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ACCURACY OF A HEURISTIC FOR TOTAL WEIGHTED COMPLETION TIME MINIMIZATION
IN PREEMPTIVE SINGLE MACHINE SCHEDULING PROBLEM BY NO IDLE TIME INTERVALS

Background. A special case of the job scheduling process is that when jobs are processed on a single machine, preemp-
tions are allowed, and there are no idle time intervals. Despite the exact solution models are always much slower than
the heuristics, laws of heuristic’s rapidness advantage and heuristic’s solution closeness to the exact solution are un-
known. Such laws would be useful to estimate real benefits of solution approximation.
Objective. Issuing from the lack of knowledge in relationship between heuristics and exact solution models, the goal is
to study statistical difference between them for the preemptive single machine scheduling problem by no idle time
intervals.
Methods. The two well-known approaches are invoked — the rule of weighted shortest remaining processing period as
a heuristic and the Boolean linear programming model as an exact model. The relative error of the heuristic is defined
and then studied how it varies against increasing complexity of job scheduling problems. The heuristic’s rapidness gain
is shown as well.
Results. The main issue with the heuristic’s accuracy can arise at a few jobs to be scheduled. Additionally to this, if a
sequence of jobs is divided into the fewest parts, the heuristic’s accuracy becomes the lowest. The exception exists for
the shortest sequences — when only two jobs are to be scheduled. As the number of jobs increases up off 6, the relative
error expectedly decreases along with the dramatically growing heuristic’s rapidness advantage. Therefore, scheduling a
long sequence of jobs is preferable. The top relative error of the heuristic can exceed 6 % for three to five jobs to be
scheduled, when they are divided into the fewest parts.
Conclusions. Starting off six jobs, the heuristic’s accuracy averagely increases, by a fixed rate of randomness in processing
periods, priority weights, and release dates, as the complexity of job scheduling problems increases. The rate of ran-
domness influences inversely: if processing periods, priority weights, and release dates are more randomly scattered, the
heuristic schedules more accurately. The exact approach is truly applicable for cases when three to five jobs are to be
scheduled (in particular cases, when the number of job parts is constant and is 2, the upper number of jobs can be
increased up to 10). For such cases, an approximate solution’s real loss (given by the heuristic) is the average relative
error not exceeding 1.2 % for job scheduling problems with low rate of the randomness. If such a loss is not admissible,
the exact approach will work instead.
Keywords: job scheduling; preemptive single machine scheduling; exact model; heuristic; total weighted completion
time; heuristic’s accuracy; heuristic’s rapidness advantage.
Introduction scheduling theory [1, 2]. Obtaining an exact solution
to this problem becomes very resource-consuming

Job scheduling is the process of allocating/as-  (implying processor clock speed, memory space,

signing tasks to be processed on machines. A special
case is that when jobs are processed on a single ma-
chine [1, 2]. The minimal number of jobs is 2, and
each job has an arbitrary processing time/period, re-
lease date, and priority weight. Going with it a little
bit wider, preemptions are allowed, which means
that the processing of any job can be interrupted at
any time and any number of times in favor of other
jobs [3]. Another special condition/requirement is
that there are no idle time intervals [1, 3, 4].

The preemptive single machine scheduling
problem of minimizing total weighted completion
time with arbitrary processing periods and release
dates is an important NP-hard problem in the
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and time) even for a few jobs [1, 5]. For a few tens
of jobs, the problem becomes intractable even for
the fastest and most powerful processors [1, 4, 6, 7].
Processing periods and release dates are often
given as integers. This opens a way to solve the re-
spective integer linear programming problem. Mod-
els based on the branch-and-bound approach are
commonly used for that [6, 8]. Along with models
of obtaining an exact solution, there are a lot of
heuristics allowing to find an approximate solution
[1, 2, 4, 7]. Computational studies claim that those
heuristics are extremely rapid compared to the exact
solution models. Besides, a heuristic approximate
solution appears very close to the exact one [1, 4].
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Despite the exact solution models are always
much slower than the heuristics, laws of heuristic’s
rapidness advantage and heuristic’s solution close-
ness to the exact solution are unknown. Such laws
would be useful to estimate real benefits of solution
approximation. What is the actual difference be-
tween an exact approach and a heuristic? Are there
any artifacts in the difference? Whether could we
apply the exact model at all? If not (at least for a
definite set of input parameters), then it is no sense
to consider and develop such exact models for the
mentioned job scheduling problem. These questions
are open and waiting to be addressed.

Problem statement

Issuing from the lack of knowledge in relation-
ship between heuristics and exact solution models,
the goal is to study statistical difference between
them for the preemptive single machine scheduling
problem by no idle time intervals. The two well-
known approaches will be invoked for this — the
rule of weighted shortest remaining processing pe-
riod as a heuristic and the Boolean linear program-
ming model as an exact model [1, 6, 8]. The relative
error of the heuristic will be defined and then stud-
ied how it varies against increasing complexity of job
scheduling problems. The heuristic’s rapidness gain
is going to be shown as well. The research result
should answer the questions of when the exact ap-
proach is truly applicable, and what an approximate
solution’s real loss (given by the heuristic) is.

Boolean linear programming model

Let N be a number of jobs, N e N\{l},
where job n is divided into H, equal parts (i.e.,
has a processing period H,), has a release date r,,
and a priority weight w,, n=1, N . So,

H=[H,],y N (1)
is a vector of processing periods,

W =[w,],y e NV ()
is a vector of priority weights, and

R =[r,].y € NV (3)

is a vector of release dates. However, whereas r, is

the time moment, at which job n becomes available
for processing, condition of “the proper start”,
which is

3n €{l, N} such that ty = 1, 4)

holds. This is the first additional constraint to release
dates (3). The second one comes from that there are
no idle time intervals, i.e. having sorted compo-

nents of R in ascending order to vector R =[7 ], v »
vector (1) becomes respectively sorted after
R =[],y to H=[H,],y and condition

ko _ -
1+ H,>Fy Vk=1, N-1 (5)
n=1

holds.

The goal is to minimize the total weighted
completion time, i.e. to schedule the jobs so that
sum

i w,0(n; H,) (6)
n=1

would be minimal, where job »n is completed after
moment 0(n; H,), which is

N
0(n; H,)e{l, T} by T=>H,. (7)

n=1

This goal is equivalent to minimizing sum

Hﬂ
2.
1h,=1

n=1h,

N T

}"nh,,rxnhnt (3)
1

by the known Boolean linear programming model
[6, 8], where x,,, is the decision variable about

assigning the 4, -th part of job » to time moment
t: x,,, =1 ifitis assigned; x,, , = 0 otherwise. The

triple-indexed weights are calculated as follows:

Do =0 )
by
ro—l+h, <t<T-H,+h, Vh, =1, H,—1 (10)
and

P (11)

n

by sufficiently great positive integer o (similar to the
meaning of infinity) when (10) is not true;

12)

}\'ant = Wnt
by

r,-1+H,<t<T (13)
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and
My ¢ =0 (14)
when (13) is not true; for instance,
N T
o= w,t (15)

n=1t=1
can be used. So, sum (8) is defined on set

H,

T
X = {{{xnhnt}ﬁtvzl}hnil };=1 <

where & is a set of all possible versions of the deci-
sion variables’ set. The goal is to find such a set

* * N Hn r
X = {{{x,,,,n,},,=1}h :1} e (16)
n t=
on which minimum
N H, T
min >, Z > Mot X (17)
n=l =1 1=1

is achieved by constraints constituting set 2 (an in-
teger binary lattice):

Xpp €{0, 1} by n=1, N

_ _ (18)
and b, =1, H,and =1, T,
T
> Xy, =1byn=1,N and h, =1, H,, (19)
=
N H,
> Xy, =lbyt=1T, (20)
P
T H,-l
Xpp i + Hyxyy , < H,
o g < 1)

byn=1, Nand¢r=1,T -1.
If (16) is a solution of the problem, it is the
optimal job schedule 8™ =[s;],.; by s, e{l, N} for
every r =1, T . Then

=

M=
M=

p(N)= (22)

*
thntxnhnt

11

n=1h,

is the exact total weighted completion time for those
N jobs.

A heuristic approach

The heuristic is an online scheduling algo-
rithm, which applies the rule of weighted shortest
remaining processing period [1]. Let

Q=1[g,ly =H=[H ]y

be a starting vector containing the remaining pro-
cessing periods. Later on, elements of vector (23)
will be decreased as time ¢ progresses. Denote by

S =[5,],.; the whole set of jobs scheduled by the
algorithm, where §, e {l, N} for every ¢ = LT.A
set of available jobs

(23)

At)={ie{l, N}:r,<tand g, >0} = {1, N} (24)

gives a set of ratios

e
9i ) icaq
whence the maximal ratio is achieved at subset
A'(t) = arg max 2. (26)
ieA(r) g
If |[A"(1)| = 1, where
A () ={i"y e AW = {1, N},
then
§=i"by ¢ =g, and g, =¢"*™ -1; (27)
otherwise
A" (1) = arg i*rerha*é) we A" (1) < A®t)
and
A1) =i}y < A1) < A(r) < {1, N},
whence
§, =i by qubs) =g, and g = <°b5> ~1.(28)

Then an approximate total weighted completion
time is calculated successively for every n =1, N as
follows: if

Sy =1 Vh =1 H,,

then job n is completed after moment 0(n; H,).
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Finally,

N
BN) = > w0 H,)

n=1

(29)

is an approximately minimal total weighted comple-
tion time that corresponds to the nearly optimal job

schedule S =[3,];,7. This schedule often coincides
with the job schedule produced by exact solution (16):

N
p(N)Y=>w,0 (n H,),

n=1

(30)

where 0 (n; H,) is a moment after which job 7 is
completed, i. e.

*

S 9*(}1;}1”) =n th :1, Hn .

Obviously, if amounts (29) and (30) are equal, a
difference between schedules S =[5,],; and

S" =[s; ];.; does not matter. Difference between to-

tal weighted completion times (30) and (29) is a
matter of scrupulous interest.

Relative error of the heuristic

Generally,

p(N)=p (N) (31)

but computation time ©(/N) of the heuristic is always

far less than computation time © (V) of achieving
minimum (17) by (18)—(21):

H(N)<1(N). (32)
Therefore, relative error
p(N)—p (N)
e(N) =B P 20 (33)
p (N)

and computation time ratio
Ny 34
v(N) ) (34)

make sense to be considered for cases when inequal-
ity (31) is strict.

Counterexamples of the heuristic job scheduling

Consider a problem of scheduling five jobs by
the following parameters:

H=[H,l.s=2 13 2 1],
W=lwls=[2 2 1 4 1],
R=[rls=0 22 2 1.
The heuristic schedule

S=[5lo=0 4 412533 3

is obtained rapidly (in about 100 microseconds), and
its total weighted completion time is

5 ~
p(S) =D w,0(n; H,)
n=l1
=2-4+2-5+1-9+4-3+1-6=45.
The exactly optimal schedule

(35)

S =[slo=[54 4211333

is obtained a way slower (in about 80 times), but its
total weighted completion time is

5
p (S)Zane (n; Hn)
n=1
S2.642-441.944.3+1.1=42.  (36)

So, here for total weighted completion times (35)
and (36) the relative error

_ p(5) —p (5) _45-42 1

p (5) 42 14 (37)

&(5)

is pretty noticeable, although computation time ra-
tio (34) is quite great. Nonetheless, when it is not
critical to spend up to 10 milliseconds for an exact
solution, the heuristic (23)—(29) for this example
would be worse than the exact solution by Boolean
linear programming model (1)—(22).

If we modify the scheduling problem just in the
third job processing period to

H=[H)]|s=[2 11 2 1],
then the relative error becomes even greater than (37):

p(5) —p'(5) _43-40

&(5) = NG 0

_0.075> L. (38)
14

Relative error (38), i.e. the error in 7.5 %, may be
critical in some cases.

Another counterexample with five jobs is pecu-
liar in that all the job processing periods are equal:

H=[H,s=[2 2 2 2 2],
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W=[w,l,s=[6 112 2 24],
R=[nls=03 14 2 5].
The heuristic schedule
S=[5l0=[2 413553142
differs from the exactly optimal schedule
S =[s =12 2 115533 4 4

in four positions again, but this time the relative er-
ror is

p(5)—p (5) 304286
p’(5) 286

= . 0.0629.
143

e(5) =

(39)

Almost the same relative error exists in the ex-
ample with seven jobs:

H=[H,],=[2 22222 2],
W=lwlo=l6 62163 3,
R=[rl,=[57 216 4 3.

Here the heuristic schedule S =[3,],,,, differs from

the exactly optimal schedule S =[s, ], in 10 po-
sitions, and the relative error remains significant:

P -p (7)) 236-222
p (7) 222
_ 7 0.0631.

111

&(7)
(40)

Just like in the previous case, we have an error in
6.3 % once again. Despite relative error (40) for
seven jobs stands against the same value (39) for five
ones, a greater number of jobs does not necessarily
make the respective relative error less significant.

Those four counterexamples might serve as the
basics for a few classes of the job scheduling prob-
lem, wherein the heuristic works poorly. Hence, it
is common to learn some statistics of the heuristic’s
accuracy. It will help in revealing “weak places” of
the heuristic.

An analysis of heuristic’s advantage

First of all, if every job consists of a single part,
total weighted completion times (30) and (29) are
the same, although the heuristic’s and the exact
model’s schedules may differ (in particular, jobs

with identical priority weights may be permuted). It
is very easy to check this for up to 100 jobs and even
more owing to that finding solution (16) by the
Boolean linear programming model is relatively very
rapid for the case when the number of jobs is equal
to the grand total of processing periods 7' in (7).
Henceforward, learning statistics of the heuristic’s
accuracy should be started off the cases wherein,
along with (1),

H,>1 Vvn=1, N but 3me{l, N}

(41)
such that H,, > 1.

For obtaining credible results of a statistical
analysis, a few series of job scheduling problems
should be generated with randomizers. The genera-
tors for processing periods (1), priority weights (2),
and release dates (3) are constructed as follows. Pro-
cessing periods (1) are

H = [Hn]lxN = W(lBH(N)Q(L N)l +1)

where function Q(1, N) returns a pseudorandom

I1x N vector [9, 10] whose entries are drawn from
the standard normal distribution (with zero mean
and unit variance), function y(&) returns the integer

part of number & (e.g., see [11]), By(N) is a posi-
tive factor depending on the number of jobs. Priority
weights (2) are

W=[w,liy =v(ne(d, N)+1)

(42)

(43)

where function O(1, N) returns a pseudorandom

Ix N vector whose entries are drawn from the
standard uniform distribution on the open interval
(0; 1), n is a positive factor. Release dates (3) are

taken as
R =[r,]ln = v(Br(N)Q, N)| +1)

where Bgr(/N) is a positive factor depending on the
number of jobs, if only conditions (4) and (5) hold.
If one of them does not hold, vector (44) is re-gen-
erated until conditions (4) and (5) hold.

As N increases, growth of factors By (/N) and

Br(N) must be decreasing. Therefore, they can be
9

8
BH(N)ZS—N and BR(N)::;_W

(44)

(45)
for N =2, 10.

Fig. 1 prompts that factor n can be set at 5. A result

of using such factors for the number of jobs not ex-
ceeding 10 is in Fig. 2.
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Fig. 1. Factors (45) for the generators in (42) and (44)
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Fig. 2. A series of processing periods (1), priority weights (2), and
release dates (3), constructed by (42), (43), (44), and by

(45) and n=5 for N =2,10
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Less intensive job sequences are generated by
dividing factors (45) by 1.75 and 1.25, 2 and 1.5, 3
and 2, respectively. A series of four instances of pro-
cessing periods (1), priority weights (2), and release
dates (3), constructed by such intensity decrements,
are shown in Fig. 3.
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A series of four instances of processing periods (1), priority
weights (2), and release dates (3), constructed by dividing
factors (45) by 3 and 2, 2 and 1.5, 1.75 and 1.25, respec-
tively from top to below (separated with dashes), at n =5

for N =10

Fig.
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Apart from the mentioned parameters for gen-
erating job scheduling problems, a very interesting
case is when we have an identical number of job
parts, each job has its unique release date, and the
later job has a greater weight. For instance,

H,=2 vn=1,N (46)
by
w,<w,, Vn=1 N -1
(47)
but 3m e {I, N —1} such that w, <w,,,,
and
R =1[r 1w =1l - (48)

Such job scheduling problems are to be generated
by

n € {5, 10, 15, 20, 25} (49)

for the priority weights with properties (47).

Fig. 4 reveals an average of relative error (33)
for nine types of job scheduling problems generated
by the following parameters:

1) factors (45) are divided by 3 and 2, respec-
tively, and n=35;

2) factors (45) are divided by 2 and 1.5, respec-
tively, and n=35;

3) factors (45) are divided by 1.75 and 1.25,
respectively, and n=35;

4) factors (45) are used as they are, and n =5;

5) the case with (46)—(48) by N =2,10 and
n=35;

6) the case with (46)—(48) by N =2,10 and
n=10;

7) the case with (46)—(48) by N =2,10 and
n=15;

8) the case with (46)—(48) by N =2,10 and

n=20;

9) the case with (46)—(48) by N =2,10 and
n=25.

As it is clearly seen, randomly generated job
scheduling problems by (42)—(44) are solved more
accurately by the heuristic. The average relative er-
ror does not exceed 0.2%. On the contrary, job
scheduling problems with a way lesser randomness,
where only priority weights are generated random
by (43), are not always solved accurately enough. For
such cases, the average relative error exceeds 1.2 %
which may be a significant loss. In particular cases,

the relative error easily jumps beyond 6 %. Indeed,
just for a few instances with three jobs to be sched-
uled, the following results are very “discreditable”
for the heuristic:

W=[w,ls =11 2 4lbyn=5,

«3) = f)(3)*—p*(3) _32-30 14 0667 (50)
p (3 30 15

W=[w,ls=[2 4 9byn=10,

53)=p" — 51
()PP O _68-64 1 565 OV
P 3) 64 16
W=[wl;=[2 4 8byn=15,
5(3) = o - 52
o) PR PO _64-60 1 4567 2
P (3) 60 1
W=[w,].;=[4 8 17]byn=20,
53) - o - 53
b3 - PO P () _132-124 2 505 O3
0 3) 124 31
100e(N)
13 T T T T T |
case #5
12+ —©— case #6
—*— case #7
11k —8— case #8
’ —#— case #9
1 |-
09 r
0.8 r
0.7 -
oer 418 :
§j§ case #1
04 8'83 —O— case #2
88@ —*— case #3
03 §I§§ —&— case #4
g6
02* 02345678910
0.1 |
TN

0 ~ B 1 1

2 3 4 5 6 7 8 9 10

Fig. 4. An average of relative error (33) given in percentages for
the nine types of job scheduling problems; despite exam-
ples (50)—(57) are particular occurrences of such a great

relative error, the likelihood of such cases cannot be ex-
cluded
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W=[w,l.s =[5 10 21]by n =25,

e3P =P @) _164-158 5 4649
0 (3) 154 77

(34)

Statistically, scheduling three and five jobs is the
most “vulnerable” when using the heuristic. Despite
scheduling five jobs by the heuristic fails to be accu-
rate rarely, its “vulnerability” is still impressive by
n=25,e.g

W=lw,ls=[3 6 11 12 24],

8(5):,3(5)*—;) (5) _ 375-350 :iz0.0714; (55)
p (5) 350 4
W=[w,l.s=[3 7 13 13 23],
5(5) = p° _ 56
8(5):;3(5)* p (5) _394-370 :£z0.0649; (56)
p (5) 370 185
W=[w,].s=[5 10 19 19 22],
(57)

o(5) = PO =P ) _300-470 _ 3 5635
5 5) 70 47

Nevertheless, scheduling a greater number of jobs
(7, 8,9, 10, and so on) appears more accurate (then
the maximal relative ratio does not exceed 5 %).

Fig. 5 reveals that the heuristic’s rapidness gain
by computation time ratio (34) grows dramatically:
since N > 5 it is hardly comparable to the solution
procedure by the Boolean Ilinear programming
model. The heuristic is averagely at least 100 times
faster. Three jobs are scheduled on average 580
times faster, whereas five jobs are scheduled beyond
10000 times faster. Besides, the higher randomness
in processing periods (42), priority weights (43), and
release dates (44) facilitates in the faster solving.
However, the heuristic’s rapidness gain for three
jobs is not so perfect ever: there are cases when it
drops to about 100 down to 10.

Fig. 4 hints at that the constant processing pe-
riod (46) and unique monotonously increasing re-
lease dates (48) are the “weak places” of the heuris-
tic. When the constant processing period is in-
creased to

H,=3,H,=4, H =5 (n=1,N), (58)
the “weakness” gradually disappears (Fig. 6). Such
an outcome truly does depend on (49), but the de-
pendence is weak itself.

Y(N)

N

2 3 4 5 6 7 8 9 10

Fig. 5. An average of computation time ratio (34) for the nine
types of job scheduling problems; apart from formally
confirming inequality (32), this example shows the heu-
ristic’s advantage in its rapidness

100e(N)

0.54 T
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0.5
0.48
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0.42

0.4
0.38
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0.34
0.32

0.3
0.28
0.26
0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1
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0.0E ‘ N

2 3 4 5 6

Lo

*H”:

—6—H,=3
—%—H, =4
—8—H, =5

T T T T T T T T T T T T T T T T T T T T T T T T 7T
*

Fig. 6. An average of relative error (33) given in percentages for
n =25 in priority weights (43) by a constant processing
period (46), (58), and release dates (48)
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It is worth to note that whereas the “weakest”
job scheduling problem is of three jobs, it has also
the least rapidness gain (see Fig. 5) by computation
time ratio (34). But at the higher randomness in
processing periods (42), priority weights (43), and
release dates (44) the slowest heuristic is expected
for job scheduling problems with two jobs.

Discussion

The graphical results in Figs. 4—6 are quite
credible owing to good enough averaging (it has
been used 100 repetition cycles of generating a one
job scheduling problem). If the generations were re-
peated all over again, similar graphics would be ob-
tained, although the peaks in Fig. 4 and polylines in
Fig. 6 might then be slightly displaced. The displace-
ment would likely be perceptible but it would not
break the general tendency.

Obviously, the statistical analysis carried out by
generating both random job scheduling problems
and problems wherein the later job has a greater
weight by a constant processing period might have
been continued: a class of randomizers could be
widened, and the constant processing period could
be increased up to a few tens. However, even the
factually obtained results visualized in Figures 4 and
6 allow to confidentially claim that the main issue
with the heuristic’s accuracy can arise at a few jobs
to be scheduled. Additionally to this, if a sequence
of jobs is divided into the fewest parts, the heuristic’s
accuracy becomes the lowest. The exception exists
for the shortest sequences — when only two jobs are
to be scheduled. As the number of jobs increases up
off 6, the relative error expectedly decreases along
with the dramatically growing computation time ra-
tio (34). Therefore, scheduling a long sequence of
jobs is preferable, although it does not mean that we
can just “glue” together a few short scheduling prob-
lems into a longer one.
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B.B. PomaHiok

TOYHICTb EBPUCTUKN ANA MIHIMIBAL|T 3ATANIBHOIO 3BAXXEHOMO YACY 3ABEPLUEHHA B OAHOMALLUMHHIV 3ALAUI
MITAHYBAHHA 3 NEPEMUKAHHAMW BE3 IHTEPBAJIIB NMPOCTOO

Mpo6nematuka. Ocobnusuii BUNaZok Npouecy nnaHyBaHHS 3aBAaHb Monsirae B TOMY, LU0 3aBAaHHS 06pobnsoTbest Ha OgHOMY
KOMM'l0Tepi, JO3BOSIEHI NEePeMUKaHHS | HeMae iHTepBaniB NPocTo. He3Baxaloun Ha Te Lo MoAeni TOYHOro po3B’A3aHHS 3aBXan Haba-
raTo MOBIMbHiLLi, Hi>XK EBPUCTVKM, 3aKOHW NepeBarn eBpUCTYK Y LUBMAKOCTI Ta 6Gnn3bKiCTb €BPUCTUHHOIO PO3B’A3KY 40 TOYHOrO PO3B’A3KY
HeBigoMi. Taki 3akoHM Bynn 6 KOpUCHI ANs OLiHKK pearnbHKUX NepeBar anpokcumallii po3B’s3ky.

MeTa pocnigxeHHs. Buxoasaum 3 BiACYTHOCTI 3HaHb LOAO B3aEMO3B'A3KY MK €BPUCTMKaAMUM Ta MOAENSMU TOYHOIO PO3B’S3KY,
METOI0 € BUBYEHHS CTAaTUCTUYHOI Pi3HMLI MiXK HAMU ANs OQHOMALLMHHOI 3a4adi MnaHyBaHHS 3 nepeMukaHHsMu 6e3 iHTepBanis NpocToto.

MeToauka peanisauii. 3anponoHoBaHo ABa BigOMMX NiAXOAM — MPaBUMO 3BAXEHOTO HANKOPOTLLIOrO 3anuLLIKOBOro nepiody o6pobku
K eBPUCTUKK | Mofeni ByneBoro mMiHINHOro nMporpaMyBaHHSA ik TOYHOI Modeni. BuaHayaeTbca BigHOCHa noxmbka eBpUCTMKM, @ NOTiM
BMBYAETHCS, K BOHA 3MIHIOETBCS 3anexXHOo Bif, 3pOoCTal4oi CKNagHOCTI 3aa4ady NnaHyBaHHs 3aBAaHb. TakoX Noka3yeTbCst BUrpaLl eBpuc-
TUKW Y LLIBUAKOCTI.

Pe3ynbTatu pocnigxeHHs. OcHoBHa npobrnemMa 3 TOYHICTIO €BPUCTUKN MOXE BMHUKHYTWU 3@ HE3HAYHOI KiNbKOCTi 3aBAaHb, siKi
MatoTb 6yTK po3nnaHoBaHi. Kpim Toro, siKLo NocnifoBHICTb 3aBAaHb po3fifieHa Ha Marny KiflbKiCTb YacTWH, TO TOYHICTb EBPUCTUKM CTae
HalMeHLUOt. ICHYE BUHSTOK A4St HANKOPOTLUMX NOCHIAOBHOCTEN — KOMW NOTPIGHO po3nnaHyBaTu nuwe ABa 3aBaaHHs. LLloiHo KinbkicTb
3aBAaHb 36inbLUyeTbCH Bif 6, BiGHOCHa NOXMOKa O4iKyBaHO 3MEHLLYETLCH Pa3oM i3 Pi3KO 3pOCTaloHo0 NepeBaro eBPUCTUKA Y LUBUAKOCTI.
OTxe, NNaHyBaHHsi AOBroi NOCMiAOBHOCTI 3aBAaHb € Kpalmm. Haneuwa BigHOCHa noxvbka eBpUCTUKM MoXe nepesullyBath 6 % ans
BMNaAKy NnaHyBaHHS Big TPbOX A0 N'ATW 3aBAaHb, KOMWM BOHW PO3AINEHi Ha Many KinbKiCTb YacTUH.

BucHoBku. [NounHaoum 3 WecTn 3aBaaHb, TOYHICTb EBPUCTUKM B cCEpeaHbOMY 3pocTae 3a hiKCOBaHOro piBHA BMMNALKOBOCTI B Ne-
piogax obpobku, Barax npiopuTeTiB i AaTax 3amnyckiB, LOWHO 3pOCTa€e CKNagHiCTb 3a4ad NnaHyBaHHs 3aBAaHb. PiBeHb BUNaAKOBOCTI
BMNMBAaE y 3BOPOTHUIA Bik: sikLLo nepioan obpobku, Baru NpiopuTeTIB | AaTy 3anyckiB po3cisiHi 6inbL BUNagkoBo, TO EBPUCTMKA PO3NiaHo-
Bye Oinbll TOYHO. TOYHMI NiOXig € OINCHO 3aCTOCOBHMM Yy BUMNaAKax, Konv HeobxigHO po3nnaHyBaTu Bif TPbOX 4O M'ATW 3aBAaHb (B
OKpeMMX BUNagKax, Komu KinbKiCTb YaCTUH 3aBAaHHs € CTanolo i JOPIBHIOE 2, BEPXHE YMCNO UMX 3aBAaHb MoxHa 36inbwutn go 10). Y
Takux BUMNagkax peanbHa BTpaTa 3a HabnukeHWM po3B’S3KOM (3a eBPUCTUKOK) € TiEK CEPEAHbOI BiJHOCHOK NOXMBKOL0, L0 He NepeBu-
wye 1,2 % ona 3agay nnaHyBaHHSA 3aBAaHb i3 HU3bKMM piBHEM BMNAAKOBOCTI. AKLLO Taka BTpaTa HenpunycTMMa, To 3amicTb Hei byae
npautoBaTi TOYHWUI Niaxig.

KnioyoBi cnosa: nnaHyBaHHs 3aBfaHb; NnaHyBaHHA Ha OAHIN MaLLKHI 3 NePEeMUKaHHAMM; TOYHa MO/ENb; eBPUCTUKA; 3aranbHum
3BaXEHWN Yac 3aBepLIEHHSsI; TOYHICTb EBPUCTUKM; NepesBara eBPUCTUKA Y LIBUAKOCTI.

B.B. PomaHtok

TOYHOCTb 3BPUCTUKN AN MUHUMUSALIM OBLLEMO B3BELWEHHOIO BPEMEHW 3ABEPLUEHWNSA B OOHOMALLMHHOW
SAOAYE MNAHNMPOBAHMA C NEPEKMIOYEHUAMKU BE3 MHTEPBAJTOB MPOCTOA

Mpo6nemaTuka. Ocobbiii criyyait npouecca NnaHMpoBaHWs 3aJaHui 3aknodaeTcst B TOM, YTO 3adaHns obpabatbiBaloTcs Ha oa-
HOM KOMIMbIOTEPE, Pa3peLLeHbl NePEKMIOYEHNSI U HET MHTEPBANOB NPOCTOsl. HECMOTPS Ha TO YTO MOAENM TOYHOTO PELLEHWSI BCEraa ro-
pasfo mMeaneHHee, YeM 3BPUCTUKK, 3aKOHbI MPEeNMYLLIECTBA 9BPUCTUK B CKOPOCTU M Bnn30CTb 9BPUCTUHECKOTO PELLEHNS K TOYHOMY pe-
LUEHWIO Hen3BeCTHbI. Takue 3akoHbl Bbiny Gbl NoNe3Hbl A OLEeHKW peanbHbIX NPenMyLLEecTB annpoKCUMAaLMK PELLEHMS.
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Llenb nccnepoBaHus. Vicxoas n3 oTCyTCTBUS 3HAHUI O B3aVMOCBA3N MeXAyY 9BPUCTUKaMM 1 MOAENAMM TOYHOTO peLleHust, Lenbio
ABMAETCH U3y4YeHne CTaTUCTUYECKON PasHuLibl MEXAY HUMW AN O4HOMALUVHHOW 3a4a4yn NNaHMpoBaHWs C NepekntoYeHnsaMmn 6es nHrtep-
BanoB NpoOCToS.

MeToauka peanusauumn. MpeanoxeHsl ABa U3BECTHbIX NOAXOAA — NPABUIIO B3BELLEHHOIO KpaTyalllero octaToyHoOro nepuoaa
06paboTkmn Kak IBPUCTUKN U MOAENM ByrneBoro NMMHENHOro NPorpaMMMpPOBaHNA Kak To4HOW mogdenn. OnpefenseTca OTHOCUTENbHas Mo-
rPELUHOCTb 3BPUCTUKK, @ 3aTEM M3Y4aeTcs, Kak OHa MEHSIeTCS B 3aBUCHMOCTW OT BO3pacTaloLLel COXHOCTU 3a4ay NnaHMpoBaHUs 3a-
AaHuii. Take NokasblBaeTCs BbIMIPbILL 3BPUCTUKN B CKOPOCTHU.

PesynbTratbl uccneposanusa. OcHoBHas npobnema ¢ TOYHOCTbIO 3BPUCTMKM MOXET BO3HUKHYTb Mpu HEOONbLIOM KONMM4YecTse
3afaHvi, KOTopble JOMKHBI BbITb pacnnaHMpoBaHbl. Kpome Toro, ecnm nocnefoBaTerlbHOCTb 3a4aHWN pasfeneHa Ha Marnoe KonmyecTso
YacTew, TO TOYHOCTb 3BPUCTMKN CTAHOBWUTCH HauMeHbluen. CylecTByeT UCKMIOYeHNe AN KOPOTKUX MocreaoBaTerlbHOCTeN — Koraa
HY>XHO pacnnaHMpoBaTb TONMbKO ABa 3aAaHns. Kak Tonbko KonM4ecTBo 3a4aHnii yBenuunBaeTcs oT 6, OTHOCUTENbHAs MOrPELLHOCTb OXU-
[aeMo yMeHbLLIAeTCA BMeCTe C pPe3ko BO3pacTaloLLMm NpenMyLLecTBOM 3BPUCTUKN B ckopocTu. CnepoBaTenbHO, NNaHnpoBaHue AnvH-
HOW nocnepoBaTeNnbHOCTY 3adaHuii npeanoyuTutTensHo. Camas BbICOKas OTHOCWUTENbHAsi MOrPeLLIHOCTb IBPUCTUKU MOXET MpeBblllaTh
6 % Ansa crnyyas nnaHMpoBaHWs OT TPeX A0 NATW 3a4aHui, KOoraa OHW pasferieHbl Ha Marnoe KonmM4ecTBO YacTen.

BbiBoAbl. HaunHas ¢ wecTtn 3a4aHnii, TOYHOCTb 3BPUCTUKM B CPEAHEM pacTeT npu pUKCUPOBaHHOM YPOBHE Cry4anliHOCTK B ne-
pvogax 06paboTku, Becax NpYOPUTETOB U AaTax 3amnyckoB, KaK TONbKO BO3pacTaeT CMOXHOCTb 3a4ay NNaHWpoBaHNSA 3aaaHuin. YpoBeHb
criy4anHocTu BnmseT B 06paTHy0 CTOPOHY: ecrnu nepuoasl 06paboTkuy, Beca NpMopuTETOB U AaTbl 3arnyCcKoB paccesHbl bonee cnyyanHo,
TO 3BpUCTMKaA NNaHupyeT 6onee To4HO. TOYHBIN NOAXOA AENCTBUTENBHO NPUMEHUMBIM B CIy4asx, korga HeobxoaMMo pacnnaHmpoBaTh
OT Tpex A0 NSATV 3adaHuii (B OTAESNbHbBIX CryvasX, Koraa KonmMyecTBo YacTen 3aAaHns ABNseTcs NOCTOSHHBIM U PaBHO 2, BEPXHee Y1CIo
3TUX 3afaHuii MoxHO yBenuuntb Ao 10). B Takunx cnyyasx peanbHas noteps no npubrnvmKeHHOMY peLleHuio (Mo 3BPUCTUKE) ABMAETCH
3TOW CpeaHel OTHOCUTENbHON NOTrPELLHOCTLIO, He npeBbiwatowent 1,2 % Ans 3agad NnaHMpoBaHUS 3a4aHui C HU3KMM YPOBHEM cryyan-
HocTu. Ecnu Takas noTepst HedonycTMma, To BMeCTo Hee ByaeT paboTaTb TOYHbIM NOAXOA.

KnioyeBble cnoBa: nnaHnMpoBaHue 3afaHuni; NNaHNpoBaHWE Ha OOHON MaLLUVHE C NEPEeKToYeHNIMN; TOYHas MOAENb; 3BPUCTUKA;
obLee B3BELLEHHOE BpemMaA 3aBeplieHUda; TOYHOCTb 3BPUCTUKIN, NPEUMYLLIECTBO 3BPUCTUKN B CKOPOCTHU.

PexomenngoBana Pagoro Hapiiinura o penaxuii
akyIbTeTy NMPUKIATHOI MaTeMaTUKU 20 xBiTHs 2019 poky
KIII im. Iropst CikopchKoro
IIpuitHsata no myGaikarii
20 yepBHs 2019 poky





