 4. An indistinguishable bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M = 3,10 and
J =3,10 (here and further below the equilibrium pure strategy is represented by thicker line, pure strategies from the mixed
equilibrium strategy support are represented by thinner lines)
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Fig. 5. An indistinguishable bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval
(dots) and their cumulative sum (circles) by M =3,10 and J =3, 10

As the sampling density is further increased up
to solving 20 x 20 bimatrix games, subinterval equi-
librium strategies (both pure and mixed) become
more “condensed” (Fig. 6), as well as the subin-
terval payoffs and payoffs (140)—(143) do (Fig. 7).
During the first four subintervals (the first half-inter-
val from 7 =0.1x to ¢ =0.57) there still is a single
pure strategy equilibrium in the subinterval bimatrix
game, whichever the sampling is. The first player’s
equilibrium strategies on the first and fourth subin-
tervals are immobile: they are still

x (t)=7 Vvte[0.1r; 0.2n) (144)
and (138). The single stable subinterval equilibrium
strategy of the second player is (139). So, there is
the immobile pure strategy equilibrium point on the
fourth subinterval consisting of (138) and (139). It
is remarkable that the payoff cumulative sums at the
end of the fourth subinterval are like to make a bun-
dle (compare Fig. 7 to Fig. 5 at 1 =0.5%).
Nevertheless, the first player’s equilibrium
payoffs in this staircase game appear to be badly

scattered in a really wide range. It is likely that
the growing multiplicity of equilibria influences
(for instance, there are 187 equilibria on the last
subinterval over all 64 versions of the sampling,
whereas there are just 85 equilibria by M =3, 10
and J =3,10). Although the range in Fig. 7 is
narrower than that in Fig. 5 (see the vertical line
of circles at #=0.97), the result is not satisfacto-
ry. This implies that the first player will definitely
try to sample denser. The second player seems to
do that too because the range of payoffs (143) is
pretty wide also. So, as the sampling density is
further increased up to solving 30 x 30 bimatrix
games, the condensation of subinterval equilibrium
strategies (Fig. 8) and payoffs (Fig. 9) progresses.
The first player’s equilibrium strategies on the first
and fourth subintervals are still (144) and (138),
whereas the single stable subinterval equilibrium
strategy of the second player is (139). To state it in
advance, this stable part of the staircase game does
not change at all by any sampling.
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Fig. 7. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their
cumulative sum (circles) by M =13,20 and J =13,20
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Fig. 8. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =23,30 and J =23, 30
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Fig. 9. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their
cumulative sum (circles) by M =23,30 and J =23, 30




38

KPI Science News

2023/ 1-4

Despite the growing multiplicity of equilibria
(there are 192 equilibria on the last subinterval over
all 64 versions of the sampling), now it is quite clear
that the approximate equilibria (stacked equilibria)
converge to the respective equilibrium of the staircase
game by (120)—(124). This is easily seen by comparing
Fig. 4, 6, 8. The convergence of payoffs is even clear-
er (Fig. 5, 7, 9). The second player’s result seems
almost satisfactory unlike that of the first player. It
is noteworthy that the bunch of the first player’s
payoffs makes a tight bundle at the end of the sixth
subinterval. This bundle is tighter than the bundle of
the second player’s payoffs at # = 0.7z (Fig. 9).

Unfortunately, the players’ equilibrium strate-
gies (stacked equilibria) at these samplings are not
even g-payoff-{ M, J}-consistent by sufficiently great
e. It is some paradoxical that the first player receives
g-consistent payoffs earlier than the second player
does. However, this happens at an inappropriately
big payoff consistency relaxation. The “paradox” is
easily explained with that the range of the first play-
er’s payoff is far narrower with respect to that of the
second player.

Will it be improved when the sampling is
denser? Solving bigger games up to 40x40 bima-
trix ones confirms the stacked equilibria conver-
gence (Fig. 10). Compared to Fig. 8, no considerable
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44
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42
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changes in Fig. 10 are visible. The same concerns
the payoffs (Fig. 11), where the tight bundle of the
first player’s payoffs is seen at ¢ = 0.7x. The problem
with the payoff consistency remains, though. The first
player’s subinterval equilibrium strategies are e-pay-
off-consistent on the first four subintervals by

6=0.0297|v/ (M, J) at i=14

by every
M =34,39 and J =34,39.

So, if the staircase game was defined on just interval
[0.1m; 0.57], the first player’s stacked equilibrium
strategies would be e-payoff-{M, J}-consistent.

Further increasing sampling density (thickening
the samplings) does not make sense: stacked equi-
libria do not change (compare Fig. 12 to Fig. 10)
and the payoffs remain with almost the same ranges
(compare Fig. 13 to Fig. 11). If the staircase game
was defined on just interval [0.1x; 0.5x], the first
player’s stacked equilibrium strategies would be
g-payoff-{ M, J}-consistent by

e=0016-|v/ (M, J) at i=1,4
by every
M =44,49 and J =44, 49.
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Fig. 10. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =33,40 and J =33, 40
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Fig. 11. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their

cumulative sum (circles) by M =33,40 and J =33, 40

If it was interval [0.1x; 0.6x], the first player’s stacked
equilibrium strategies would be g-payoff-{M, J}-con-
sistent by

e=02016-|v; (M, J) at i=1,5
within the same samplings. Herein, if
=0.1073-|z/ (M, J)| at i=1,5,

the approximate equilibrium in the staircase game by
(120)—(124) would be e-payoff-{M, J}-consistent.

Eventually, this example shows that it may be
very hard to find such an ¢ for which an approximate
equilibrium in the staircase game would be e-payoft-
{M, J}-consistent. The matter is the range of pay-
offs of a player’s may significantly differ from the
range of the other player’s payoffs. For instance, in
the staircase game by (120)—(124), the first player’s
payoff varies roughly between —0.5772 and 0.4894,
whereas the second player’s payoff varies roughly
between 0.0002 and 0.6408. Unlike the first play-
er’s payoff, the second player’s payoff is always
positive.

However, all the approximate equilibria in Fig. 12
are e-payoff-{ M, J}-consistent by & = 0.4888 (although
it is too big payoff consistency relaxation). Moreover,
every approximate equilibrium obtained by

M =J e {44, 45,46, 47, 48, 49}

is e-payoff-{ M, M}-consistent by & = 0.3553, whereas
every approximate equilibrium obtained by

M =J e {46, 47, 48, 49)

is e-payoff-{ M, M}-consistent by € = 0.2043, which is
relatively not that bad. Although the solution con-
vergence is apparent, the players’ equilibrium strate-
gies will not produce more consistent payoffs by fur-
ther thickening the samplings. This is an evidence of
that the solution convergence has reached its satu-
ration, and further thickening the samplings will not
improve the solution approximation nor improve the
consistency. Therefore, the approximate solution to
the 2-person staircase game by (120)—(124) can be
accepted by the independent sampling at both play-
ers with the integers between 23 and 40 (of course,
not necessarily identical).
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Fig. 12. A bunch of subinterval-wise optimal strategies of the first (left) and second (right) players by M =43,50 and J =43, 50
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Fig. 13. A bunch of the first player’s payoffs (left) and second player’s payoffs (right) at the end of every subinterval (dots) and their
cumulative sum (circles) by M =43,50 and J =43, 50
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Discussion of the contribution

Without considering each subinterval bimatrix
game separately, it would be intractable to straight-
forwardly solve the sampled staircase game. For
instance, by sampling the 2-person staircase game
given by (120)—(124), where each of the players
uses 8-subinterval staircase function-strategies, even
with, say, M =24 and J =23, the resulting 24% x 23%
bimatrix game (in which, e. g., the first player has
110075314176 pure strategies) cannot be solved in
a reasonable time span. Indeed, it is at least hard to
store those more than 110 billion pure strategies, let
alone processing them (in searching for equilibria).
Therefore, solving subinterval bimatrix games (which
are obviously “smaller”) separately and then stacking
(or stitching, in more understandable terms) their
solutions is a far more efficient way to obtain an ap-
proximate solution of the initial staircase game. The
applicability of this method may be limited to the
subinterval bimatrix game size defined by M and J.
For instance, the computation time has an exponen-
tially-increasing dependence on the size of the square
matrix. Solving bimatrix games, in which each of the
players has at least a few hundred pure strategies, may
be time-consuming in applications requiring fast up-
dates of the solution (when the structure of the initial
staircase game changes itself).

The (weak) consistency of an approximate
solution is a criterion of its acceptability. However,
a (weakly) consistent approximate solution may not
exist at appropriately small (tractable) M and J. So,
the consistency decomposition into parts by Defini-
tions 3—8 and particularly isolating an e-payoff con-
sistency by Definition 11 is justified and practically
applicable.

There are still many open questions, though.
First, the requirement of the proper sampling in-
crement (Definition 1) given by strict inequality (48)
may seem not enough rigorous. The matter is that it
cannot guarantee that the sampled points in a 1-in-
cremented sampling will be closer to each other (see
Fig. 1). However, the respective requirement in the
form of inequality

max (k(m) —l(s)) < m(q(ﬁl) _ C(S)) (145)

s=1, .8 s=1, 5-1

guaranteeing the mentioned property appears to be

too rigorous. Indeed, if the player follows (145), the

proper sampling increment is going to fail if there is
a pair of too close points in the previous sampling.
Second, it is not proved that limits

lim v,.*(M,J) Vi=1, N

M-, J >0

(146)

and
lim z (M,J) Vi=1,N

M—w, J >0

(147)

exist and they are equal to the respective equilibrium
values of the subinterval continuous games. Third, if
limits (146) and (147) exist, it is not proved that this
is followed by that any approximate equilibrium (59)
is e-payoff-{M, J}-consistent for any M > M, and
J>J. (M. eN\{l}, J.eN\{l}), let alone the
problem of the equilibria multiplicity. The inter-in-
fluence among the consistency decomposition parts
by Definitions 3—8 is also uncertain yet.

The question of a possible reconciliation of the
difference of the players’ sampling step selection is
indeed that hard. The players can select their sam-
plings simultaneously but identical samplings are of
small likelihood. Even if the ranges of function-strat-
egy values are identical and sampling integers M and
J are the same (i. e., M =J), implying the uniform
samplings, a player’s sampling may differ from the
other player’s sampling due to eventual inaccuracies
in selecting points. In the example of 2-person game
approximation, this has been modelled by (132) and
(133) with using normal “noise” in the point selec-
tion. However, at sufficiently great sampling integers
M and J, not necessarily equal, significant changes
in M and J are expected not to influence the ap-
proximate solution much (see Fig. 8, 10, 12, and
Fig. 9, 11, 13). Just like in the above-considered
example, the player’s equilibrium strategies converge
subinterval-wise and the resulting staircase strategy
appears to be an acceptable approximate equilibrium
strategy in the initial staircase game.

Therefore, the presented method is a significant
contribution to the 2-person game theory and its finite
approximation supplement. It allows approximately
solving 2-person games with staircase-function strate-
gies in a far simpler manner regardless of the fact that
the players may sample their sets of function-strategy
values differently [14, 20, 24]. Once the (weak) con-
sistency is confirmed (the respective approximate
solution should be at least e-payoff consistent by
Definition 11), the approximate pure-mixed-strate-
gy solution (like those ones of staircase strategies
in Fig. 8, 10, 12) can be easily implemented and
practiced [6, 7, 9, 12, 20].

Conclusion

A non-cooperative 2-person game played in
staircase-function continuous spaces is approximat-
ed to a bimatrix game by sampling the players’ pure
strategy value sets. Each set is irregularly sampled in
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its own way so that the resulting samplings may be
of different cardinalities and varying densities. While
sampled, the requirement of the proper sampling in-
crement (by Definition 1) must be followed — the
S+ 1 points in a I-incremented sampling must be
selected denser than .S points.

Owing to Theorem 2, the solution of the bi-
matrix game is obtained by stacking the solutions of
the “smaller” (“shorter”) bimatrix games, each de-
fined on a subinterval where the pure strategy value
is constant. In this research, the Nash equilibrium
has been taken as the solution type, although some
other types might be considered as well. However,
this is a matter of future research.

The stack of the “smaller” bimatrix game equi-
libria is an approximate solution to the initial stair-
case game. The (weak) consistency of the approxi-
mate solution is studied by how much the payoff and
equilibrium change as the sampling density mini-
mally increases by the three ways of the sampling
increment: only the first player’s increment, only
the second player’s increment, both the players’ in-
crement. Thus, the consistency, equivalent to the
approximate solution acceptability, is decomposed
into the payoff (Definition 3), equilibrium strategy
support cardinality (Definitions 4 and 5), equilibri-
um strategy sampling density (Definitions 6 and 7),
and support probability consistency (Definition 8).
The weak consistency itself is a relaxation to the
consistency, where the minimal decrement of the
sampling density is ignored. The suggested method
of finite approximation of staircase 2-person games
consists in the independent samplings, solving
“smaller” bimatrix games, and stacking their solu-
tions if they are consistent.

The most important part is the payoff consis-
tency. It is checked in the quickest and easiest way.
In practice, it is reasonable to consider a relaxed
payoff consistency. The relaxed payoff consistency
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B. B. PomaHtok

CKIHYEHHA AMPOKCUMALLIA BE3KOANILIMHKMX IFTOP ABOX OCIB, WO PO3IMPYIOTLCA Y HENEPEPBHUX MPOCTOPAX
CXOOMHKOBUX ®YHKLLIN

Mpobnematuka. IcHye Bigomuii cnocib anpokcumalii HenepepBHUX GeskoaniuiiHKx irop ABOX Ocib, Ae HabnuKeHW pPo3B’A30K
(cuTyauis piBHOBaru) BBaxatoTb NPUAHSATHUM, SIKLLO BiH 3MIHIOETLCS MiHIManbHO 3a MiHiManbHOI 3MiHM KPOKy AuckpeTu3auii. OgHak uen
METOA, HE MOXHa MPsSIMO 3acTOoCyBaTW [0 Fpu ABOX OCib, Lo posirpyeTbest 3i cTpaTeriaMu y popMi CxoaMHKOBUX dyHKUiA. KpiM Toro, cnig
GpaTu [0 yBaru HesanexHicTb BUGOpPY rpaBLiEeM KPOKY AUCKpeTM3aLlii.

Meta pocnigxeHHsi. MeTa nonsrae y Tomy, o6 po3pobuT MeTod CKiHYeHHOI anpokcumallii irop ABox Ocib, siki po3irpytTbest
y HenepepBHUX NPOCTOPax CXOAMHKOBUX (DYHKLiA, BGepyyun oo yBaru, WO rpasui, WMOBIPHO, AMCKPETU3YIOTb MHOXMHU CBOIX YUCTMX
cTpaTerii CaMOCTiNHO.

MeTtoauka peanisauii. [1ns gocsrHeHHs 3a3HadeHoi MeTn doopmanisyeTbCs rpa ABOX OCib, B sikil cTpaTerii rpaBLiB € CXOAVHKOBUMM
YHKLiAMK Yacy. Y Takiln rpi MHOXWHA YACTUX CTpaTerin rpaBLUs € KOHTUHYYMOM CXOAUHKOBUX (DYHKLiN Yacy, i Yac BBaXatoTb QUCKPETHUM.
YMOBM AMCKPETM3aLii MHOXUHN MOXIUBUX 3HAYEHb YNCTOI CTpaTerii rpaBLs BMKNagalTbCs Tak, Lo rpa CTae BU3HAYeHo Ha JoOyTKy
CKIHYEHHMX MPOCTOPIB CXOAUHKOBMX (PYHKLIA. 3aranom Kpok AMCKpPeTM3aLii y KOXHOro rpaBus pi3HWUMA, i po3nogin BUOIpKOBMX TOYOK
(3Ha4eHb yHKLUi-cTpaTerii) HeogHOPIOHWIA.

Pesynbratu gocnigxeHHs. lNogaHo MeToa CKiHYEHHOT anpokcumallii irop ABoX ocib, siki po3irpytoTbCs Y HENepepBHUX NPOCTOpax
CXOAMHKOBUX (PyHKLiM. MeToa nonsirae y HeperynsapHin AUCckpeTnsawii MHOXWHW 3HaYeHb YACTOT cTpaTerii rpaBLs, 3HAXO4XKEHHI HanKkpaLLmx
CuTyaLin piBHOBaru y “mMeHLwmx” 6imaTpuyHmX irpax, KoxHa 3 sikux BU3Ha4YeHa Ha nigiHTepsani, e 3HaYeHHs YUCTOT cTpaTerii € MOCTINHUM,
N yKnagaHHi LUMx piBHOBaXKHUX CUTYyaLil, SIKLLO BOHW € y3romxeHumu. Yknag piBHoBar y “MeHWwumx” 6iMaTpuyHux irpax € HabnuxeHoro
piBHOBarow y BWUXiOHIA cxogmHKOBIM rpi. JocnigxyeTbca (cnabka) y3rodkeHiCTb HabnvkeHoi piBHOBAarM TWM, HACKiNIbKM 3MiHIOETHCS
BUrpaLL Ta piBHOBaXKHa CUTYyaLlist, KON LWiNbHICTb AUCKPETM3aLii MiHiManbHO 36inbLlyeTbCst TPbOMa criocobamu: nuLle NpupicT y NepLLIOro
rpaBLsl, NvLLIe NPUPICT y APYroro rpasLs, NPUPICT B 060X rpaBLiB. Y3rogXeHicTb po3KnafacTbCsl Ha y3rogKeHiCTb BUTpaLLiB, y3rogKeHicTb
NOTYXXHOCTI CNEKTPa PIBHOBAXHOI CTpaTerii, y3rofKeHiCTb LLiNbHOCTI AUCKPETU3aLii piBHOBaXXHOT CTpaTerii Ta Y3romkeHiCTb CnekTpanbHMX
iMOBIpHOCTEN. 13 NPaKTUYHOT TOYKM 30pY AOLINBHO PO3rNsAaTN penakcoBaHy Y3rofkeHiCTb BUrpaLlis.

BucHoBkuW. 3anponoHoBaHui METOA CKIHYEHHOIT anpoKcUMaLlii CXOAUHKOBMX irop ABOX OCib nonsrae y HesanexHux uckpetusadisx,
pO3B’s3yBaHHi “MeHLWMX” GiMaTpUYHUX irop 3a NPUAHATHUIA NPOMIKOK Yacy Ta YKNafeHHi iXHiX po3B’A3KiB, SIKLLO BOHW € Y3romKEeHUMMU.
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CKiHY4eHHe HabnXeHHs1 BBaXalTb MPUAHSTHUM, SKWO MPYHANMHI BignoBigHa HabnwkeHa (yknageHa) piBHOBara € Y3romKeHor
3a g-BUrpaLlamu.

KntouyoBi cnosa: Teopisi irop; dyHKUiOHan BuUrpaLuiB; cTpareria y opmi CXoAMHKOBOI (yHKLiT; BimaTpuyHa rpa; HeperynspHa
ONCKpEeTU3aLlis; y3roKeHiCTb HabnmxeHoi piBHOBaru.

PexomennoBana Panoto Haniituua no penaxiii
(akyabTeTy NMPUKIATHOI MaTEMaTUKKN 26 rpyaHst 2022 poky
KIII im. Iropst Cikopcbkoro
IMpuiinsara go myosikanii
20 mororo 2023 poky



