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THE BRACHISTOCHRONIC MOVEMENT OF A MATERIAL POINT
IN THE HORIZONTAL VECTOR FIELD OF A MOBILE FLUID

Background. Since the brachistochronic motion of a material point in a flat vector field of a mobile fluid was not
previously considered, the formulated variational problem of searching for extremal trajectories in such a formulation
is new and relevant.

Objective. The aim of the study is to obtain the algebraic equations of extremal trajectories of motion, along which
the material point moves from a given starting point to a given finish point in the shortest possible time.

Methods. The solution of the problem was carried out using classical methods of the calculus of variations (to obtain
a differential equation for the motion of a material point), as well as using Taylor series (for approximate integration
of the resulting differential equation). For a given variant of the boundary conditions, approximate algebraic equa-
tions of extremals of the motion of a material point were established in the form of segments of power series. A com-
parative analysis of the time of movement was carried out both along extreme trajectories and along an alternative
shortest path — along a straight line, which connects two given points of start and finish.

Results. It is shown that the considered variational problem has two different solutions, which differ only in sign. At
the same time, only one solution provides the minimum time for the movement of a material point between the giv-
en start and finish points. Studies have also found that the extremal trajectory of the brachistochronic movement of a
point is not straight and has an oscillatory character.

Conclusions. The proposed approach allows plotting in advance such a logistical route of a material point (motorboat)
in a flat vector field of a mobile fluid between the given start and finish points, which ensures the minimum travel
time between them. In this case, the extremal trajectory will not necessarily be the shortest line that connects the
start and finish points.

Keywords: variational problem; brachistochronic motion; vector field of a mobile fluid; time functional; Euler equa-
tion; boundary conditions; Taylor series; extremal trajectory.

Introduction

First, we will present a summary of recent re-
search carried out in the framework of the calculus
of variations, and related to the search for the bra-
chistochrone equations in various problem state-
ments.

In paper [1] the problem of J. Bernoulli on
the brachistochrone is analytically and numerically
solved in the most general case, taking into ac-
count both viscous and dry friction. It is proved
that in the absence of friction forces, any move-
ment along a curved chute under the influence of
gravity alone and under the condition of minimal
movement time is always reduced to the brachisto-
chrone problem and the solution can be found
without using the methods of variation calculus,
and using only the general laws of curvilinear mo-
tion dynamics. The solution of the classical Ber-
noulli problem is found, but under the condition
that the length of the trajectory is fixed. It is shown
that under this isoperimetric condition the class of
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trajectories will be very different from the classical
brachistochrone.

In papers [2—5] the problem of maximizing
the horizontal coordinate of a point moving in a
vertical plane under the action of gravity, viscous
friction and accelerating forces, and the brachisto-
chrone problem interrelated with it are considered.
The optimal control problem is reduced to a
boundary one for a system of two nonlinear differ-
ential equations. A synthesis of extremal control
was constructed, which made it possible to investi-
gate the problem using methods of the theory of
dynamic systems. The analysis clarifies the analyti-
cal results and allows you to justify the results of
computer simulation obtained by other authors.

Papers [6—8] briefly highlight the provisions
of A.S. Vondrukhov's thesis “Brahistochrone under
the action of accelerating force, as well as dry and
viscous friction”. Explicitly obtained formula, pre-
sented depending on the speed, which provides a
synthesis of optimal control for the case of action
on the point of dry and viscous friction, as well as
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accelerating strength. A study has been carried out
on the properties of optimal trajectories for the ac-
tion of separately dry or viscous friction, which
makes it possible to create an idea of the shape of
optimal trajectories. A system of differential equa-
tions with an additional variable is obtained, which
allows one to construct optimal trajectories by
solving the Cauchy problem.

Paper [9] considers the classical problem of
finding the plane material frictionless curve along
which a heavy particle released from the starting
position reaches the given finish position as quickly
as possible. Johann Bernoulli proposed the name
“brachistochrone” for the desired curve. Over a
hundred publications are devoted to generalizations
of the classical problem. The work gives a classifi-
cation of these generalizations with a bibliographic
selection of relevant literature. The recent results of
the solution of the generalized problem in the
presence of dry (Coulomb) friction are considered.

Article [10] in an accessible form gives a
geometric interpretation of the brachistochrone
problem, which requires only the basic properties
of triangles, and as a result a cycloid is obtained.
Geometry also shows that Cycloid is Huygens' tau-
tochron.

Article [11] provides an overview of the
research on the brachistochrone, initiated by Jo-
hann Bernoulli in 1696—1697. As is known, its so-
lution is a cycloid. The author follows Bernoulli's
optical solution, based on the Fermat principle of
the shortest time, and later paraphrases it in terms
of the Hamilton article of 1828. Hamilton's solu-
tion restores cycloid in the same way that New-
ton's mathematical principles imply Kepler's laws.

In papers [13, 14], the dynamics of systems
with dampers of low-frequency oscillations are
considered, in the construction of which a tran-
scendental surface is used, formed by brachisto-
chrone for a rolling body of finite size (cylinder,
ball). The use of such devices allows you to keep
the oscillation frequency of the rolling body con-
stant regardless of the magnitude of the amplitude
of its oscillations.

The book [15] presents a course of lectures on
classical calculus of variations, as well as a more
modern development of the theory of optimal con-
trol from the point of view of an applied mathema-
tician. Moreover, to solve variational problems (in-
cluding the brachistochrone problem), as well as
for the graphic representation of research results.
Math application packages such as Maple Mathe-
matica, MATLAB are widely used.

Atrticle [16] presents the problem of the fastest
descent, or the Brachistochrone curve, which can
be solved using the calculus of variations and the
Euler—Lagrange equation. Cycloid is the fastest
curve, and also has the property of isochronism,
thanks to which Huygens perfected the Galilean
pendulum.

In papers [12, 17—20], the problems of the
brachistochronic motion of various objects (the
material point of variable mass, the vertical disk,
the Chaplygin sleigh with a non-holonomic cou-
pling), in arbitrary force fields are solved within the
framework of the Pontryagin maximum principle
and the singular theory of optimal control. As a re-
sult, these tasks are reduced to the corresponding
two-point boundary value problems. Their solu-
tions are implemented using the numerical proce-
dure of the shooting method.

In paper [21], the problem of the brachisto-
chronic motion of a material point is considered,
taking into account to the Coulomb forces of dry
friction, and is formulated as a variational isoperi-
metric problem. The parametric equations of the
extremal curve are obtained. If a solution to this
problem exists, then this curve is the desired bra-
chistochrone.

In the present work, a new brachistochrone
problem is considered for the case of the motion of
a material point in a horizontal one-dimensional
vector field of a mobile fluid.

Problem statement

A new variational problem on the motion of a
material point in a one-dimensional horizontal
vector field between two given points in the short-
est time is considered.

Geometric and kinematic relations. Let a mo-
torboat (considered in this problem as a material
point) cross a turbulent river with a channel width
L starting from one bank at the point O(0,0) and

finishing on the opposite bank at a point
M(L,y(L)). For the subsequent reasoning, it is

convenient to introduce a rectangular Cartesian
coordinate system as it is done in Fig. 1.

Axis OX will be directed horizontally to the
right, axis OY — vertically upwards. The intersec-
tion of these axes determines the origin of coordi-
nates O, the same point is the starting point of the
boat. Let us mark the opposite bank of the river
ML, and ML | OY .

The boat moves at a speed C whose modulus
C is constant and is determined by the formula:
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Vu? +v? =C, (D

where u is a horizontal projection of the speed of
the boat; v is a vertical projection of the speed of
the boat. The projections of # and v are continu-

ous functions of x,x [0, L]. The speed vector c

of the boat is directed along the tangent, built at
the current point of its position on the desired tra-
jectory y = y(x). Consider the functions y(x) that

belong to space c'o, 1].
Y A

(L)

Fig. 1. One of the possible trajectories of the motion of the boat
in the chosen coordinate system OXY: f(x) is the speed of

the flow of the river; u is the horizontal projection of
the speed of the boat; v is the vertical projection of the
speed of the boat

Here it should be noted that despite the mod-
ule C of the speed of the boat is constant, its pro-
jections ¥ and v on the coordinate axes are varia-
bles. In this study, the velocity of the river is speci-
fied as a function of the horizontal coordinate
f(x), and the velocity vector is directed in the

opposite direction with respect to the ort of the
axis OY . Thus, the river velocity vector has the

form: V., =-f(x)j. We assume that in the verti-

v

cal direction (along the axis OZ ) the weight of the
boat is balanced by the buoyancy force of Archi-
medes, and, therefore, the boat does not move in
this direction.

Physically, the motion of the boat can be
identified with the motion of a material point in a
one-dimensional horizontal vector field of veloci-

ties B of a fluid, each point of which moves in
one plane (in this case z =0) colinearly orth of
the axis OY . In this case, the vector can be writ-
ten as follows: B = (0;-f(x);0). The resistance of

the fluid during the movement of the boat is taken
proportional to the corresponding components of
the velocity of the material point (boat) and it is

already taken into account in the variables u
and v.

Purpose of the study: it is necessary to obtain
the algebraic equations y = y(x) of extremal tra-

jectories of motion, along which the material point
(boat) moves from a given starting point to a given
finish point in the shortest possible time.

The construction of the time functional and def-
inition of an equation of the desired trajectory. First,
we consider the task in the general case, that is, for
function f(x) of a general form. After that, we
will select a specific function f(x) and determine
the trajectory of the boat movement corresponding
to it. We write expressions for the projections of

the speed of the boat on axis OX and OY taking
into account the speed of the flow of the river:

&y,
dt

(2)
% =v- f(x).

We write the time functional that needs to be
minimized:
L

dx .
T = | — — min,
o U y(x)

u(x) e C°[0, L]; y(x) e C'[0, L].

)

We use the system of equations (2) to con-
struct the integrand of functional (3). We divide
the second equation of system (2) by the first:

dy _v_Jf) (4)
dx u u

Using relation (1), we define the expression

for the fraction:
2
y_ [gj _1.
u u

Substituting relation (5) into equation (4) we
obtain a quadratic equation with respect to the un-

&)

) 1
known variable 7z = —:
u

[£2(x) - C?12% +2y'(x) f(x)z + (¥ (x) + 1) = 0.

This equation has the following solutions:

- (6)

_{% Y @) - (A (x) - C)
2= - 2 2
12 f(x)-C
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Substitute expression (6) in functional (3):

(=LY @Y - (2 -C)
[ -c?

We write the integrand function in functional (7):

Y @) - (f2(x) - CP)
fix)-c?

We use the Euler equation [15] to build a dif-
ferential equation for the desired trajectory of the
boat:

dx. (7)

S t—

F(x,y) - (8)

Fy’ _j_x(F;')ZO' )

Since function (8) does not depend on varia-
ble y, we have here Fy' =0. As a result, Euler's

equation (9) is reduced and transformed into a first
order differential equation:

d . '
E(Fyr) =0,or, F, =G, (10)

where C, is the first arbitrary constant.

Now we can determine the differential equa-
tion of the trajectory of the boat:

+ Czy'
J©y) - (f2(x)-C?)

or

=C - (f2(x)-CH) + f(x)

(')
(@) - (f2(x)-C?)
=[C - (f2(x) - C*) + f(x)I. (11)

Further, derivative y' is expressed from equa-
tion (11):

1 fx)-C?
C - C?
[C, - (f2(x) - C?) + f(x)]?

After integration, we obtain an equation of the
desired curve — brachistochrone — in the studied

movement of the material point (boat):
fi0-C
C2
1= 2 2 2
(G- (" (x)-C)+ f(x)]

where C, is the second arbitrary constant.

I+
—

y = (12)

y(x):%j | d+ Gy (13)

Formula (13) establishes the final form of the
equation of the desired curve, to which two
boundary conditions of this variational problem
should be attached:

y(0)=0; ¥(L)=y,. (14)

A specific example and its numerical implemen-
tation

Now consider this task, provided that a spe-
cific function f(x) is set, that determines the speed

of the river at each point of axis OX , namely

f(x) = sin [Ej . (15)
L

Substitute the given function (15) into the

general expression of the differential equation of

curve (13). All intermediate transformations that

were performed above for function f(x) of a gen-

eral form are not given for this function. After
some transformations we get:

y=+[g(x,C,Cdx + Gy, (16)

where g(x,C,C)) = G- (S () =C?) + f(x)]

C
% C? - i)
C*-IC - (f2(x)-CH + f(x)P

First, we see that the variational problem has
two different solutions, which correspond to each
of the two signs before integral (16). Secondly, in-
tegral (16) is not taken in closed form. Therefore,
we integrate it numerically, by representing inte-
grand g(x,C,C;) in the form of a truncated Taylor

series in a variable x in a neighborhood of a point
x =0. To achieve the required accuracy, we limit
ourselves to six terms of the Taylor series and,
omitting the intermediate transformations, we im-
mediately write down the necessary expressions for

derivatives g©(0,C,C)), ¢V(0,C,C), g2(0,C,C)),
g(3)(03 Ca Cl) ) g(4)(0> Ca C]) ’ g(S)(Os Ca C]) :

C-C
©0,C,C) = ———"1

g (9 ’ 1) K(C,Cl)’

Oo,c,¢c) = ——

& X L-C-K3C,C)
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n-C-C[(C-C))* - 4]

@(0,C,C)) =
g ( l) L2~K5(C’C1)

bl

g?0,c,q)
_ T (CG)-15-C7 -G =2-(C-G) + 1]
r.Cc-K' Q)

b

g(4) (Oa C, C] )

_ . C-C4AC- )b -3C*-Ct -24(C-C))*
L' K°(C,C)

) 36C2C} +36C? - C} + 72CE - 16]
' K°(C,C)

bl

g90,C,¢)
_Pl(C-C)* -150Ct - C} —4(C-C))°
c.-r K'c,q)
,525C'C} +300C -Cf +6(C-C)*
Cc-I-K'"(Cq)
420C% - C} —150C2C} - 4(C-C))? +1]
+
C-I-K'"(C,()

where K(C,C,) =+[1-(C-C)].

Using the expressions obtained above, the six-
membered segment of the Taylor series for func-
tion g(x,C,C)) takes the following form:

3

5
2(x,C,C) =Y g"0,C,C)

. (17)
n=0 .

After integrating the segment of Taylor series
(17), we obtain an approximate expression for the
desired function y(x,C,C},C,):

xn+1

5
_ (n)
y(x,C,Cl,Cz)—J_rnEZOg (O,C,Cl)(n+1)!+C2, (18)

where C,,C, are unknown constants that are found

from the boundary conditions (14).

For numerical implementation of this task, we
choose one variant of boundary conditions:

L=1, C=11, y(0)=0, y(L)=0; (the start
and finish points lie on axis OX).

1) First, in the formula (18), we consider the
case with the plus sign.

From the first boundary condition (14)
y(0) =0 it follows that the second unknown con-

stant C, is zero. To determine the first unknown

constant C), it is necessary to solve an essentially

nonlinear algebraic equation with respect to con-
stant C;. The solution of this equation was per-

formed by numerical methods using the MathCAD
application package. As a result, the following val-
ue was obtained for the first unknown constant:
C, =0.385.

Fig. 2 shows a graph y(x) of the desired tra-

jectory of the material point (boat) with the boun-
dary conditions 1), obtained using equation (18) at
C, =0.385 and C, =0. Here, to reduce the rec-

ord, function y(x) should be read as function
¥(x;1,1;0,385;0) .

0.3

0.2
y(x) 0.1 // \
%

0 0.2 0.4 0.6 0.8
X

Fig. 2. The graph y(x) of the desired trajectory of the material
point with the boundary conditions 1)

Let us determine the time of the boat moving
along the trajectory found for this case. We use
formula (7) to calculate it with the selected data of
the studied problem. In other words, function
f(x) is selected by formula (15), function y(x)

is chosen by formula (18), L=1, C=1.1,
C, =0.385, C, =0. As a result of calculating inte-

gral (7), we obtain 7 =2.46 (units of time).

2) Now consider the case with the minus sign
in formula (18).

The method of constructing the corresponding
graph remains the same, therefore we will give only
brief comments on it.

And in this case, the solution of a nonlinear
algebraic equation with respect to an unknown
constant C; gives the same result: C; =0.385.

Therefore, for this case, the graph of the desired
function will have a similar form (Fig. 3), only its
ordinates will have opposite signs with the same
abscissas as graph in Fig. 2.

Thus, Fig. 3 shows two graphs y;(x) and

y,(x) that are constructed for two functions and
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that approximate the desired function y(x) with

regard to the different number of members of the
Taylor series. The graph y;(x) is a dotted curve

that is plotted for a function in which five mem-
bers of the Taylor series were taken into account.
The graph y,(x) is a solid curve that is plotted for

a function in which the six members of the Taylor
series are accounted for. As you can see, the
graphs y,(x) and y,(x) practically coincide and
represent one curve. Therefore, in this case, only
five members of the Taylor series should be taken
into account without losing the accuracy of the
approximation of the desired function y(x).

0.1
0 /‘“—N
Y1)
20 0.1 \
—on N /
—0.3

0 02 04 0.6 0.8
X
Fig. 3. Graphs y;(x) and y,(x) of the desired trajectory of
the material point with the boundary conditions 2): the
graph y,(x) is a dotted curve (five members of the
Taylor series were taken into account); the graph y,(x)

is a solid curve (six members of the Taylor series were
taken into account)

Now we calculate the time of the boat moving
along this trajectory, obtained with the minus sign
in front of the integral in formula (18). After cal-
culations we get a smaller result: 7 =1.14 (units of
time) compared with the first.

Thus, comparing the obtained results, we can
conclude that function y(x) found with the plus

sign in formula (18) gives the maximum value to
functional (7), and the function with the minus
sign is the minimum value of all motion paths that
correspond to the formulation of the presented
variational problem.

At the end of the paper, for illustration, we
will give an example of calculating the time of a
boat moving in a straight line from a point O(0,0)

to a point M(L,0) along the abscissa axis. In this

case, the trajectory of the boat is described by
function y(x)=0. At first glance, this trajectory

should be optimal in the sense of a minimum of

time spent on moving the boat from point O(0,0)
to point M(L,0). However, this is not the case,

and the calculation results refute this assumption.
Formula (7), when substituting a function into it,
gives T =1.344 (units of time). Thus, the “shortest
path” of the movement of the boat is not the
“fastest” in this variational problem.

Conclusions

In this paper, a new variation problem on the
brachistochrone is formulated and solved for the
case of the motion of a material point (motorboat)
in the horizontal one-dimensional vector field of a
mobile fluid (river). The module of the velocity of
a mobile fluid is given as a function of the trans-
verse coordinate (with respect to the velocity vec-
tor of the mobile fluid). The material point moves
in the specified vector field with a speed which is
constant (in magnitude) but changing in direction.
Using the methods of variational calculus, the dif-
ferential equation of the trajectory of the material
point was derived, which is not integrated explicit-
ly. Based on the expansion of the integrand in a
Taylor series, an approximate equation of the mo-
tion path of a point was obtained taking into ac-
count the given boundary conditions.

It is shown that for a sufficiently accurate ap-
proximation of the solution, it is sufficient to take
into account only five members of the Taylor
series.

For the chosen variant of the boundary con-
ditions, the equations of optimal trajectories are
obtained by numerical methods, along which the
material point (boat) goes from the start to finish
in an extreme time. In this case, the optimal tra-
jectories for the considered function of the river
velocity are oscillatory. It is shown that this varia-
tional problem has two different solutions, which
differ only in sign. In this case, one solution gives
a minimum of time to the functional, and the sec-
ond solution gives a maximum.

Future research in this area will be aimed at
finding brachistochrones when moving a material
point along a certain transcendental surface with-
out friction in a vertical gravitational field.

The development will be interesting for spe-
cialists in the field of civil and military logistics,
developers of navigation equipment for high-speed
maneuverable river and sea vessels that move in
fast currents.
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B.IM. Nere3a, O.B. AtamaHiok

BPAXICTOXPOHHUI PYX MATEPIANBHOT TOYKW B TOPU3OHTAJIbHOMY BEKTOPHOMY MO PYXOMOI PIAVHN

Mpo6nemaTtuka. Ockinbkn BpaxicCTOXPOHHWUIA pyx MaTepianbHOI TOYKM B NIIOCKOMY BEKTOPHOMY MOJi PyXOMOI PiAMHM paHile He

po3rnsiaascs, To chopMyrboBaHa BapialiiHa 3agava npo MOoLyK eKCTpeMarbHUX TPAEKTOPIM Y Takili MOCTAHOBLL € HOBOH) | aKTyarbHO.
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Meta pocnigxeHHA. MeToo po6oTu € OTpMMaHHsI anrebpuyHMX piBHSIHb EKCTPEMAaIbHUX TPAEKTOPIN pPyXy, B3AOBX SKUX MaTepi-
anbHa To4ka NnepeMmiLLly€eTbCs Bif 3a4aHoi TOYKM CTapTy A0 3a4aHOi TOYKM diHilly 3a MiHIManbHWIA Yac.

MeToauka peanisauii. Po3B’si3aHHsA nocTaBneHoi 3agadi 6yno BMKOHaAHO 3a JOMOMOrOK 3arny4eHHs KnacuyHuX MeTOAiB Bapia-
LiINHOrO YMCNEHHS (AN OTPUMaHHSA AUdepeHLianbHOro PiBHSAHHSA TPAEKTopIl pyxy MaTepianbHOi TOYKM), a TaKoX i3 BUKOPUCTaAHHSM psi-
nis Tennopa (ANs HabnxXeHoro iHTerpyBaHHA OTPUMaHOro AndepeHLianbHOro piBHAHHS). [na 3agaHoro BapiaHTy kpanoBux yMoB Oy-
110 BCTAHOBMNEHO HabnwkeHi anrebpuyHi piBHSHHSA ekcTpemMarnein pyxy MaTepianbHoOi TOMKM Yy BUINSAI BiOpi3kiB cTeneHeBux psgis. byno
NpOBEeAEHO MOPIBHANBHWIA aHani3 Yacy pyxy sik N0 eKCTpemarbHUX TPAEKTOPIsiX, Tak i N0 anbTePHAaTUBHOMY HaMKOPOTLLOMY LUASXY — MO
npsaMin, Wwo 6esnocepeaHbO cnonyyae ABi 3aAaHi TOYKM cTapTy i diHiLy.

Pe3ynbTaTtn gocnigxeHHs. [oka3aHo, Lo po3rnsHyTa BapialiiHa 3agaya Mae ABa pi3HUX PO3B’A3KW, SiKi Pi3HATLCS TiNbKW 3Ha-
koM. Mpu UbOMY TiNlbkM OAMH PO3B’A30K 3abe3neyye MiHIManbHUIA Yac pyxy maTtepianbHOT TOYKU MiX 3agaHuMy TouKamu ctapTy i diHi-
wy. JocnimKeHHAMN TakoX BCTAHOBIIEHO, LLIO eKCTpeMaribHa TpaekTopis 6paxicCTOXPOHHOIO pyXy TOYKM HE € NPSIMOIO0 Ta Mae Konmnearb-
HUIM XapakTep.

BucHoBkuW. 3anponoHoBaHuii Niaxia gae amory Hanepen nNpoknagaTy Takuii NOTCTUYHUIA MapLIpyT MaTepianbHOI TOYKM (MOTop-
HOro YOBHA) B MIIOCKOMY BEKTOPHOMY MOSi PyXOMOi PiAMHM MK 3aA4aHnMu To4KaMm cTapTy i diHily, skuii 3abe3nedye MiHiManbHUM Yac
pyxy Mix HUMU. [pu LpOMYy He 06OB’A3KOBO €KCTPeMarbHOK TPAEKTOPIED B LibOMY BUMNAaAKy € HaWKopOTLUA NiHisi, sika Crnonyvae TOoYKu
cTapTy i QiHiLy.

KnroyoBi cnosa: BapiauiiHa 3agaya; 6paxiCTOXpOHHUIA pyX; BEKTOPHE More pyxoMoi pigunHu; cyHKLioHan Yacy; piBHsiHHA Evinepa;
Kpanosi ymoBu; pag Tewnopa; ekcTpemarnbHa TpaekTopist.

B.IM. Ileresa, A.B. ATamaHtok

BPAXUCTOXPOHHOE [BVDXEHWE MATEPUAJIBHOW TOUKM B FOPU3OHTANBHOM BEKTOPHOM MOJIE MOOBMKHOWM
XNOKOCTU

Mpobnemartuka. Mockornbky 6paxMCTOXPOHHOE ABMXKEHVNE MaTepUanbHON TOYKW B MITOCKOM BEKTOPHOM MOMe MOABWXHON XUAKOC-
TV paHblle He paccMaTpuBanocb, TO cHOPMyNMPOBaHHAsS BapWaLMOHHAA 3a4aya O NouCKe JKCTpeMarbHbIX TPAeKTOpuiA B Takow no-
CTaHOBKe SIBNSIETCSH HOBOMN W aKTyanbHOW.

Llenb uccnepoBaHus. Llenbio nccnefoBaHva SBNseTcA MofyyYeHne anrebpanyeckmx ypaBHEHWI KCTpeMarbHbIX TPaeKkTopui
ABWKEHWs, BAONb KOTOPbIX MaTepuanbHas TOYka nepemeLlaeTcs OT 3aJaHHOW TOYKW cTapTa A0 3aA4aHHOM TOYKM MHMLIE 338 MUHW-
ManbHoe Bpems.

MeToauka peanusaumu. PelueHve noctaBneHHon 3agayn 6bino NnpoBefeHO C MOMOLLLIO UCMOMb30BaHUS KIAcCUYEeCKUX MeTo-
0B BapMaLMOHHOIO 1cyMcneHns (Ana nonyyeHus anddepeHumanbHoro ypaBHEHUS TPAeKTOPUIA ABUXEHUS MaTepuanbHON TOYKW), a
TaKkKke C WUCMoNb3oBaHWeM psaoB Tewnopa (4Ns NPUBNKEHHOrO MHTErpupoBaHUA NonyyYeHHoro AvdpdpepeHumanbHOro ypaBHEHWs).
[Ina 3agaHHOro BapuaHTa rpaHUYHbIX YCIIOBWI ObINK yCTaHOBMEHbI MPUONMXEHHble anrebpanyeckne ypaBHeHNS aKCTpeManen ABuxe-
HVS MaTepuanbHON TOYKW B BUAE OTPE3KOB CTEMEeHHbIX PAAoB. bbin npoBeAeH cpaBHUTENbHbIVE aHaNU3 BPEMEHW ABWDKEHNS KaK No 9KC-
TpemasbHbIM TPAeKTOpUAM, Tak 1 NO anbTepPHaATUBHOMY KpaTyailemy nyTv — Nno NpsiMON, KOTOpasi CoeAUHSET ABe 3afaHHble TOYKU
cTapTa u uHuwwa.

Pe3ynbTatbl uccnegoBanms. [NokasaHo, YTO pacCMOTPeHHast BapuaLMoHHasn 3a4ada uMeeT ABa PasnuyHbIX PeLleHuns], KoTopble
OTNMNYAIOTCS TOMbLKO 3HAKOM. [Mpy 9TOM TONbKO OAHO pelleHve obecneyvBaeT MUHUMaNbHOE BPEMS ABWXEHWUS MaTepuarnbHON TOYKU
Mexpy 3afdaHHbIMKM TOYKaMu cTapta u duHuwa. VccnegosaHnsaMu Takke YCTAHOBIIEHO, YTO 3KCTpeMasnbHas Tpaektopusi 6paxmcro-
XPOHHOTO ABWXEHNSA TOYKM HE ABNSETCA NPAMON 1 nMeeT KonebaTenbHbIN XxapakTep.

BbiBogbl. MNpeanoxeHHbIN Noaxon No3BonseT Hanepes NpoknaabiBaTb Takow NOrMcTUYECKUA MapLupyT MaTepuansbHOW TOYKW
(MoTOpHOro KaTepa) B MIOCKOM BEKTOPHOM MOMe NOABWXHOMN XUAKOCTU MEXAY 3a4aHHbIMKU TOYKamu ctapTa u ouHuia, KoTopbln obec-
neyvBaeT MUHUManNbHOE BPeMs ABWXEHUS Mexay HUMKU. Npu 3Tom He 06a3aTenbHO 3KCTpemarbHOW TpaekTopuer B 3Tom crnyyae by-
AeT KpaTyanLwas NMHWS, KoTopasi CoeAMHAET TOYKM cTapTa u uHULa.

KnioueBble croBa: BapvaLWoHHas 3aaava; GpaxncTOXpOHHOE ABWKEHUE; BEKTOPHOE MOome NOABUKHOM XUAKOCTU; (OyHKLMOHAnN
BpPeMeHW; ypaBHeHue Jiinepa; rpaHnyHble ycrnosus; psg Tennopa; skcTpemarnbHas TpaekTopus.
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