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AN INFINITELY SCALABLE DATASET OF SINGLE-POLYGON GRAYSCALE IMAGES
AS A FAST TEST PLATFORM FOR SEMANTIC IMAGE SEGMENTATION

Background. Every new semantic image segmentation task requires fine-tuning the segmentation network architecture
that is very hard to perform on images of high resolution, which may contain many categories and involve huge
computational resources. So, the question is whether it is possible to test segmentation network architectures much
faster in order to find optimal solutions that could be imparted to real-world semantic image segmentation tasks.
Objective. The goal of the article is to design an infinitely scalable dataset, which could serve as a test platform for
semantic image segmentation. The dataset will contain any number of entries of any size required for testing.
Methods. A new artificial dataset is designed for semantic image segmentation. The dataset is of grayscale images
with the white background. A polygonal object is randomly placed on the background. The polygon edges are black,
whereas the polygon body is transparent. Thus, a dataset image is a set of edges of a convex polygon on the white
background. The polygon edge is one pixel thick but the transition between the white background and the polygon
black edges includes gray pixels in the vicinity of one-pixel edges. Such a noise is an aftermath of the image file for-
mat conversion process. The number of edges of the polygon is randomly generated for every next image. The poly-
gon size and position of its center of mass with respect to image margins are randomized as well.

Results. A toy dataset of any volume and image size from scratch can be generated. Besides, the dataset generator au-
tomatically labels pixels to classes “background” and “polygon”. The dataset does not need augmentation. Eventual-
ly, the dataset is infinitely scalable, and it will serve as a fast test platform for segmentation network architectures.
Conclusions. The considered examples of using the polygonal dataset confirm its appropriateness and capability of
networks trained on it to successfully segment stacks of objects. Additionally, a criterion of early stopping is revealed
based on empty image segmentation.

Keywords: semantic image segmentation; dataset; polygonal object; transparent background; augmentation; segmenta-

tion network architecture; empty image segmentation.

Introduction

Nowadays, semantic image segmentation is
the top problem in the field of computer vision. It
is a high-level task that paves the way towards
complete scene comprehension. Due to processing
huge amounts of data, this is a challenge for ma-
chine learning also.

Image segmentation is a computer vision task
trying to label specific regions of an image, and
thus showing what the image contains and where it
is located. More specifically, the goal of semantic
image segmentation is to label each pixel of an
image with a corresponding class or category of
what is being imaged [1, 2]. Usually, the image
spatial resolution is not allowed to be compressed.
So, a semantic segmentation network should clas-
sify every pixel in an image, resulting in an image
of the same resolution that is segmented by classes
or categories.

A few effective approaches towards construc-
ting a neural network architecture for semantic ima-
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ge segmentation exist. They are based on following
an encoder/decoder structure [1, 3]. According to
the encoder/decoder structure, the spatial resolu-
tion of the input is downsampled developing low-
er-resolution feature mappings, and then the fea-
ture representations are upsampled into a full-
resolution segmentation map. A common semantic
segmentation network consists of a downsampling
subnetwork, upsampling subnetwork, and a pixel
classification layer [1, 2, 4]. A downsampling sub-
network is stacked of convolutional layers, ReLUs,
and max pooling layers [5, 6]. The upsampling is
executed using the transposed convolutional layer
(also commonly referred to as deconvolutional
layer) performing the upsampling and filtering at
the same time [7]. An upsampling subnetwork is
stacked of deconvolutional layers and ReLUs. The
final set of layers performs pixel classifications.
These final layers process an input that has the
same spatial dimensions (height and width) as the
input image. The third dimension being equal to
the number of filters in the last deconvolutional
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layer is squeezed down to the number of classes
that are tasked to be segmented. This is done using
a 1-by-1 convolutional layer (in fact, it is a fully-
connected layer) whose number of filters is equal
to the number of classes. The softmax and pixel
classification layers, following the 1-by-1 convolu-
tional layer, categorically label each image pixel.

Surely, it is too early to speak about optimal
semantic segmentation network architectures. They
are hardly to be deduced purely based on mathe-
matics. Developing optimal architectures takes its
time while experience of researchers is accumula-
ted and processed.

The experience has been intensively growing
since the late 2000s. As of November 2018, a few
tens of image segmentation datasets are availab-
le. The most remarkable are COCO, Cityscapes,
BSDS500, CamVid, Mapillary Vistas, DUS,
PASCAL VOC, MSRCv2, and some others con-
taining labels to each pixel in every image instan-
ce [1, 3, 7]. These datasets fit excellently for the
corresponding semantic image segmentation tasks
but training on them is still expensive. Additio-
nally, augmentation of training data for smaller
datasets (like BSDS500 and DUS) is limited.
Meanwhile, every new semantic image segmenta-
tion task requires fine-tuning the segmentation net-
work architecture that is very hard to perform on
images of high resolution, which may contain ma-
ny categories and involve huge computational re-
sources [2, 7].

Problem statement

So, the question is whether it is possible to
test segmentation network architectures much fas-
ter in order to find optimal solutions that could be
imparted to real-world semantic image segmenta-
tion tasks. Such solutions are the number of con-
volutional layers and their parameters (the size and
number of filters) [5, 8], max pooling layers [9],
parameters of deconvolutional layers (the size and
number of filters), and, probably, dropout layers [10].
For example, a plausible purpose is to research on
training data of smaller and simpler images so that
real-world tasks could inherit close-to-optimal
network architectures from them. At this, whiche-
ver a simpler task is, its (simpler) dataset should
not need an augmentation [4, 11].

Obviously, such simple datasets can be only
artificial. Then, however, the number of their ent-
ries is not limited. This is about infinite datasets
like EEACL26 [5, 9, 10] or a possible extended
version of MNIST where digits would be drawn by

a machine simulating inconstancy of human hand-
writing. In its turn, an infinite dataset for a toy
semantic image segmentation must contain primi-
tive objects whose shape and size will vary drama-
tically. Therefore, the present goal is to design an
infinitely scalable dataset, which could serve as a
test platform for semantic image segmentation. The
dataset will contain any number of entries of any
size required for testing. A pattern of how the dataset
can be used is going to be eventually exemplified.

Polygonal objects with transparent bodies to be
segmented

A simple image has an object to be segmented
on the white background. The object whose color
is black must have a geometrical form which could
be easily drawn. Such flat objects are polygons.
The most primitive form is a triangle. Although
polygons having four vertices and more can be
concave and self-intersecting, an appropriate choi-
ce here is convex polygons [12, 13].

Clearly, the minimal number of polygon verti-
ces is 3. Formally, the maximal number is not lim-
ited, so let a polygon be generated of N vertices,

} by n_. e N\{2}. Number

will be randomly chosen for every new image [14,
15]. Number n_,, , i.e. a maximal number of edg-

es in a polygon, is specifically selected for a given
semantic image segmentation task. Greater number

n.... makes this task more complex, and thus a

more complex segmentation network architecture
may be required (Fig. 1).

where ne {3, n

max max

As it just has been declared above, the color
of the polygon edges is black. What would be the
most appropriate color of the polygon interior? It
is not necessary to be the same color as edges. If
to use discolored images, then it much simplifies
the semantic image segmentation task. However,
transparency of objects makes this task more com-
plex again because a color interior (say, red or
green) would help additionally to identify the color
objects on the highly contrasted (white) back-
ground [16, 17]. Therefore, images are grayscale
(there is no ideal transition between the white
background and the polygon black edges). Every
image will contain a single polygonal object with
transparent body, which has to be segmented.

The minimal image size is 32x32. This is set
so for compatibility with the input of convolutio-
nal neural networks for other fundamental data-
sets used in machine learning (like CIFAR-10,
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Fig. 1. A semantic image segmentation example for more than 10 classes: ¢ — an image to be semantically segmented; b — a result

of segmentation

CIFAR-100, EEACL26, MNIST, etc.). Generally,
the image size is hxw, where A is a height, and
W is a width (in pixels), which are only limited
from below: /4 > 32, w > 32. Nonetheless, which-

ever image size would be, the thickness of the po-
Iygonal edges will be one pixel. This implies that
the segmentation is harder for bigger images be-
cause always only a one-pixel border separates the
polygon white interior off the white background.

The dataset generator

A procedure of generating a dataset starts with
inputting numbers n_, and n where n_.

€ {3, Ny
vertices is

max ?

}. Then an initial number of the polygon

n=0((Myu = Ppin +1) -0+ 1, (1)

where 0, is a value of a random variable uniformly
distributed on the open interval (0;1) by a func-
tion o(§) returning the integer part of number & .

Initially, coordinates of the vertices are taken from
a vector

Y =(¥;) 1.any = (O(1, 2n) - min(yh, yw)) + 1, (2)

where function O(1,2#n) returns a pseudorandom
1x(2n) vector [14] whose entries are drawn from

the standard uniform distribution on the open in-
terval (0;1), and vy is a coefficient to scale the po-

Iygon with respect to the image size. Theoretically,
vy € (0;1] but ye[0.25;1] for practice. The hori-
zontal coordinates are

2, =y, +a((l-v)-he,) for i=1,n 3)

and the vertical coordinates are

=y, +oa((l-y)-woy) for i=1,n, (4)

zn+i

where values 6, and 65 are random generated ana-
logously to 6,. So, the i-th vertex is a plane point

[z; z,.] for i=1,n. The stage with vector (2)

and coordinates (3) and (4) is repeated until the
resulting polygon becomes convex and the coordi-
nates of the same axis are not too close. The latter
is controlled by inequalities

Z,-Z =M fori=2,n (5)

and

Tpik ~ Zppks = M for k=2, n (6)
for a given positive integer A, where {z,}, and
{z,.; 11, are respective values {z,;}7, and {z,,;}",
sorted in ascending order. In practice, a case of
A e{5,10} is acceptable. The requirement of ine-

qualities (5) and (6) can be relaxed so that one of
them or both may be violated for a single i € {2, n}

and a single & e {2,_n}. Additionally, one or a few

vertices may be deleted in order to obtain the
convexity faster [12, 13].
Given a number of entries M, the dataset

generator returns M images with polygonal objects
and M labeled images (like, e. g., in Fig. 2). Here
only two classes are represented: “polygon” and
“background”. Later on, the generated dataset is
divided into a training set, a validation set, and a
testing set (if needed).



IHOOPMALLINHI TEXHONOTT, CUCTEMHUIA AHAJNI3 TA KEPYBAHHS 27

Fig. 2. An exemplary dataset of 100 grayscale 64x64 images with polygonal objects to be segmented (n
a — images of the dataset; b — labeled images of the dataset

Optionally, the colors of the background, po-
Iygon edges, and polygon interior can be changed.
The colors of the background and polygon interior
can be different. Note that the images are not
ideally of two colors. Some noise is added upon
saving an image due to its file format conversion
process. A factual transition between the white
background and the polygon black edges can be
seen in Fig. 3. Besides, due to pixel-wise drawing,
the convexity in some places is visibly rough.

Fig. 3. A grayscale fuzzy transition between the white back-
ground and the polygon black edges in an image of the
dataset in Fig. 2

A specificity of the dataset generator is that it
does not necessarily return a polygon having at
least n,;, vertices (or edges). While searching for
the convex hull by the given coordinates, those

vertices who violate the convexity are deleted. This
decreases the factual number of polygon edges, es-

=3 and n_. =8):

min

pecially for small-sized images. As the image size
increases, the probability of generating polygons
with a greater number of edges increases (for an
increased n,;,). Thus the objects to be segmented

can be made a little bit “smoother”. However,
these objects mainly are triangles, quadrilaterals,
and pentagons. Hexagons, heptagons, octagons will
be generated much rarer unless numbers n_; and
N are set greater for 256x256 images or big-
ger. If to generate vertices by vector (2) until the
number of the polygon edges becomes equal to
Nyin » this may significantly linger on it. This is
why such an option is not recommended to turn
on along with n_. > 6, although the possibility

exists.

min

Exemplification

Before considering examples of using the po-
lygonal dataset, a common semantic segmentation
network architecture is stated as follows. Firstly,
the images are all square. So let the input layer
have the size wxwxl. Then a convolutional layer

goes executing 3x3 convolutions with unit strides
and paddings. A 2x2 max pooling layer downsam-

ples the input by a factor of 2 by setting the stride
at 2. A ReLU is inserted in-between the first con-
volutional and max pooling layers [6].

Let the number of filters in the first convolu-
tional layer be equal to 2w. And let the second
convolutional layer, following the max pooling la-

yer, be of the same parameters. The second convo-
lutional layer is followed by a ReLU also. Further,
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a deconvolutional layer upsamples with 4x4 filters
whose number is 2w . The stride here is set at 2.
The deconvolutional layer is followed by 1x1

convolutions with the unit stride and without pad-
ding (a fully-connected layer). As we have only
two classes, “polygon” and “background”, the
number of filters here is set at 2. In the end, the
softmax and pixel classification layers go (Fig. 4).
Now, four datasets are generated for 32x32,

64x64, 96x96, and 128x128 images. The training

1 Image Input 32x32x1 images with "zerocenter™ normalization
2 Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
3 RelU ReLU (by default)
4 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 O]
5 Convolution 64 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
6 RelLU ReLU (by default)
7 Transposed Convolution 64 4x4 transposed convolutions with stride [2 2] and output cropping [1 1]
8 Convolution 2 1x1 convolutions with stride [1 1] and padding [0 0 0 O]
9 Softmax softmax
10 Pixel Classification Layer Cross-entropy loss
Fig. 4. The segmentation network architecture in MATLAB for segmenting 32x32 images
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and testing sets have an equal number of entries,
whereas no validation will be performed during
training (eventually, testing is a final validation).
Each dataset has three versions: for 400, 2000, and
10000 images.

The network is trained for 100 epochs, which
are enough for achieving the top possible perfor-
mance on a given dataset. The training is executed
with using class weighting (Fig. 5). Semantic seg-
mentation quality is evaluated by the common
metrics:

I rclative frequencies

Fig. 5. Relative frequencies of class-labeled pixels and the corresponding class weights, which are multiplicative inverses for the fre-
quencies (the number of class “background” pixels is 1.8206 to 2.6104 times greater than that of class “polygon” pixels)
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1. Normalized confusion 2x2 matrix U. The

non-diagonal element of this matrix is the count of
pixels known to belong to class “polygon”/“back-
ground” but predicted to belong to class “back-
ground”/“polygon”, divided by the total number of
pixels predicted in class “background”/“polygon”.
2. Global accuracy g,. , which is a ratio of

correctly classified pixels to total pixels, regardless
of class.

3. Mean accuracy m which a ratio of cor-

acc ?
rectly classified pixels in each class to total pixels,
averaged over all classes.

4. Mean intersection-over-union (IoU) m,

which is the average IoU of all classes.
5. Weighted IoU p,;, which is the average

IoU of all classes, weighted by the number of pix-
els in the class.
6. The class accuracy (p,., and b, , respec-

tively for “polygon” and “background”), which is a
ratio of correctly classified pixels in each class to
the total number of pixels belonging to that class
according to the ground truth. Obviously,

— Pace +bacc

macc 2

7. The class IoU (py,; and by, , respectively

for “polygon” and “background”), which is a ratio
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of correctly classified pixels to the total number of
ground truth and predicted pixels in that class. Ob-
viously,

m. = Plou + b0y
IoU — 2 *

Fig. 6 shows an evolution of matrix

for the increasing image size and the increasing
number M .. of entries in the training set. The

classes are confused badly enough, so the global
accuracy (Fig. 7) and mean accuracy (Fig. 8) are
far from the acceptable ones. As the image size in-
creases, these accuracies drop. The same happens to
the mean IoU (Fig. 9) and weighted IoU (Fig. 10),
although they increase as the volume of the train-
ing set increases. Tendencies of the class accuracies
(Fig. 11) and class IoUs (Fig. 12) differ. However,
accuracy and IoU for class “background” resemble
each other.

It is no wonder that networks with a bigger
input size perform poorer. Although numbers of
filters are increased, bigger images may require in-
serting additional convolutions and deconvolutions
along with max pooling layers. Indeed, after insert-
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Fig. 6. An evolution of the normalized confusion matrix
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Fig. 13. The stack of 300 single-polygon images and the fused overlay image as a result of segmentation

ing another triple of a convolutional layer, ReLU
and max pooling layer, followed by the second de-
convolutional layer, the segmentation quality be-
comes improved.

The semantic segmentation network can proc-
ess images that are larger than the specified input
size. The smallest image size the network can
process is WxW. Besides, an input image may
contain not only a single object. So, testing the
trained network on a stack of polygons is possible.
Fig. 13 shows how well the trained network per-
forms on such a stack of 32x32 single-polygon

images. The factual segmentation quality is pretty
good but it may be a little worse than that dealing
with a single image.

Such stacks are a more real model of situa-
tions rather than just a single object to be segment-
ed. Here, the network full connectivity gives an
opportunity to work with a great deal of image siz-
es starting off the minimal size 32x32. The input

image thus is not necessary to be a square. The
input square images used for training and testing
the network are atomic instances to project it. If
an input image, whichever polygonal objects it has,

does not have size (32¢)x(32¢) by ge N, teN,

then it is just scaled (resized or adjusted) to the
nearest size (32q)x(32¢).

Discussion

Although any dataset generated by (1)—(6) is
far away from a real-world task, it is a fast test
platform that allows to adjust a segmentation net-
work to the image size and its complexity. The
simplest dataset is of triangles. When a polygon has
four edges or more, it is harder to segment. Mean-
while, the larger the polygon, the harder it is seg-
mented. The central part of the polygon is segmen-
ted poorer when the image size grows along with
enlarging the polygon. This happens due to the
polygon edges become relatively thinner, and thus
the network “sees” them less legibly. Fuzzy border
transitions additionally hamper the segmentation.

Larger images have polygons with the same
thinnest edges, so it is not a matter of just scaling
the smallest images. The larger the image size, the
clearer bottlenecks of a network architecture can
be seen. These bottlenecks are gradually eliminated
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Fig. 14. Four examples of when the network segmented an empty image, that is an evidence of the failed training (similar to
overfitting but not exactly it); note how the segmented area becomes more square-like as the training result worsens

by inserting more convolutional, deconvolutional,
and max pooling layers. Numbers of filters are in-
creased along with that. ReLUs and DropOut lay-
ers are inserted appropriately [6, 10].

Note that a segmentation network trained by
a dataset generated by (1)—(6) must not “see”
background itself. This is so because the dataset
does not contain images with only class “back-
ground”. Therefore, if the network being currently
trained starts segmenting empty images (images of
appropriate sizes regarding the network input,
which do not contain any objects), the training
process should be stopped (Fig. 14). The saved last
version of the network not segmenting empty ima-
ges becomes the best one for the given architecture
and dataset. Further improvement of accuracy (or,
in general, semantic segmentation quality by the
said metrics) requires either modifications of the
network architecture or generation of a dataset
wherein polygons would be relatively smaller than
previously.

Conclusions

The represented method of generating an in-
finitely scalable dataset relies on pseudorandomi-
zation of the polygon vertices’ number by (1) and
coordinates of the vertices by (2)—(4). Inequali-
ties (5) and (6) help in making a polygon of an
appropriate form and size, unless the polygon is
a triangle. On rare occasions, the triangle can be
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HABIP JAHMX HECKIHYEHHOIO MACLUTABYBAHHA 13 30BPAXEHbL Y TPAOALIAX CIPOIFO 3 OAHWUM BArATO-
KYTHVKOM $IK LWBMOKA TECTOBA NMNATOOPMA AN CEMAHTUYHOT CEFMEHTALLIT 30BPAXEHb

Mpo6nemaTuka. KoxkHa HoBa 3afa4ya CEMaHTUYHOI cerMmeHTaLii 306paxxeHb BMMarae TOHKOT HACTPOWKN apXiTEKTYpU Mepexi cer-
MeHTaLji, sIKy Ay>Xe BaXKO BUKOHATU Ha 300paxXeHHsIX BUCOKOI pO3AinbHOI 34aTHOCTI, L0 MOXYTb MICTUTK GaraTo kaTeropiv i 3anyyartu
BenmnyesHi obymcnioBanbHi pecypcu. TakuM YMHOM, NMUTaHHA nonsarae B TOMy, Y MOXHa HabaraTto LBuALle NpoTecTyBaTh apXiTekTypu
Mepex cermeHTauii, LWob 3HaNTN ONTUMarnbHI pilleHHs, Ski Mornu 6 6yTn 3acTocoBaHi 4O peanbHUX 3aBaaHb CEMaHTUYHOI cerMmeHTauii
306paxeHb.

MeTa pocnipxeHHs. CtaTtTa npucesyeHa po3pobui Habopy AaHWUX i3 HECKIHYEHHMM MacliTabyBaHHAM, KU Mir 6u cnyrysatu
TECTOBO MNaTgopMoto ANs CeMaHTU4HOI cermeHTauii 306paxeHb. Habip aaHunx Byae mictutn 6yap-gKy KinbKicTb 3anuciB 6yab-saKkoro
po3mipy, HEOBXiAHOro ANs TECTYBaHHS.

MeToauka peanisauii. HoBuii LiTy4HWI Habip AaHWX NPOEKTYETLCSA AN CEMaHTUYHOI cerMeHTaLii 306paxeHb. Lien Habip aaHux
ABnsie coboto 306paxkeHHs B rpagauisix ciporo 3 6invm Tnom. baraTokyTHWI 06’eKT BUNaAKOBUM YMHOM po3MillyeTbecs Ha Thi. Pebpa ba-
raTokyTHUKa — YOpHI, a Tino 6araTokyTHWKa — Npo3ope. TakuMm YMHOM, 306paxeHHst Habopy AaHux siBnsie coboto Habip pebep onyknoro
HaraTtokyTHuka Ha 6inomy Tni. Kpaw 6araTokyTHVKa Mae TOBLUMHY B OAMH MiKCenb, ane nepexig Mk 6inuM Trnom i YopHummn kpasimm 6a-
raToKyTHUKa BKIOYa€e Cipi Mmikceni B oKonuui ofHoMiKcenbHWX KpaiB. Takuii Wym € HacnigkoMm npouecy nepeTBopeHHs dopmaty danny
306paxeHHst. KinbkicTb pebep 6araTokyTHMKa reHepyeTbC BUNAAKOBUM YMHOM Af1sl KOXXHOFO HaCTYMNHOro 306paxeHHsi. Poamip 6arato-
KyTHMKa | NONOXEHHS MOro LeHTpa Mac LLOAO MONiB 306paXeHHs TakoX paH4OMi30BaHi.

PesynbTatn pgocnigxeHHsa. MopenbHuii Habip paHux Byab-akoro obcsAry i po3amipy 3006paxeHHst Moxe OyTu 3reHepoBaHWi
“3 Hyns". Kpim Toro, reHepatop HabopiB gaHWX aBTOMaTWYHO kaTeropuaye nikceni ans knacis “background” i “polygon”. Takuii HaGip
OaHux He noTpebye 36inblieHHs. 3pelToto, uen Habip AaHnX MOXHa HeckiH4eHHO MacliTabyBaTy, i BiH Byae cnyryBatv nnatopMoro
LUBMAKOrO TECTYBAHHSA AN apXiTeKTyp Mepex cerMeHTaLlii.

BucHoBkuW. Po3rnsiHyTi Nnpuknaan BUKOPUCTaHHst HAbopy AaHuXx i3 GaraToKyTHUKIB NiTBEPAXYHOTb MOro NpUAATHICTb | 3aaTHICTb
HaBYEHMX MepeX YCNiLIHO CermeHTyBaTu KoMnnekTy o6’ekTiB. KpiMm Toro, BUSIBNSIETLCA KPUTEPI paHHbOI 3YNMUHKN Ha OCHOBI CermMeHTa-
Lii NOPOXXHBOro 306paXXeHHS.

Knio4yoBi cnoBa: cemaHTn4YHa cerMeHTauis 3o6paxeHb; Habip gaHux; 6araTokyTHUI 06’eKT; Mpo3ope TNo; 36iNbLUEHHS; apXiTek-
Typa Mepexi cermeHTaLlii; cerMeHTaLisi NTOPOXHbOro 306paXKeHHS.
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BECKOHEYHO MACLUTABMPYEMbIA HABOP [OAHHbLIX N3 W3OBPAXEHUA B TPAJALIMAX CEPOTO C OOHUM
MHOIOYIOJIbHVKOM KAK EBbICTPAA TECTOBASA MNAT®OPMA [N CEMAHTUYECKOW CEIMMEHTALUWM W30-
BPAXEH

Mpobnematuka. Kaxgas HoBas 3ajava ceMaHTUYECKOW CerMeHTaummn nsobpaxeHuin TpebyeT TOHKOWM HacTPOWMKM apXUTEKTYpbl
CeTU cermeHTauuu, KOTOpYy O4YeHb TPYAHO BbINOMHUTL Ha M306paXeHUsX BbICOKOrO paspelleHusi, KOTopble MOryT copepXaTb MHOro
KaTeropuii U BOBMekaTb OFPOMHbIE BbIYUCIIMTENbHBIE PECYPChl. Takum 06pa3omM, BONPOC 3aKYaeTcsl B TOM, MOXHO N ropasao bbicT-
pee NpoTecTMpoBaTb apXUTEKTYpbl CETEN CerMeHTauun, YTobbl HAaNTK ONTUMarnbHbIE PELLUEHUs], KOTOpble MOrn Obl ObITb NPUMEHEHBI K
peanbHbIM 3a4a4aM CEMaHTUYECKOW CEerMeHTaLmmn n3obpakeHu.

Llenb uccnegoBaHus. CtaTbs nocesileHa pa3paboTke 6eckoHeyHO macluTabupyemoro Habopa AaHHbIX, KOTOpbIA MOr Obl Cry-
XWUTb TECTOBOM NnaTcopmMon AN CEMaHTUYECKOW CermeHTaumm nsobpaxenuin. Habop gaHHbIx OyaeT cogepxartb noboe KonmyecTBo
3anvcen noboro paamepa, Heo6xoAMMOro Ans TeCTUPOBaHUS.

MeToguka peanusaumn. HoBbI UCKYCCTBEHHbIM HAbOp AaHHbIX MPOEKTUPYETCs AN CEMaHTUYECKOW cerMmeHTauum msobpaxe-
HWI. 3TOT Habop AaHHbIX NpeAcTaBnseT cobon nsobpaxeHus B rpagaumsax ceporo ¢ 6enbiv poHom. MHOroyronbHbI 06bEKT cnyyan-
HbIM 0bpa3om pasmelyaeTcs Ha oHe. Pebpa MHOroyronbHvKka — YepHble, a TENO MHOrOyrofibHUKa — nNpo3payHoe. Takum obpasom,
n3obpaxeHvne Habopa AaHHbIX NpeacTaBnsieT cobon Habop pebep BbINYKNOro MHOroyrofnbHKKa Ha 6enom coHe. Kpaw MHOroyronbHuka
UMeeT TOMLUMHY B OOVH MUKCEenNb, HO nepexof Mmexay 6enbiM (hOHOM M YepHBIMU KpasiMy MHOTOYroSibHMKa BKITIOYaET cepble NMUKCEenu B
OKPECTHOCTM OAHOMUKCENbHbIX KpaeB. Takol Lym SABNsSieTcs NocnencTsnemM npouecca npeobpasoBaHus dopmata davina nsobpaxe-
Hus. KonuuecTtBo pebep MHOroyronbHMKa reHepupyeTcsl criydariHbiM 06pa3oM Ans Kaxaoro crnegytowlero nsobpaxeHusi. Paamep MHo-
rOyrofibH1Ka 1 NonoXeHne ero LeHTpa Macc OTHOCUTENBLHO Nonew n3obpaxeHns Takke paHAOMU3NPOBAHSI.

Pe3ynbTatbl uccnepgoBanus. MoaenbHbll Habop AaHHbIX Noboro obbema n pasmepa n3obpaxeHns MoxeT BbiTb creHepupo-
BaH “c Hynsi”. Kpome Toro, reHepatop HabopoB [aHHbIX aBTOMAaTUYECKW KaTeropuavpyeT nukcenu Ans knaccos “background” u
“polygon”. Takon Habop AaHHbIX He HyXXAaeTcsa B npupalieHun. B KOHLEe KOHLIOB, 3TOT Habop AaHHbIX MOXHO OECKOHEeYHO MacluTabu-
poBaThb, U OH ByAeT CnyXxuTb NNaThopMoN BbICTPOro TECTUPOBAHWS AMS apXUTEKTYP CEeTeN CerMeHTaLmuu.

BbiBoAbl. PaccMoTpeHHble npyMepbl MCNonb3oBaHNa Habopa AaHHbIX M3 MHOMOYronbHWUKOB NOATBEPXAAloT ero NpurogHoCTb U
CMocobHOCTb 0BYYEHHbIX CETEW YCMNELIHO CErMEHTUPOBAaTL KOMMIEKTbI 06bekToB. Kpome Toro, obHapyxuBaeTcs KpUTepUn paHHen oc-
TaHOBKW Ha OCHOBE CermMeHTaLMmn NycToro nsobpaxexus.

KnioyeBble crnoBa: cemaHTM4Yeckas cermeHTauus m3obpaxeHuin; Habop AaHHbIX; MHOrOYroOMbHbIN OOBLEKT; MPO3payHbli GoH;
npvipaLleHve; apxXuTekTypa ceTn CermeHTauum; CerMeHTaLms nycToro n3obpaxkeHus.
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